
ISSN 1686-0209

Thai Journal of Mathematics

Volume 22 Number 1 (2024)

Pages 271–284

http://thaijmath.in.cmu.ac.th

Annual Meeting in Mathematics 2023

A Comparison of Capture-recapture Modeling to

Estimate the Number of Patients with Psoriasis in

Trang Province

Orasa Nunkaw∗ and Preedaporn Kanjanasamranwong

Mathematics and Statistics Department, Faculty of Science, Thaksin University, Phattalung, Thailand
e-mail : aorasa@tsu.ac.th (O. Nunkaw); preedaporn@tsu.ac.th (P. Kanjanasamranwong)

Abstract This study aims to estimate the number of patients with psoriasis in Trang Province between

2015 and 2018. The population size estimator based on Poisson distribution called the MLEPoi was

used as a basic model for homogeneity population. However, the heterogeneity often occurs in capture-

recapture experiment. The population size estimators based on the Poisson mixture model; the MLEGeo,

LCMP, TG, Chao, Zelterman and LB estimators were selected for heterogeneous population. By using the

ratio plot of the Poisson model for investigating a suitable model for psoriasis data, the results suggested

that the Poisson mixture model performs better than the Poisson model. Therefore, the LCMP and

MLEGeo estimators provided the best accuracy with excellent goodness-of-fit over competitors. The TG

estimator showed promise as an alternative choices to estimate population size in all cases, wile the LB

estimator provided the worst result with violated assumption parameters. Using the most appropriate

population size estimator determined the average number of hidden patients with psoriasis in Trang

Province at 536 persons per year. Combination of reported and unreported cases to the true number of

patients, an estimate of patients with psoriasis was 1,104 (95%: 804–1,045) people per year.
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1. Introduction

Psoriasis is considered one of the most common public health issues impacting physical
and mental quality of life in many countries around the world. The disease shows as easily
visible skin symptoms and negatively impacts personal confidence. Psoriasis afflicts 1-
2% of the global population. The underlying cause of the disease has not yet been
identified but heredity, the immune system and other internal and external factors have
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all been postulated. Patient statistics before the Covid-19 pandemic showed prevalence
of 0.0911.4% [1], with disease incidence in Thailand increasing dramatically from 11,015
in 2016 to 16,518 cases by 2018 in the Hospital of Dermatology. The National Institute
of Dermatology, Thailand estimated unreported cases and latent patients at around 1.34
million people, with the psoriasis situation now one of the main public health issues. The
more humid southern part of the country where most of the population work in agriculture
and farming has seen a rapid increase in the disease. Trang Province in the southern part
of Thailand has recorded high patient numbers, with hospital medical records listing 469
cases in 2012 and 603 cases in 2017 [2].

Psoriasis is a chronic non-communicable disease that cannot be permanently cured,
and patients can become repeatedly infected. Factors that trigger psoriasis are weather
and seasonal changes, mental health condition, stress, drinking alcohol, eating certain
foods, or a weak immune system. Disease treatment focuses on the reduction of severe
infection of the skin. A comprehensive data analysis of the number of infected patients
will give more precise statistical information and allow the government to better plan
medical treatment and public health budgets and manpower to control the spread of the
disease, while also predicting health issue trends in society.

Population size estimation techniques are many and varied, including Bootstrap, Jack-
knife and Network scale up. However, a powerful tool for estimating elusive target pop-
ulations involves capture-recapture methods. This technique has been ordinarily used in
biological and ecological fields to investigate population dynamics and estimate elusive
population size [3], [4], [5]. In recent decades, capture-recapture techniques have been
applied to other areas such as epidemiology and surveillance [6], [7], [8], social science
[9], [10] and computer system [11], [12] to estimate target population sizes. In this re-
search, the capture-recapture technique was modified to estimate the number of hidden
psoriasis-infected patients in Trang Province. These patients were not identified because
the symptoms did not clearly show or were very slight. Some patients were treated with
alternative medication or at private hospitals. The true number of psoriasis patients in
Trang Province is the total of the unobserved and observed counts. Accurate results
would benefit national public health development and provide better care for Thai pso-
riasis patients. A basic model is often used in population studies such as a homogeneous
Poisson process. However, in reality, sub-populations caused by covariates such as gen-
der, age, location, size and latent variables render the results inaccurate. This situation
involves a heterogeneous population because the capture probability takes on different
values. Several estimators have been proposed to estimate population size for capture-
recapture data. This research focused on estimators based on both homogeneous and
heterogeneous Poisson models.

