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Abstract The arboricity a(G) (respectively, vertex arboricity va(G)) of a graph G is the minimum

number of subsets into which the edge set E(G) (respectively, the vertex set V (G)) can be partitioned

so that each subset induces a forest. In this paper, we study interpolation theorems for the arboricity

and the vertex arboricity of graphs with size m and order n. We show that for ρ ∈ {a, va}, the values

of ρ(G) where G ∈ G(m,n) completely cover a line segment [a, b] of positive integers such that G(m,n)
is the class of all simple graphs with size m and order n. Then we say that ρ is an interpolation graph

parameter over G(m,n). Thus for a graph parameter ρ, two variants a and b where

a = min {ρ(G) : G ∈ G(m,n)} and

b = max {ρ(G) : G ∈ G(m,n)}
arise naturally. The extremal values a and b are obtained for all ρ ∈ {a, va}.

MSC: 05C30; 05C35; 68R10

Keywords: arboricity; vertex arboricity; graph parameter; interpolation theorem

Submission date: 02.06.2023 / Acceptance date: 31.08.2023

1. Introduction

In this paper, our notation and terminology follow that of Bondy and Murty [1]. We
only consider simple and finite graphs. Let G be the class of all simple graphs; a function
π : G → Z is called a graph parameter if π(G) = π(H) whenever G,H ∈ G such that
G = H. If there exist integers x and y such that {π(G) : G ∈ J } = [x, y] = {k ∈ Z : x ≤
k ≤ y}, then a graph parameter π is called an interpolation graph parameter over J ⊆ G.

The question “If a graph G possesses a spanning tree having m leaves and another
having n leaves, where m < n, does G possess a spanning tree having k leaves for every
k between m and n ?” was raised by G.Chartrand during a conference on graph theory
in 1980 [2]. In [3–6], this question was answered and it led to a host of lots of papers
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studying the interpolation properties of graph parameters with respect to the set of all
spanning trees of a given graph. The interpolating character of many graph parameters
over other classes of graphs was studied in number of papers.

In 1995, Zhou [7] investigated the interpolation property for a family of spanning sub-
graphs. In [8–10], Punnim proved that chromatic, clique, independent, covering, edge-
covering, matching, forest, decycling and domination numbers are interpolation graph
parameters over the class of d-regular graphs and d-regular connected graphs and deter-
mined the extremal values of these parameters.

2. Interpolation Theorems

For positive integers n and m where 0 ≤ m ≤
(
n
2

)
, let G(m,n) be the sets of all simple

graphs of size m and order n. Let G ∈ G(m,n) with e ∈ E(G) and f /∈ E(G). Define a
jumping transformation t = t(e, f) on G which produces the graph Gt(e,f) = G − e + f ,
simply written Gt. Let T (m,n) be a relation on G(m,n) defined by (G,H) ∈ T (m,n) if
G � H and H can be obtained from G by a jumping transformation. Since T (m,n) is
symmetric, it follows that the T (m,n)-graph is simple. N. Punnim [11] proved that the
T (m,n)-graph is connected as the following results.

Theorem 2.1. [11] Let G,H ∈ G(m,n). Then G = H or there is a finite sequence of
jumping transformations t(e1, f1), t(e2, f2), ..., t(er, fr) for some integer 1 ≤ r ≤

(
n
2

)
such

that H = Gt(e1,f1)t(e2,f2)...t(er,fr).

Corollary 2.2. [11] The T (m,n)-graph is connected.

As a result of Corollary 2.2, the following theorem is obtained.

Theorem 2.3. [11] Let t be a jumping transformation on G ∈ G(m,n) and π is a graph
parameter. If |π(G)−π(Gt)| ≤ 1, then π is an interpolation graph parameter over G(m,n).

The interpolation theorems for the arboricity and vertex arboricity of graphs are
proved in the following theorems by using the useful fact about the arboricity that all the
subgraphs of any graph cannot have arboricity larger than the graph itself.

Theorem 2.4. Let t be a jumping transformation on a graph G ∈ G(m,n). Then a(Gt) ≤
a(G) + 1.

Proof. Let ab ∈ E(G), cd /∈ E(G), and t = t(ab, cd) be a jumping transformation on
G ∈ G(m,n). Suppose that a(G) = l. Since subgraphs of any graph cannot have arboricity
larger than the graph itself, if we remove the edge ab from G, then a(G − ab) ≤ l. This
implies that E(G − ab) can be partitioned into k subsets E1, E2, ..., Ek each of which
induces a forest where k ≤ l. If we add the edge cd into G − ab, then we shall consider
G− ab+ cd (simply written Gt) in the following two cases.

