Derivation of Some Identities and Applications

Tuangrat Chaichana ${ }^{1}$, Vichian Laohakosol ${ }^{2, *}$ and Rattiya Meesa ${ }^{3}$
${ }^{1}$ Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail : tuangrat.c@chula.ac.th
${ }^{2}$ Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand e-mail : fscivil@ku.ac.th
${ }^{3}$ Financial Mathematics, Data Science and Computational Innovations Research Unit (FDC), Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
e-mail : rattiya3328@gmail.com

Abstract

Certain identities based on recurrently published results about explicit solutions of general second-order linear recurrences are proved and are used to derive explicit solutions of four well-known recurrence relations with polynomial coefficients.

MSC: 11B37; 05A19
Keywords: second order linear recurrence; Chebyshev polynomials; generalized Fibonacci polynomials; generalized Lucas polynomials

Submission date: 02.06.2023 / Acceptance date: 31.08.2023

1. Introduction

Let $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ with $b_{0}=1$ be two sequences of complex numbers. Let y_{0} and y_{1} be initial values of the second-order linear recurrence relation

$$
\begin{equation*}
y_{n}=b_{n-1} y_{n-1}+a_{n-2} y_{n-2}, \quad n \geq 2 . \tag{1.1}
\end{equation*}
$$

Set $D_{0}=D_{1}=\{\emptyset\}$ and for $n \geq 2$, define

$$
D_{n}=\{X \in \mathcal{P}([0, n-2]) ;|X|=0,1 \text { or }|u-v| \geq 2 \text { for all distinct } u, v \in X\},
$$

where $[i, j]:=\{i, i+1, \ldots, j\} \subseteq \mathbb{N}(i \leq j)$, the set $\mathcal{P}([i, j])$ refers to the power set of the set $[i, j]$, and $|X|$ denotes the cardinality of the set X.

Recently in [1], the following theorem was proved.

Theorem 1.1. The second order linear recurrence (1.1), with initial values y_{0}, y_{1}, has an explicit solution given, for $n \geq 2$, by

$$
\begin{equation*}
y_{n}=y_{0} \mathcal{D}_{n}+y_{1} \mathcal{E}_{n}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{D}_{n}=\sum_{\substack{X \in D_{n} \\
0 \in X}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} b_{i}\right)\left(\prod_{i \in X} a_{i}\right), \tag{1.3}\\
& \mathcal{E}_{n}=\sum_{\substack{X \in D_{n} \\
0 \notin X}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} b_{i}\right)\left(\prod_{i \in X} a_{i}\right), \tag{1.4}
\end{align*}
$$

and, by convention, the empty product is taken to be 1 , the empty sum to be 0 , and the set $X+\{1\}$ is defined as the set of elements resulting from adding 1 to every element in the set X.

The primary objective of this work is to derive, using Theorem 1.1, new identities by making explicit the values \mathcal{D}_{n} and \mathcal{E}_{n} through specializing the set D_{n}. Our second objective is to apply the identities so derived to find explicit solutions of second-order homogeneous linear difference equations with polynomial coefficients focusing on those equations possessing well-known solution functions, such as Fibonacci, Lucas, and Chebyshev polynomials. Although there have already appeared results similar to ours, we believe our approach offers a more lucid and simpler exposition.

2. Identities

Our sought after identities are derived from the counting function defined in the next theorem.

Theorem 2.1. For integers $n \geq 2$ and $k \geq 0$, let

$$
F(n, k):=\sum_{\substack{X \in D_{n} \\|X|=k}} 1 ;
$$

equivalently, $F(n, k)$ counts the number of sets X in D_{n} containing k elements. Then

$$
F(m, k)= \begin{cases}1 & \text { if } k=0, m \geq 2 \tag{2.1}\\ F(m-1, k)+F(m-2, k-1) & \text { if } 1 \leq k \leq\lfloor m / 2\rfloor, m \geq 3 \\ 0 & \text { if } k>\lfloor m / 2\rfloor, m \geq 3\end{cases}
$$

Proof. Let $X \in D_{m}$ with $|X|=k$. If $k=0$ and $m \geq 2$, then the only set X is the empty set, and so $F(m, 0)=1$.