2. Methods

2.1. Data Sources and Characteristics

Estimation of patients with psoriasis in Trang Province used two data sources. The
first was the Trang Provincial Public Health Office and the second was provided by
the Southern Regional Hospital of Tropical Dermatology-Trang Province. To avoid a
dramatic overestimation of population size due to no overlap between sources, the data
were combined into one list. Data matching considered name, surname, gender and
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age. Identification numbers from the Thai ID card or birth certificate were used to
eliminate repeated entries. Every patient who registers in a hospital receives a unique
identification code by presenting his/her Thai National ID card or other identification
issued by a government office. This code was used to enter patient information including
past medical history and current conditions, laboratory tests and test results. Treatment
episodes ranged from one day to six months.

2.2. Capture-recapture Modeling

The capture-recapture technique requires a series of repeated counts from a target
population where each count reflects the number of times that a patient has been treated.
For a general overview of capture-recapture data see [13]. Let Xi, i = 1, 2, .., N denote
the number of treatment episodes that occur during the study period for the N patients
with psoriasis in Trang Province. If Xi = 0, no episodes are recorded in any of the
public treatment service databases. Psoriasis patients are only observed when Xi ≥ 1.
Let px = Pr(Xi = x), also let fx denote the frequency of each patient registered exactly
x times, x = 0, 1, 2, 3, ...,m where m is the largest episode count. The total number of
population size N can then be written as N = f0 + f1 + f2 + +...+ fm = f0 + n, where
n =

∑m
x=1 fx is the total number of observed individuals. Since Xi = 0 is not observed,

the corresponding f0 is unknown and might be replaced by its expected value, Np0, where
p0 is the probability of patients not recorded in the sample and has to be estimated. It
can also write expected value of population size as E(N) = Np0 +N(1− p0), estimating

N(1−p) with n results in N̂ = n
1−p0 . Since Xi carries only the non-negative integer values,

the Poisson model with parameter λ, exp(λ)λx

x! , may present a basic choice. Obviously, the
Poisson model has constrain that the mean and variance are identically then it is rarely
occurs in reality. An occurrence of heterogeneous population from covariates (i.e sex,
education, location) or latent variables leads to a violation of the Poisson property, which
are explained by overdispersion and underdispersion. A classical technique to account for
the heterogeneity is a Poisson mixture model. The Poisson parameter is discussed as a
latent random variable with arbitrary function h(λ). The marginal distribution is given
as

px =

∫ 0

∞

exp(−λ)x

λ!
h(λ)dt, (2.1)

where the mixing density h(λ) is unknown. For identifying the basic model of count data,
the ratio plot of Poisson distribution was used as the graphical approach to investigate
an appropriate model. Plotting (x+1) fx+1

fx
against x can be used to consider the Poisson

distribution and the zero-truncated Poisson distribution. If the ratio plot presents a
pattern of horizontal lines, this can be taken indication of Poisson and zero-truncated
Poisson models. Additionally, [14] introduced a mixed the ratio plot exhibits structured
heterogeneity if the ratio plot shows the linear line with positive slope.

Several estimators have been applied to estimate population size using capture-recapture
data. Well-known estimators based on homogeneous and heterogeneous Poisson models
are described in the next section. The maximum likelihood estimator under a Poisson
distribution (MLEPoi) was selected for use in homogeneous cases, while estimators for
heterogeneous populations included MLEGeo based on geometric distributions, linear
regression based on the Conway-Maxwell-Poisson distribution estimator (LCMP), the
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Lanumteng and Bhning estimator (LB), Turings estimator based on the geometric distri-
bution estimator (TG), Chaos lower bound estimator (Chao) and Zeltermans estimator
(Zel).