Case 1. The subgraph of G − ab induced by Ei contains a path from c to d for all
1 ≤ i ≤ k. Then there must be a subgraph of G− ab+ cd induced by Ei for some i which
contains a cycle. Hence E(G− ab+ cd) must be partitioned into at least k+ 1 subsets so
that each subset induces a forest. That is a(G− ab+ cd) ≤ k + 1 ≤ a(G) + 1.

Case 2. There exists Ei for some 1 ≤ i ≤ k where the subgraph of G − ab induced
by Ei contains no paths from c to d. If we add the edge cd to Ei, then a subgraph of
G− ab+ cd induced by Ei ∪{cd} is a forest. Thus E(G− ab+ cd) can be partitioned into
k subsets each of which induces a forest. Consequently, a(G− ab+ cd) ≤ k ≤ a(G) + 1.
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Theorem 2.5. Let t be a jumping transformation on a graph G ∈ G(m,n). Then
va(Gt) ≤ va(G) + 1.

Proof. Let G be a graph with va(G) = k and t = t(ab, cd) be a jumping transformation.
Then V (G) can be partitioned into k subsets V1, V2, ..., Vk each of which induces a forest
in G. If we remove the edge ab from G, then it is clear that V (G− ab) = V (G) and the
subgraph of G− ab induced by Vi is a forest for all 1 ≤ i ≤ k. By adding the edge cd into
G− ab, we shall consider G− ab+ cd or Gt in the following two cases.

Case 1. There exists Vp for some 1 ≤ p ≤ k such that the subgraph of G − ab
induced by Vp contains a path from c to d. Then Gt[Vp] contains a cycle. Thus V (Gt)
must be partitioned into k + 1 subsets each of which induces a forest in Gt. That is
V (Gt) = V (G) ∪ Vk+1 where Vk+1 = {d}. Hence va(Gt) ≤ k + 1 = va(G) + 1.

Case 2. The subgraph of G− ab induced by Vp contains no paths from c to d for all
1 ≤ p ≤ k. Hence there is no subgraph of Gt induced by Vp for all 1 ≤ p ≤ k containing
a cycle. That is V (Gt) = V (G− ab). Thus va(Gt) ≤ k ≤ va(G) + 1.

As a consequence of Theorems 2.4 and 2.5, we have Corollary 2.6.

Corollary 2.6. Let ρ ∈ {a, va} and t be a jumping transformation on G ∈ G(m,n).
Then |ρ(G)− ρ(Gt)| ≤ 1.

By combining the previous results and Theorem 2.3, it follows that the arboricity and
vertex arboricity are an interpolation graph parameter over G(m,n). Consequently, the
following corollary is obtained.

Corollary 2.7. Let ρ ∈ {a, va}. There exist integers a = min{ρ(G) : G ∈ G(m,n)} and
b = max{ρ(G) : G ∈ G(m,n)} such that there is G ∈ G(m,n) with ρ(G) = c if and only
if c is an integer satisfying a ≤ c ≤ b.

3. Bounds on the Arboricities and Vertex Arboricities

S. st.J. A. Nash-Williams has published a well-known theorem for arboricity as stated
in the following theorem.

Theorem 3.1. [12, 13] A graph G has arboricity ` if and only if every non-trivial subgraph
H has at most `(|V (H)| − 1) edges.

Theorem 3.2. [13] For every nonempty graph G, a(G) = max
⌈
|E(H)|
|V (H)|−1

⌉
, where the

maximum is taken over all non trivial induced subgraph H of G.

Since a graph G is a subgraph of Kn for all G ∈ G(m,n), a(G) ≤ a(Kn). The following
lemmas show the lower bound of the number of vertices and edges of a graph G with the
prescribed arboricity.

Lemma 3.3. Let G ∈ G(m,n) and a(G) = a. Then m ≥ 2(a− 1)2 + 1.

Proof. Let G ∈ G(m,n) where a(G) = a. By Theorem 3.2, there exists a subgraph H0 of

G where
⌈
|E(H0)|
|V (H0)|−1

⌉
= a(G). Since (|V (H0)|−1)(a−1)

|V (H0)|−1 = a − 1,
⌈
(|V (H0)|−1)(a−1)+1

|V (H0)|−1

⌉
= a.