Next consider the case $m \geq 3$. If $k>\lfloor m / 2\rfloor$, since the elements in X are differed by at least 2 , there is no such X, and so $F(m, k)=0$. If $1 \leq k \leq\lfloor m / 2\rfloor$, then there are two possible cases, i.e., the largest element in X is $<m-2$ or the largest element in X is $m-2$. In the former case, the number of such X is $F(m-1, k)$. In the latter case, consider discarding the largest element, we see that the number of such X is $F(m-2, k-1)$, and so $F(m, k)=F(m-1, k)+F(m-2, k-1)$.

Based on Theorems 2.1, we next deduce our anticipated identities.
Corollary 2.2. For integers $k \geq 0, n \geq 2$ and $n \geq k+1$, we have

$$
\begin{aligned}
& \text { I. } F(n, k)=\binom{n-k}{k} ; \\
& \text { II. } \sum_{\substack{X \in D_{n} \\
0 \notin X,|X|=k}} 1=\sum_{\substack{X \in D_{n-1} \\
|X|=k}} 1=\binom{n-1-k}{k} .
\end{aligned}
$$

Proof. I. If $k=0$, then by Theorem 2.1 we have $F(n, 0)=1=\binom{n-0}{0}$ for all $n \geq 2$.
If $k=1, n \geq 2$, there are $n-1$ singleton sets in D_{n}, namely, $\{0\},\{1\}, \ldots,\{n-2\}$, and so $F(n, 1)=n-1=\binom{n-1}{1}$.
If $k=2, n \geq k+1=3$, the number of the sets in D_{n} with cardinality 2 is equal to the number of sets containing 2 elements from the set $\{0,1, \ldots, n-2\}$ subtracted by the number of sets containing two consecutive elements from the set $\{0,1, \ldots, n-2\}$, i.e., $F(n, 2)=\binom{n-1}{2}-(n-2)=\binom{n-2}{2}$.

For $k \geq 2, n \geq k+1$, assume now that $F(n, k)=\binom{n-k}{k}$.
If $k+1>\lfloor n / 2\rfloor$, then by Theorem 2.1, $F(n, k+1)=0$ which is also equal to $\binom{n-k-1}{k+1}$ by convention.
If $k+1 \leq\lfloor n / 2\rfloor$, by the recurrence relation in Theorem 2.1, we get

$$
\begin{aligned}
F(n, k+1) & =F(n-1, k+1)+F(n-2, k) \\
F(n-1, k+1) & =F(n-2, k+1)+F(n-3, k) \\
& \vdots \\
F(2 k+3, k+1) & =F(2 k+2, k+1)+F(2 k+1, k) \\
F(2 k+2, k+1) & =F(2 k+1, k+1)+F(2 k, k) .
\end{aligned}
$$

Summing all the identities, we obtain
$F(n, k+1)=F(n-2, k)+F(n-3, k)+\cdots+F(2 k+1, k)+F(2 k, k)+F(2 k+1, k+1)$.
Since $F(2 k+1, k+1)=0$ (Theorem 2.1), by induction, we get

$$
F(n, k+1)=\binom{n-k-2}{k}+\binom{n-k-3}{k}+\cdots+\binom{k}{k}=\binom{n-k-1}{k+1},
$$

which proves the first assertion.
II. Consider any set X belonging to the second summation $\sum_{\substack{X \in D_{n-1} \\|X|=k}} 1$. If $0 \notin X$, then X also belongs to the first summation. If $0 \in X$, then discard this 0 , subtract 1 from each remaining element, and insert the element $n-2$ to the set X to get a new set that clearly belongs to the first summation. This shows the elements in the second summation form a subset of those in the first summation $\sum_{\substack{X \in D_{n} \\ 0 \notin X,|X|=k}} 1$. Reversing the preceding arguments, the opposite inclusion is verified yielding their equality. The binomial value is merely an application of the first assertion.

3. Applications

Let $\left(y_{n}(t)\right)_{n \geq 0}$ be a sequence of functions that satisfies the second-order homogeneous difference equation

$$
\begin{equation*}
y_{n}(t)=b_{n-1}(t) y_{n-1}(t)+a_{n-2}(t) y_{n-2}(t), \quad n \geq 2, \tag{3.1}
\end{equation*}
$$

where $\left(a_{n}(t)\right)_{n \geq 0}$ and $\left(b_{n}(t)\right)_{n \geq 1}$ are two sequences of polynomials in t. As applications to our results in Section 1, explicit solutions of four well-known recurrences (3.1) are determined.