2.2.1. Maximum Likelihood Estimator Based on Poisson Distribution

Estimator

Supposed that the capture-recapture count X can be modeled as a Poisson distribution

with density px = exp(−λ)λx

x! where λ is a Poisson parameter. The maximum likelihood
estimation of zero-truncated counts data has been widely used as it generates small vari-

ance. Then, the zero-truncated Poisson distribution is defined as p+
0 = exp(−λ)λx

x!{1−exp(−λ)} ,

where, p0 = exp(−λ). Hence, the size of target population can be achieved by

N̂MLEPoi =
n

1− exp (−λ̂MLEPoi)
. (2.2)

Where λ̂MLEPoi is a parameter estimated from the zero-truncated Poisson distribu-
tion using the Expectation-Maximization Algorithm or the EM algorithm [15]. The
variance of the population estimator under maximum likelihood method of estimation,

V̂ ar(N̂MLEPoi), can be derived as:

V̂ ar(N̂MLEPoi) =
N̂MLEPoiexp


m∑
x=1

xfx

N̂MLEPoi

−
m∑
x=1

xfx

N̂MLEPoi
− 1



. (2.3)

As we mention above, the heterogeneity is often found in nature. The MLEPoi estimator
might be not appropriate for capture-recapture data. Alternative estimators have been
proposed for more realistic estimation in capture-recapture study.

2.2.2. Maximum Likelihood Based on the Geometric Distribution

Estimator

The geometric distribution arises as px =
∫∞

0
g(x;λ)h(λ; θ)dλ, where the mixture

kernel is the Poisson distribution g(x;λ) = exp(−λ)λx

x! , and the mixing density comes

from the exponential density h(λ; θ) = 1
θ exp(−λθ ). Then, the associated marginal den-

sity is obtained as px(p) = (1 − p)xp, where p = 1
1+θ ∈ (0, 1) is the event parameter,

and x = 0, 1, 2, .... Mean and variance are E(X) = 1−p
p and V ar(X) = 1−p

p2 , re-

spectively. Let fx be the number of individuals identified exactly x time, and m de-
note the largest observed count. The total number of identifications is achieved from
0f0 + 1f1 + 2f2 + ...+mfm =

∑m
x=0 xfx = S. As in CR study the number of units iden-

tified zero times,f0, is unknown. It can be written that S =
∑m
x=0 xfx =

∑m
x=1 xfx. The

maximum likelihood based on the geometric distribution estimator for capture-recapture
data was proposed by [16] as

N̂MLEGeo =
n

1− p̂0
=

n

1− n
S

=
nS

S − n
, (2.4)
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where p̂0 is estimated by using the maximum likelihood approach based on the zero-
truncated geometric distribution.

The variance estimation of the MLEGeo estimator,V̂ ar(N̂MLEGeo), was given as

V̂ ar(N̂MLEGeo) =
s2n2

(S − n)3
. (2.5)

The MLEGeo estimator often provides a small variance for the true model as an under-
estimate for contaminated evidence of geometric distribution.

2.2.3. The Turing Estimator Based on the Geometric Distribution

One of the extended the Turing estimator was derived under the geometric distribution

by [17]. We have p0 = p, p1 = (1 − p)p and E(X) = 1−p
p , therefore, p0 = p =

√
p2 =√

(1−p)p2
(1−p) =

√
p(1−p)
(1−p)/p =

√
p1

E(X) . In practice, the populations can be estimated by the

relative frequencies so that the unobserved probability p̂0 is achieved by p̂0 =
√

f1/N
S/N =√

f1
S , when S =

m∑
x=0

xfx =

m∑
x=1

xfx. Hence, the extension of Turing’s estimator for the

geometric distribution (TG) is given as

N̂TG =
n

1−
√

f1
S

. (2.6)

The variance of TG estimator, V̂ ar(N̂TG), is given as

V̂ ar(N̂TG) =
n
√

f1
S

(1−
√

f1
S )2

+ n2


S + f1

4S2

(
1−

√
f1
S

)4

 . (2.7)

The positive points of TG estimator are that it modifies all information of observed
counted data (S) in a model, therefor, it seems to be more natural than some estimators.
Also, the TG estimator is a straightforward approach to get estimated population size.