Hence if
⌈
|E(H0)|
|V (H0)|−1

⌉
= a(G) = a, then |E(H0)| ≥ (|V (H0)| − 1)(a− 1) + 1.

Suppose that |V (H0)| ≤ 2a − 2. Let |V (H0)| = 2a − k where k ≥ 2. Since a(G) = a,

|E(H0)| ≥ (|V (H0)|−1)(a−1)+1 = (2a−k−1)(a−1)+1 = (2a−2)(2a−k−1)
2 +1. Since k ≥ 2,
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|E(H0)| ≥ (2a−2)(2a−k−1)
2 + 1 ≥ (2a−k)(2a−k−1)

2 + 1 =
(
2a−k

2

)
+ 1. It is impossible because

|V (H0)| = 2a− k. Thus |V (H0)| ≥ 2a− 1. That is |E(H0)| ≥ (2a− 1− 1)(a− 1) + 1 =
2(a− 1)2 + 1. Since E(G) ≥ E(H0), m ≥ 2(a− 1)2 + 1.

Theorem 3.4. Let G ∈ G(m,n). Then
⌈

m
n−1

⌉
≤ a(G) ≤

⌊
2+
√
2m−2
2

⌋
.

Proof. As the result of Theorem 3.1, we observe that if a graph G ∈ G(m,n) has arboricity

a, then m ≤ a(n − 1). This implies that
⌈

m
n−1

⌉
≤ a(G). By Lemma 3.3, if a(G) = a,

then m ≥ 2(a− 1)2 + 1. By using the quadratic formula, we have a ≤
⌊
2+
√
2m−2
2

⌋
. That

is
⌈

m
n−1

⌉
≤ a(G) ≤

⌊
2+
√
2m−2
2

⌋
.

For complete graphs K2p and K2p−1, Beineke [14] proved that V (K2p) can be parti-
tioned into p subsets each of which induces a spanning path and V (K2p−1) can be parti-
tioned into p subsets such that p−1 subsets each of which induces a spanning path and the
other subset induces a star with 2p−1 vertices. This implies that a(K2p) = a(K2p−1) = p.
These facts are useful to use in the proof of Theorems 3.5 and 3.6.

Let π be a graph parameter. Define min(π;m,n) = min{π(G) : G ∈ G(m,n)} and
max(π;m,n) = max{π(G) : G ∈ G(m,n)}.

Theorem 3.5. min(a;m,n) =
⌈

m
n−1

⌉
.

Proof. Let G ∈ G(m,n). By Theorem 3.4,
⌈

m
n−1

⌉
≤ a(G). It is easy to see that if

m ≤ n − 1, then min(a;m,n) = 1. A graph of order n and size m ≤ n − 1 where the
arboricity is equal to 1 is Pm+1 +{v1, v2, ..., vn−m−1}. Next we consider only when m ≥ n
in the following three cases.

Case 1. n = 2p and m ≤
(
2p
2

)
= p(2p−1) for a positive integer p. Put m = s(2p−1)+t

where s and t are integers satisfying 0 ≤ t ≤ 2p− 2 and 1 ≤ s ≤ p.
If t 6= 0, then a(G) ≥

⌈
s(2p−1)+t

2p−1

⌉
= s + 1. We now construct a graph G of order

n = 2p, size m = s(2p − 1) + t, and a(G) = s + 1 as follows. Since a(K2p) = p, E(K2p)
can be partitioned into p subsets, each of which induces a forest. Let {E1, E2, ..., Ep} be
a partition of E(K2p) such that each Ei; 1 ≤ i ≤ p induces a forest and |Ei| = 2p− 1. Let
H0 = K2p−Es+2∪Es+3∪...∪Ep. Then |V (H0)| = 2p and |E(H0)| = (s+1)(2p−1). If we
delete 2p−1−t edges from Es+1, then |Es+1−W0| = t where W0 is a set of those 2p−1−t
edges. Therefore, the graph G can be obtained by deleting W0 from H0. In other words,
G = H0−W0 where n = 2p and m = |E(H0−W0)| = s(2p− 1) + t. Moreover, E(G) can
be partitioned into s + 1 subsets, each of which induces a forest. Let {E∗1 , E∗2 , ..., E∗s+1}
be a partition of E(G) where E∗i = Ei for all 1 ≤ i ≤ s and E∗s+1 = Es+1 −W0. Thus
a(G) = a(H0 −W0) ≤ s+ 1. Since a(G) ≥ s+ 1, a(G) = s+ 1.