3.1. Fibonacci Polynomials

Consider the recurrence (3.1) with initial values of the form

$$
\begin{equation*}
y_{n}(t)=t y_{n-1}(t)+y_{n-2}(t) \quad(n \geq 2), \quad y_{0}(t)=0, y_{1}(t)=1 \tag{3.2}
\end{equation*}
$$

Comparing with (3.1), we have $a_{i}(t)=1(i \geq 0), b_{i}(t)=t(i \geq 1)$. The expressions (1.3) and (1.4) are

$$
\begin{aligned}
& \mathcal{D}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} t\right)\left(\prod_{i \in X} 1\right)=\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}} t^{n-2|X|}, \\
& \mathcal{E}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} t\right)\left(\prod_{i \in X} 1\right)=\sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}} t^{n-1-2|X|} .
\end{aligned}
$$

Appealing to Theorem 1.1 and Corollary 2.2, the recurrence relation (3.2) has an explicit solution given by

$$
\begin{aligned}
y_{n}(t) & =y_{0}(t) \mathcal{D}_{n}(t)+y_{1}(t) \mathcal{E}_{n}(t) \\
& =0+\sum_{\substack{X \in D_{n} \\
0 \notin X}} t^{n-1-2|X|}=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(\sum_{\substack{X \in D_{n} \\
0 \notin X,|X|=k}} t^{n-1-2 k}\right) \\
& =\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} t^{n-1-2 k}\left(\sum_{\substack{X \in D_{n} \\
0 \notin X,|X|=k}} 1\right) \\
& =\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} t^{n-1-2 k}\left(\sum_{\substack{ \\
X \in D_{n-1} \\
|X|=k}} 1\right)=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} t^{n-1-2 k}\binom{n-1-k}{k} .
\end{aligned}
$$

3.2. Generalized Fibonacci Polynomials (Panwar et al. [2])

Consider the recurrence (3.1) with initial values of the form

$$
\begin{equation*}
y_{n}(t)=t y_{n-1}(t)+y_{n-2}(t) \quad(n \geq 2), \quad y_{0}(t)=c, y_{1}(t)=c t \quad(c \in \mathbb{C}) \tag{3.3}
\end{equation*}
$$

Proceeding as before, $a_{i}(t)=1(i \geq 0), \quad b_{i}(t)=t(i \geq 1)$ and

$$
\begin{aligned}
& \mathcal{D}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \in X}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} t\right)\left(\prod_{i \in X} 1\right)=\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}} t^{n-2|X|}, \\
& \mathcal{E}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \notin X}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} t\right)\left(\prod_{i \in X} 1\right)=\sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}} t^{n-1-2|X|} .
\end{aligned}
$$

An explicit solution of (3.3) is given by

$$
\begin{aligned}
y_{n}(t) & =y_{0}(t) \mathcal{D}_{n}(t)+y_{1}(t) \mathcal{E}_{n}(t) \\
& =c \sum_{\substack{X \in D_{n} \\
0 \in X^{n}}} t^{n-2|X|}+c t \sum_{\substack{X \in D_{n} \\
0 \notin X}} t^{n-1-2|X|}=c \sum_{\substack{X \in D_{n} \\
0 \in X}} t^{n-2|X|}+c \sum_{\substack{X \in D_{n} \\
0 \notin X}} t^{n-2|X|} \\
& =c \sum_{X \in D_{n}} t^{n-2|X|}=c \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} t^{n-2 k}\left(\sum_{\substack{X \in D_{n} \\
|X|=k}} 1\right)=c \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} t^{n-2 k}\binom{n-k}{k} .
\end{aligned}
$$

3.3. Generalized Lucas Polynomials (Panwar et al. [2])

Consider the recurrence (3.1) with initial values of the form

$$
\begin{equation*}
y_{n}(t)=t y_{n-1}(t)+y_{n-2}(t), \quad(n \geq 2), \quad y_{0}(t)=2 c, y_{1}(t)=c t \quad(c \in \mathbb{C}) \tag{3.4}
\end{equation*}
$$

Proceeding as before $a_{i}(t)=1(i \geq 0), b_{i}(t)=t(i \geq 1)$ and

$$
\begin{aligned}
& \mathcal{D}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \in X^{\prime}}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} t\right)\left(\prod_{i \in X} 1\right)=\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}} t^{n-2|X|}, \\
& \mathcal{E}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \notin X}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} t\right)\left(\prod_{i \in X} 1\right)=\sum_{\substack{X \in D_{n} \\
0 \notin X}} t^{n-1-2|X|} .
\end{aligned}
$$