2.2.4. The Linear Regression Estimator Based on Conway Maxwell-

Poisson Distribution

The Conway Maxwell-Poisson distribution, CMP (λ, ν), is an extension of the Poisson
distribution. It generalizes the Poisson distribution by adding an extra parameter ν, which
accounts for the cases of over and under-dispersion. The CMP with two parameters has
probability mass function as px = λx

(x!)ν
1

z(λ,ν) , λ > 0, ν ≥ 0, where x = 0, 1, 2, 3, ..., and

the function z(λ, ν) =

∞∑
j=0

λj

(j!)ν
denotes a normalization constant. A Linear regression

estimator based on Conway Maxwell-Poisson distribution was proposed by [18], [19]. An
interesting point of this estimator is that it uses the ratio plot of Conway-Maxwell-Poisson
distribution with the regression technique to estimate two parameters. Let (x+ 1)px+1

px
=

(x+1)
λx+1

(x+1!)ν
1

z(λ,ν)
λx

(x!)ν
1

z(λ,ν)

= λ(x+1)!
(x+1)ν . Taking logarithm transformation of both sides, it becomes a
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linear model as log
{

(x+ 1)px+1

px

}
= log λ+(1−ν) log(x+1), where a intercept parameter

β0 = log λ and a slop parameter β1 = 1− ν. The LCMP estimator is given as

N̂LCMP = n+ f̂0 = n+ f1 exp(−β̂0), (2.8)

where β̂0 is the intercept point, achieved by plotting the weighted lest square regression

log
{

(x+ 1) fx+1

fx

}
against log(x + 1), that is log

{
(x+ 1) fx+1

fx

}
= β̂0 + β̂1 log(x + 1). A

variance estimation of LCMP , V̂ ar(N̂LCMP ), is given as:

V̂ ar(N̂LCMP ) =
nf1e

−β̂0

n+ f1e−β̂
0

+ (e−β̂0)2f1[1 + f1V ar(β̂0)]. (2.9)

The benefit of this estimator is that it can use for estimating population size under the
Poisson, the geometric distributions.

2.2.5. Lanumteng and Böhning Estimator

Lanumteng and Böhning [20] introduced an alternative estimator of population based

on the negative binomial distribution. Suppose that, g(x) = Gam(λ; θ, k) =
θ−kλk−1exp( −λ

θ )

Γ(k))

with parameters θ and k > 0. The mixed Poisson-Gamma with shape parameter k and

scale parameter θ can be rewritten as px = Γ(x+k)
Γ(x+1)Γ(k)p

k(1− p)x, indicating the probabil-

ity of the negative binomial with shape parameter k and scale parameter θ = 1−p
p . The

ratio of neighboring negative binomial probability is given as: log xpx
px−1

= log(k−x− 1) +

log(1− p) ≈ log(1− p) + log(k − 1) + 1
k−1x. This pattern indicates the linear regression

with a intercept β0 = log(1−p)+log(k−1) and a slope β1 = 1
k−1 . Then, for x = 1, x = 2

and x = 3, the ratios are given as log
(
f1
f0

)
= β0 + β1, log( 2f2

f1
) = log 2f2

f1
= β0 + 2β1 and

log
(

3f3
f2

)
= β0 + 3β1, respectively. Solving these equations, hence, the LB population

size estimator for capture-recapture ultimately provided as

N̂LB = n+
3f3

1 f3

4f3
2

. (2.10)

An estimation of the variance of the LB estimator, V̂ ar(N̂LB), is given by

V̂ ar(N̂LB) =

(
9

4

)2{
f5

1 f
2
3

f6
2

}{
f1

f2
+ 1

}
+

(
3

4

)2
{{

f6
1 f3

}
f6

2

}{
1− f3

n

}
+

3n
4 f

3
1 f3

nf3
2 + 3

4f
3
1 f3

.

(2.11)

2.2.6. Chao’s Estimator

The Chao estimator was introduced by [21], [22], a lower bound for estimating the
population size. Chao’s lower bound estimator of the population size N is

N̂Chao = n+
f2

1

2f2
. (2.12)

Note that only f1 and f2 are used in Chao’s lower bound estimator. Chao’s estimator prob-

ably represents lower bound estimates. The Variance of Chao’s estimator , V̂ ar(N̂Caho),
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is given as

V̂ ar(N̂Chao) =

(
1

4

)2
f4

1

f3
2

+
f3

1

f2
2

+

(
1

2

)
f2

1

f2
, (2.13)

see [23] and [24] for more detail. Extended versions of Chao’s estimator has been recently
developed based on the log-normal distribution in [25].