If t = 0, then a(G) ≥
⌈
s(2p−1)
2p−1

⌉
= s. We can now construct a graph G where a(G) = s

by deleting W1 = Es+1 ∪ Es+2 ∪ ... ∪ Ep from K2p. It is clear that K2p −W1 is a graph
of order 2p and size s(2p − 1). Observe that E(G) = E(K2p −W1) can be partitioned
into s subsets, each of which induces a forest. Let {E1, E2, ..., Es} be a partition of E(G).
Hence a(G) = a(K2p −W1) ≤ s. Since a(G) ≥ s, a(G) = s.

Case 2. n = 2p− 1 and m ≤
(
2p−1

2

)
− (p− 1) = (p− 1)(2p− 2) for a positive integer

p. Put m = s0(2p − 2) + t0 where s0 and t0 are integers satisfying 0 ≤ t0 ≤ 2p − 3 and
1 ≤ s0 ≤ p− 1.
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If t0 6= 0, then a(G) ≥
⌈
s0(2p−2)+t0

2p−2

⌉
= s0+1. We now construct a graph G of order n =

2p−1, sizem = s0(2p−2)+t0, and a(G) = s0+1 as follows. Since a(K2p−1) = p, E(K2p−1)
can be partitioned into p subsets, each of which induces a forest. Let {D1, D2, ..., Dp} be
a partition of E(K2p−1) such that each Di; 1 ≤ i ≤ p induces a forest and |Di| = 2p − 2
for all 1 ≤ i ≤ p− 1 and |Dp| = p− 1. Let H1 = K2p−1 −Ds0+2 ∪Ds0+3 ∪ ...∪Dp. Then
E(H1) = D1∪D2∪...∪Ds0+1. Moreover, |V (H1)| = 2p−1 and |E(H1)| = (s0+1)(2p−2).
If we delete 2p − 2 − t0 edges from Ds0+1, then |Ds0+1 −W2| = t0 where W2 is a set
of those 2p − 2 − t0 edges. The graph G can be obtained by deleting W2 from H1. In
other words, G = H1 −W2 where n = 2p − 1 and m = |E(H1 −W2)| = s0(2p − 2) + t0.
Moreover, E(G) can be partitioned into s0 + 1 subsets, each of which induces a forest.
Let {D∗1 , D∗2 , ..., D∗s0+1} be a partition of E(G) where D∗i = Di for all 1 ≤ i ≤ s0 and
D∗s0+1 = Ds0+1 − W2. Thus a(G) = a(H1 − W2) ≤ s0 + 1. Since a(G) ≥ s0 + 1,
a(G) = s0 + 1.

If t0 = 0, then a(G) ≥
⌈
s0(2p−2)
2p−2

⌉
= s0. We can construct a graph G where a(G) = s0

by deleting W3 = Ds0+1 ∪Ds0+2 ∪ ... ∪Dp from K2p−1. It is clear that G = K2p−1 −W3

is a graph of order 2p − 1 and size s0(2p − 2). Observe that E(G) = E(K2p −W1) can
be partitioned into s0 subsets, each of which induces a forest. Let {D1, D2, ..., Ds0} be a
partition of E(G). Hence a(G) = a(K2p−1 −W3) ≤ s0. Since a(G) ≥ s0, a(G) = s0.

Case 3. n = 2p − 1 and (p − 1)(2p − 2) < m ≤
(
2p−1

2

)
= (p − 1)(2p − 1) for

a positive integer p. Put m = (p − 1)(2p − 2) + t1 where t1 is an integer satisfying