An explicit solution of (3.4) is given by

$$
\begin{aligned}
y_{n}(t) & =y_{0}(t) \mathcal{D}_{n}(t)+y_{1}(t) \mathcal{E}_{n}(t) \\
& =2 c \sum_{\substack{X \in D_{n} \\
0 \in X^{n}}} t^{n-2|X|}+c t \sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}} t^{n-1-2|X|} \\
& =2 c \sum_{X \in D_{n}} t^{n-2|X|}-c \sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}} t^{n-2|X|}
\end{aligned}
$$

$$
\begin{aligned}
& =c \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} t^{n-2 k}\left(2 \sum_{\substack{X \in D_{n} \\
|X|=k}} 1-\sum_{\substack{X \in D_{n} \\
0 \notin X,|X|=k}} 1\right) \\
& =c \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} t^{n-2 k}\left(2\binom{n-k}{k}-\binom{n-1-k}{k}\right) \\
& =c \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} t^{n-2 k}\binom{n-k}{k} \frac{n}{n-k} .
\end{aligned}
$$

3.4. Chebyshev Polynomials of the Second Kind

Consider the recurrence (3.1) with initial values of the form

$$
\begin{equation*}
y_{n}(t)=2 t y_{n-1}(t)-y_{n-2}(t) \quad(n \geq 2), \quad y_{0}(t)=1, y_{1}(t)=2 t \tag{3.5}
\end{equation*}
$$

Proceeding as before, $a_{i}(t)=-1(i \geq 0), b_{i}(t)=2 t(i \geq 1)$ and

$$
\begin{aligned}
& \mathcal{D}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \in X}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} 2 t\right)\left(\prod_{i \in X}(-1)\right)=\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}}(2 t)^{n-2|X|}(-1)^{|X|}, \\
& \mathcal{E}_{n}(t)=\sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}}\left(\prod_{i \in[1, n-1] \backslash(X \cup(X+\{1\}))} 2 t\right)\left(\prod_{i \in X}(-1)\right)=\sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}}(2 t)^{n-1-2|X|}(-1)^{|X|} .
\end{aligned}
$$

An explicit solution of (3.5) is given by

$$
\begin{aligned}
y_{n}(t) & =y_{0}(t) \mathcal{D}_{n}(t)+y_{1}(t) \mathcal{E}_{n}(t) \\
& =\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}}(2 t)^{n-2|X|}(-1)^{|X|}+2 t \sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}}(2 t)^{n-1-2|X|}(-1)^{|X|} \\
& =\sum_{\substack{X \in D_{n} \\
0 \in X^{n}}}(2 t)^{n-2|X|}(-1)^{|X|}+\sum_{\substack{X \in D_{n} \\
0 \notin X^{n}}}(2 t)^{n-2|X|}(-1)^{|X|}=\sum_{X \in D_{n}}(2 t)^{n-2|X|}(-1)^{|X|} \\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\sum_{\substack{X \in D_{n} \\
|X|=k}}(2 t)^{n-2 k}(-1)^{k}\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(2 t)^{n-2 k}(-1)^{k}\left(\sum_{\substack{X \in D_{n} \\
|X|=k}} 1\right) \\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(2 t)^{n-2 k}(-1)^{k}\binom{n-k}{k} .
\end{aligned}
$$

Our demonstration of the explicit solution of Chebyshev polynomials appears to be less complicated compared to the proof presented in Mallik's work [3].

Postscript (December 2023). The results in this paper have now been further extended in [4].

References

[1] V. Laohakosol, R. Meesa, P. Sutthimat, Closed-form solutions of general second order linear recurrences and applications, Discrete Math. 346 (1) (2023) 113206.
[2] Y.K. Panwar, B. Singh, V.K. Gupta, Generalized Fibonacci polynomials, Turkish J. Anal. Number Theor. 1 (1) (2013) 43-47.
[3] R.K. Mallik, The inverse of a tridiagonal matrix, Linear Algebra Appl. 325 (1-3) (2001) 109-139.
[4] P. Sutthimat, V. Laohakosol, R. Meesa, A unified approach to derive explicit solutions of generalized second-order linear recurrences and applications, Discrete Math. 347 (2) (2024) 113757.