2.2.7. The Zelterman Estimator

The Zelterman estimator was modified by using the truncated Poisson distribution.
The highlight of this estimator is well-known as a robust estimator since the first and the
second of frequencies are used in the model [26]. However, it has the limitation of a long
tail count data set [20]. The Zelterman estimator to estimate population size is provided
as

N̂Zel =
n

1− exp (− 2f2
f1

)
. (2.14)

The Variance of the Zelterman’s Estimator,V̂ ar(N̂Zel), was given as

V̂ ar(N̂Zel) = nG(λ̂)

[
1 +G(λ̂)λ̂2

(
1

f1 + f2

)]
, (2.15)

where G(λ̂) = exp(−λ̂)

{1−exp(−λ̂)}2
and λ̂ = 2f2

f1
. More details can be found in [23] and [24] .

A confidence interval of population size estimation can be constructed by using the

normal approximation as N̂±z0.975Ŝ.E(N̂), where Ŝ.E(N̂) =

√
V̂ ar(N̂) for all estimators.

2.3. Model Evaluation

Model selection criteria comprise rules used to select the best statistical model among

a set of candidate models. Let f̂1 = N̂ p̂1, f̂2 = N̂ p̂2,f̂3 = N̂ p̂3,..., f̂m = N̂ p̂m denote the
fitted frequencies of psoriasis patient with 1, 2, 3, ...m treatment episodes and probabilities
p̂1, p̂2, p̂3, ..., p̂m. These values can be estimated under the studied model. The frequencies
fitted under the model can be compared with the observed, presented by a graphical
evaluation fitted. Additionally, the root mean square error (RMSE) is computed under
each model as:

RMSE =

√√√√ 1

m

m∑
x=1

(
fx − f̂x

)2

. (2.16)

The RMSE provides the overall quality of estimation, lower values of values indicate
better fit [27].

3. Results

Different estimators were applied to psoriasis data sets in Trang Province between 2015
and 2018, and the ratio plot of the Poisson distribution was used to investigate the basic
model. According to Figure 1 and Figure 2. It is clear that all ratio plots display linear
trends with positive slopes. Thus, it is reasonable to assume that a heterogeneous model
would be appropriate to estimate population sizes. Seven estimators were presented in



278 Thai J. Math. Vol. 22 (2024) /O. Nunkaw and P. Kanjanasamranwong

Table 1 and Table 2 to determine the population size of psoriasis patients. The MLEPoi
population size estimator gave the lowest number of psoriasis patients and the lowest
standard errors, resulting in a narrow length of 95% confidence intervals in Trang Province
every year. These results were not surprising because the MLEPoi always shows an
underestimate for a heterogeneous population [17]. Population size estimators based on a
homogeneous Poisson-based model should, therefore, be avoided. Alternative estimators
based on the parametric models were selected to deal with this problem such as the
LCMP, MLEGeo and LB estimators. The non-parametric Chao lower bound, TG and
Zelterman estimators were also studied as interesting choices.
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Figure 1. Ratio plot of Poisson distribution in 2015 and 2016
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Figure 2. Ratio plot of Poisson distribution in 2017 and 2018
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Table 1. Observed and estimated capture frequencies

Model f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f≥12 RMSE

2015 Observed 299 81 40 30 15 13 16 10 6 4 5 31

λ̂ = 1.84 fitted (Poi) 190 174 107 49 18 6 1 0 0 0 0 - 60.55

ν̂ = 0, λ̂ = 0.44 fitted (CMP) 304 135 60 27 12 5 2 1 0 0 0 - 29.31
p̂ = 0.46 fitted (Geo) 249 135 74 40 22 12 6 3 2 1 1 - 20.37