1 ≤ t1 ≤ p− 1. Then a(G) ≥
⌈
(p−1)(2p−2)+t1

2p−2

⌉
= p. We now construct a graph G where

n = 2p − 1, m = (p − 1)(2p − 2) + t1, and a(G) = p as follows. Consider the partition
{D1, D2, ..., Dp} of E(K2p−1) in Case 2. If we delete p − 1 − t1 edges from Dp, then
|Dp −W4| = t1 where W4 is the set of those p − 1 − t1 edges. Therefore, the graph G
can be obtained by deleting W4 from K2p−1. In other words, G = K2p−1 −W4 where
n = 2p − 1 and m = |E(K2p−1 − W4)| = (p − 1)(2p − 2) + t1. Moreover, E(G) can
be partitioned into p subsets, each of which induces a forest. Let {D′1, D′2, ..., D′p} be a
partitioned of E(G) where D′i = Di for all 1 ≤ i ≤ p − 1 and D′p = Dp −W4. Thus
a(G) = a(K2p−1 −W4) ≤ p. Since a(G) ≥ p, a(G) = p. If t1 = p − 1, then a graph of
order n = 2p − 1, size m = (p − 1)(2p − 2) + p − 1, and arboricity p is K2p−1. That is
G ∼= K2p−1.

Theorem 3.6. max(a;m,n) =
⌊
2+
√
2m−2
2

⌋
.

Proof. Let G ∈ G(m,n). By Theorem 3.9, a(G) ≤
⌊
2+
√
2m−2
2

⌋
. If

⌊
2+
√
2m−2
2

⌋
= p, then

2+
√
2m−2
2 < p+ 1. Combine this to Lemma 3.8, it is clear that if 2(p−1)2 + 1 ≤ m ≤ 2p2,

then max(a;m,n) ≤ p. We now construct a graph in G(m,n) with arboricity p where
n ≥ 2p− 1 and (2p− 2)(p− 1) + 1 = 2(p− 1)2 + 1 ≤ m ≤ 2p2.

Case 1. (2p−2)(p−1)+1 ≤ m ≤ (2p−2)(p−1)+(p−1). Let m = (2p−2)(p−1)+ t0
where 1 ≤ t0 ≤ p − 1. We can construct a graph H0 of order n = 2p − 1 and size
m = (2p − 2)(p − 1) + t0 with a(H0) = p from K2p−1. Since a(K2p−1) = p, E(K2p−1)
can be partitioned into p subsets E1, E2, ..., Ep, each of which induces a forest, where
|Ei| = 2p− 2 for all 1 ≤ i ≤ p− 1 and |Ep| = p− 1. Let W0 ⊆ Ep be the set of p− 1− t0
edges. Then K2p−1−W0 is a graph of order 2p−1 and size (2p−2)(p−1)+ t0. Moreover,
E(K2p−1 −W0) can be partitioned into p subsets, each of which induced a forest. Let
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{E∗1 , E∗2 , ..., E∗p} be a partition of E(K2p−1−W0) where E∗i = Ei for all 1 ≤ i ≤ p−1 and

E∗p = Ep −W0. Thus a(K2p−1 −W0) ≤ p. Since a(K2p−1 −W0) ≥
⌈
(2p−2)(p−1)+t0

2p−2

⌉
= p,

a(K2p−1 −W0) = p. Thus H0 = K2p−1 −W0. Clearly, H0 = K2p−1 if t0 = p − 1. We
can construct a graph H0 of order n > 2p − 1 and size m = (2p − 2)(p − 1) + t0 with
a(H0) = p by adding n− (2p− 1) vertices into K2p−1 −W0.

Case 2. (2p−2)(p−1)+p ≤ m ≤ (2p−2)(p−1)+(3p−2). Equivalently, (2p−1)(p−1)+
1 ≤ m ≤ (2p−1)(p−1)+(2p−1). Let m = (2p−1)(p−1)+ t1 where 1 ≤ t1 ≤ 2p−1. We
can construct a graph H1 of order n = 2p and size m = (2p−1)(p−1)+t1 with a(H1) = p
from K2p. Since a(K2p) = p, E(K2p) can be partitioned into p subsets D1, D2, ..., Dp,
each of which induces a forest, where |Dj | = 2p−1 for all 1 ≤ j ≤ p. Let W1 ⊆ Dp be the
set of 2p−1− t1 edges. Then K2p−W1 is a graph of order 2p and size (2p−1)(p−1)+ t1.
Moreover, E(K2p−W1) can be partitioned into p subsets, each of which induced a forest.
Let {D∗1 , D∗2 , ..., D∗p} be a partition of E(K2p −W1) where D∗i = Di for all 1 ≤ i ≤ p− 1

and D∗p = Dp −W1. Thus a(K2p −W1) ≤ p. Since a(K2p −W1) ≥
⌈
(2p−1)(p−1)+t1

2p−1

⌉
= p,

a(K2p −W1) = p. Thus H1 = K2p −W1. Clearly H1 = K2p if t1 = 2p − 1 and n = 2p.
We can construct a graph H1 of order n > 2p and size m = (2p − 1)(p − 1) + t1 with
a(H1) = p by adding n− 2p vertices into K2p −W1.