k̂ = 1.99, p̂ = 0.007 fitted (NB) 0 0 0 0 0 0 0 0 0 0 0 - -

β̂0 = −0.013, β̂1 = 1.00
2016 Observed 264 91 58 34 25 14 11 10 6 6 2 25

λ̂ = 1.99 fitted (Poi) 188 174 107 49 18 6 1 0 0 0 0 - 48.5

ν̂ = 0, λ̂ = 0.50 fitted (CMP) 270 136 69 35 17 9 4 2 1 1 0 - 15.61
p̂ = 0.43 fitted (Geo) 236 134 76 43 24 14 8 4 3 1 1 - 19.63

k̂ = 1.98, p̂ = 0.008 fitted (NB) 6 8 10 12 13 14 15 15 16 16 16 - 97.74

β̂0 = −0.28, β̂1 = 1.02
2017 Observed 312 98 59 41 13 12 17 14 9 9 5 14

λ̂ = 2.1 fitted (Poi) 177 186 130 68 29 10 3 1 0 0 0 - 63.60

ν̂ = 0, λ̂ = 0.49 fitted (CMP) 309 151 73 36 17 9 4 2 1 0 0 - 19.55
p̂ = 0.42 fitted (Geo) 252 147 85 50 29 17 10 6 3 2 1 - 29.90

k̂ = 1.95, p̂ = 0.006 fitted (NB) 5 6 8 9 10 11 12 13 13 13 14 - 53.09

β̂0 = −0.26, β̂1 = 1.06
2018 Observed 275 104 55 40 24 13 11 14 10 7 6 15

λ̂ = 2.2 fitted (Poi) 157 173 127 70 31 11 4 1 0 0 0 - 55.95

ν̂ = 0, λ̂ = 0.52 fitted (CMP) 276 143 74 39 20 10 5 3 1 1 0 - 14.07
p̂ = 0.42 fitted (Geo) 244 140 81 46 27 15 9 5 3 2 1 - 19.58

k̂ = 2.35, p̂ = 0.11 fitted (NB) 1 1 2 2 3 3 4 4 5 5 6 - 106.44

β̂0 = 0.18, β̂1 = 0.74

Table 2. Estimation of unobserved and total cases of patients with
psoriasis in Trang Province

Year estimator unobserved total total/observed Ŝ.E(N̂) 95% CI

2015 MLEPoi 103 649 1.18 13.69 622–676

n = 545 LCMP 674 1,220 2.23 290.31 652–1,789
MLEGeo 459 1,005 1.84 39.46 928–1,082

LB 1,509 2,055 3.76 594.61 890–3220

Chao 552 1,098 2.01 91.57 919–1,277
TG 549 1,098 2.00 33.14 1,027–1,157

Zel 760 1,306 2.39 130.35 1,051–1,562

2016 MLEPoi 86 631 1.16 12.05 607–655

n = 546 LCMP 524 1, 064 1.94 165.14 746–1,393
MLEGeo 417 962 1.77 36.01 891–1,033

LB 1,062 1,607 2.95 401 821–2,393
Chao 383 928 1.70 64.93 801–1,055
TG 461 1,006 1.85 29.26 949–1,063

Zel 550 1,095 2.01 98.17 903-1,288

2017 MLEPoi 85 688 1.14 11.68 665–711

n = 603 LCMP 640 1,243 2.06 254.18 745–1,742
MLEGeo 433 1,036 1.71 35.74 966–1,106

LB 1,428 2,031 3.37 515.267 1,021–3,041

Chao 497 1,100 1.82 78.588 946–1,254
TG 524 1,127 1.87 31.40 1,065–1,189
Zel 690 1,293 2.144 114.23 1,070–1,517

2018 MLEPoi 72 646 1.13 10.53 625–667

n = 574 LCMP 530 1,104 1.92 153.21 804–1,405
MLEGeo 445 1,048 1.83 36.63 976–1,1202

LB 763 1,337 2.33 274.44 799–1,875
Chao 364 938 1.63 59.64 821–1,055
TG 451 1,025 1.79 28.49 969–1,081