Case 3. (2p − 2)(p − 1) + (3p − 1) ≤ m ≤ 2p2. Equivalently, p(2p − 1) + 1 ≤ m ≤
p(2p − 1) + p. Let m = p(2p − 1) + t2 where 1 ≤ t2 ≤ p. We can construct a graph H2

of order n and size m = p(2p− 1) + t2 with a(H2) = p from K2p. Since a(K2p) = p and
|E(K2p)| = p(2p − 1), E(K2p) can be partitioned into p subsets D1, D2, ..., Dp, each of
which induces a forest, where |Dj | = 2p − 1 for all 1 ≤ j ≤ p. If we add n − 2p vertices
u1, u2, ..., un−2p to K2p and join u1 to each vertex wk ∈ V (K2p), 1 ≤ k ≤ t2, then we
obtain the desired graph H2. It is clear that E(H2) can be partitioned into p subsets
B1, B2, ..., Bp, each of which induced a forest, where Bj = Dj + wju1 for 1 ≤ j ≤ t2 and
Bk = Dk for t2 + 1 ≤ k ≤ p. Thus a(H2) ≤ p. Since a(H2) ≥ a(K2p) = p, a(H2) = p.

In consequence of Theorems 3.5 and 3.6, the bounds in Theorem 3.4 are sharp. Next,
we determine the range for the vertex arboricity of G ∈ G(m,n). In [3], N. Achuthan,
N.R. Achuthan and L. Caccetta verified that va(Kn) =

⌊
n+1
2

⌋
and determined the range

for the size of a graph G of order n with the prescribed vertex arboricity as the following
lemma.

Lemma 3.7. [3] Let G ∈ G(m,n) and va(G) = p. Then m ≥
(
2p−1

2

)
. Furthermore, if

m =
(
2p−1

2

)
, then G ∼= K2p−1 ∪Kn−2p+1.

As a result of Lemma 3.7, observe that any graph G ∈ G(m,n) with va(G) = p has at

least
(
2p−1

2

)
edges. Thus max(va;m,n) ≤ p if

(
2p−1

2

)
≤ m <

(
2(p+1)−1

2

)
. In the following

theorem, we determine max(va;m,n).

Theorem 3.8. Let m,n, and p be positive integers and
(
2p−1

2

)
≤ m <

(
2p+1

2

)
. Then

max(va;m,n) = p.

Proof. By above observation, if
(
2p−1

2

)
≤ m <

(
2p+1

2

)
, then max(va;m,n) ≤ p. We now

construct a graph G ∈ G(m,n) such that va(G) = p. By Lemma 3.7, if m =
(
2p−1

2

)
, then

G ∼= K2p−1 ∪Kn−2p+1. Clearly va(G) = p. If
(
2p−1

2

)
< m ≤

(
2p
2

)
, then we construct a

graph G from K2p−1 ∪Kn−2p+1 by joining each vi for 1 ≤ i ≤ m −
(
2p−1

2

)
to v0 where

vi ∈ V (K2p−1) and v0 ∈ V (Kn−2p+1). Since G is obtained from K2p−1 ∪ Kn−2p+1 by
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adding some edges, va(G) ≥ va(K2p−1 ∪Kn−2p+1) = p. Let V (G) = V1 ∪ V2 ∪ ... ∪ Vp
such that V1 ∪ V2 ∪ ... ∪ Vp−1 = V (K2p−1 − {v2p−1}) where |Vk| = 2 for all 1 ≤ k ≤ p− 1

and Vp = {v2p−1} ∪ V (Kn−2p+1)). Hence V (G) can be partitioned into p subsets, each

of which induces a forest. Therefore, va(G) = p. In the case
(
2p
2

)
< m <

(
2p+1

2

)
, we can

construct G from the complete graph K2p∪Kn−2p by joining each uj for 1 ≤ j ≤ m−
(
2p
2

)
to u0 where uj ∈ V (K2p) and u0 ∈ Kn−2p. Since G is obtained from K2p ∪ Kn−2p by

adding some edges, va(G) ≥ va(K2p ∪Kn−2p) = p. Let V (G) = U1 ∪ U2 ∪ ... ∪ Up such
that U1 ∪U2 ∪ ... ∪Up−1 = V (K2p−1 − {u2p−1, u2p}) where |Uk| = 2 for all 1 ≤ k ≤ p− 1

and Vp = {u2p−1, u2p} ∪ V (Kn−2p)). Therefore, V (G) can be partitioned into p subsets,
each of which induces a forest. Then va(G) = p. From the 2 cases, max(va;m,n) = p.