Zel 508 1,082 1.82 88.87 908–1,257
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Figure 3 and Figure 4 compared estimated frequencies under the parametric based
estimators. The MLEGeo estimator showed the best accuracy with the lowest number of
RMSE in 2015. Since the MLEGeo estimator was constructed based on the geometric
distribution, it might use the TG estimator as an alternative. The parameters of the

zero-truncated Conway-Maxwell-Poisson model are λ̂ = 0.44, and ν̂ = 0 i.e. the geomet-
ric distribution was obtained as a special case of Conway-Maxwell-Poisson distribution.
Then, the LCMP estimator was used for estimating the number of psoriasis patients in
2015. It is even more clear from the graph that the truncated Poisson and the truncated
negative binomial distributions were not suitable for this data set. To estimate the num-
ber of psoriasis patients in Trang Province in 2016, 2017 and 2018, the LCMP estimator
showed the best accuracy since they provide the lowest RMSE. The graphs seem to
fit well and provide estimated values of frequencies in line with observed values. As the
dispersion parameters of the zero-truncated Conway-Maxwell-Poisson distribution, ν̂ = 0,
the MLEGeo and the TG estimators based on the zero-truncated geometric model can
be used to estimate population size. However, they often give a lower value of population
size than the LCMP [17]. The MLEPoi estimator showed a very low estimate for N̂ with
a small standard error in all data sets, resulting in the corresponding 95% confidence
intervals did not overlap with those selected estimators.

The use of the best model of capture-recapture approaches to estimate the total of
patients with psoriasis in Trang Province show in Table 3. The number of the psoriasis
patients in Trang Province in 2015 is provided by the MLEGeo estimator as 1,005 with
95% CI (928 – 1,082). Also, the LCMP estimator give the number of patients in 2016,
2017 and 2018 as 1,064 (95% CI: 746–1,393), 1,243 (95% CI: 745–1,742) and 1,104 (95%
CI: 804–1,405) persons, respectively. Overall, the average of hidden of psoriasis patients
in Trang Province was 536 persons per yaer, and the true number of psoriasis patients
was approximately 1,104 (95% CI: 806–1,405). The ratio of total estimated case to the
observed cases is interesting, the average ratio of 1.94 would mean that for every a hundred
treatment patients there are ninety-four patients untreated. The reason for the unseen
cases might be mild signs of psoriasis.

Table 3. Estimation of unobserved and total of psoriasis patients in
Trang Province between 2015 and 2018

Year estimator unobserved total total/observed Ŝ.E(N̂) 95% CI
2015 MLEGeo 459 1,005 1.84 39.46 928–1,082
2016 LCMP 524 1,064 1.94 165.14 746–1,393
2017 LCMP 640 1,243 2.06 254.18 745–1,742
2018 LCMP 530 1,104 1.92 153.21 804–1,405
Average 536 1,104 1.94 806–1,405
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(E) (F)

Figure 3. Observed frequencies with fitted frequencies based on the
zero-truncated Poisson, the zero-truncted geometric, the zero-truncated
Conway-Maxwell-Poisson and the zero-truncated negative binomial dis-
tributions in 2015 and 2016

(G) (H)

Figure 4. Observed frequencies with fitted frequencies based on the
zero-truncated Poisson, the zero-truncated geometric, the zero-truncated
Conway-Maxwell-Poisson and the zero-truncated negative binomial dis-
tributions in 2017 and 2018
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4. Conclusion

A variety of estimators in the capture-recapture field have been proposed and applied in
diverse areas of interest to estimate elusive target population sizes. This paper compared
the capabilities of seven estimators to estimate the number of patients with psoriasis in
Trang Province between 2015 and 2018. The Poisson ratio plot was used as the graphical
device to investigate a suitable model. Results suggested that all data sets displayed
the occurrence of a heterogeneous population. The LCMP estimator under the Conway-
Maxwell-Poisson distribution and the MLEGeo estimator showed optimal accuracy, while
the LCMP estimator best captured different levels of heterogeneity flexibly. The Conway-
Maxwell-Poisson distribution showed two parameters as a generalized form of the Poisson
distribution that included the geometric distribution as a sub-model when ν = 0, 0 < λ <
1 and a Poisson distribution when ν = 1. The LCMP estimator was selected to estimate
the number of patients with psoriasis in Trang Province in 2016, 2017 and 2018, while
the MLEGeo showed excellent estimation in 2015.
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