To determine a formula for min(va;m,n), we shall apply Turán’s theorem. Turán
provided the complete r-partite graph of order n whose partite sets differ in size by at
most 1, usually called the Turán graph and denoted by Tn,r.

Theorem 3.9. (Turán’s Theorem) Among the graph of order n with no (r + 1)−clique,
Tn,r has the maximum number of edges.

In order to make an easy application of the Turán graph in our work, we would like to
state the following facts.

1. If n = rq + t, 0 ≤ t < r, then Tn,r consists of t partite sets of cardinality dnr e and
r − t partite sets of cardinality bnr c.

2. Let G ∈ G(m,n). If ω(G) ≤ r, then m ≤ |E(Tn,r)|.
3. |E(Tn,r)| =

(
n−a
2

)
+ (r − 1)

(
a+1
2

)
, where a = bnr c.

4. Let tn,r = |E(Tn,r)|. Then for a fixed n, by using elementary arithmetic, we have

tn,r−1 ≤ tn,r for all 2 ≤ r ≤ n. In fact tn,r − tn,r−1 ≥
(
a+1
2

)
, where a =

⌊
n
r

⌋
.

In [3], N. Achuthan, N.R. Achuthan and L. Caccetta defined the graph Qn,p as follows.

Let n and p be given integers. Put l =
⌊
n
p

⌋
and l′ = n− pl. Define Qn,p

∼=
p
∨
i=1

Ti where

Ti is a tree of order l + 1 if i ≤ l′ or of order l, if i ≥ l′ and ∨ is the join operation of
graphs. They determined an upper bound of the size of a graph G with the prescribed
vertex arboricity as the following Lemma.

Lemma 3.10. [3] Let G ∈ G(m,n) and va(G) = p. Then m ≤
(
n
2

)
− l′(l − 1) − p

(
l−1
2

)
where the equality holds if and only if G ∼= Qn,p.

Clearly, V (Tn,p) can be partitioned into p subsets V1, V2, ..., Vp each of which induces
an empty graph, whose size differ by at most 1. Let νs = |Vs| and Es be the set of νs − 1
edges. By Lemma 3.10, it means that V (Qn,p) can be partitioned into p subsets, each
of which induces a tree and the cardinality of those subsets differ by at most 1. Observe
that Qn,p is the graph obtained from Tn,p by adding E1, E2, ..., Ep into Tn,p such that
Tn,p[Vs] + Es is a tree for all 1 ≤ s ≤ p. We illustrate graphs Q7,3 and Q9,4 in Figure 1.

It is clear that |E(Qn,p)| = tn,p + (ν1− 1) + (ν2− 1) + ...+ (νp− 1) = tn,p + (ν1 + ν2 +
... + νp) − p = tn,p + n − p where tn,p = |E(Tn,p)|. Moreover, By Lemma 3.10, we have
va(Qn,p) = p.

We can see that if G ∈ G(m,n) and va(G) = p, then G has size as most tn,p + n− p.
This implies that if tn,p−1 + n− (p− 1) < m ≤ tn,p + n− p, then min(va;m,n) ≥ p. We
determine min(va;m,n) as the following theorem.
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Figure 1. The graphs Q7,3 and Q9,4.

Theorem 3.11. Let m, n, and p ≥ 2 be positive integers and tn,p−1 +n− (p− 1) < m ≤
tn,p + n− p. Then min(va;m,n) = p.

Proof. By the characteristic of the Turán graph and Lemma 3.10, we find that if tn,p−1 +
n − (p − 1) < m ≤ tn,p + n − p, then min(va;m,n) ≥ p. Let G be the graph of order n
obtained by removing tn,p +n− p−m edges from Qn,p. Since G ∈ G(m,n) is a subgraph
of Qn,p, va(G) ≤ va(Qn,p) = p. Because va(G) ≥ min(va;m,n) ≥ p, va(G) = p.
Consequently, min(va;m,n) = p.
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