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1. Introduction

Let (an)n≥0, (bn)n≥0 with b0 = 1 be two sequences of complex numbers. Let y0 and

y1 be initial values of the second-order linear recurrence relation

yn = bn−1yn−1 + an−2yn−2, n ≥ 2. (1.1)

Set D0 = D1 = {∅} and for n ≥ 2, define

Dn = {X ∈ P([0, n− 2]); |X| = 0, 1 or |u− v| ≥ 2 for all distinct u, v ∈ X} ,

where [i, j] := {i, i + 1, . . . , j} ⊆ N (i ≤ j), the set P([i, j]) refers to the power set of the

set [i, j], and |X| denotes the cardinality of the set X.

Recently in [1], the following theorem was proved.
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Theorem 1.1. The second order linear recurrence (1.1), with initial values y0, y1, has
an explicit solution given, for n ≥ 2, by

yn = y0Dn + y1En, (1.2)

where

Dn =
∑

X∈Dn
0∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

bi

(∏
i∈X

ai

)
, (1.3)

En =
∑

X∈Dn

0/∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

bi

(∏
i∈X

ai

)
, (1.4)

and, by convention, the empty product is taken to be 1, the empty sum to be 0, and the
set X + {1} is defined as the set of elements resulting from adding 1 to every element in
the set X.

The primary objective of this work is to derive, using Theorem 1.1, new identities by
making explicit the values Dn and En through specializing the set Dn. Our second objec-
tive is to apply the identities so derived to find explicit solutions of second-order homoge-
neous linear difference equations with polynomial coefficients focusing on those equations
possessing well-known solution functions, such as Fibonacci, Lucas, and Chebyshev poly-
nomials. Although there have already appeared results similar to ours, we believe our
approach offers a more lucid and simpler exposition.

2. Identities

Our sought after identities are derived from the counting function defined in the next
theorem.

Theorem 2.1. For integers n ≥ 2 and k ≥ 0, let

F (n, k) :=
∑

X∈Dn

|X|=k

1;

equivalently, F (n, k) counts the number of sets X in Dn containing k elements. Then

F (m, k) =


1 if k = 0, m ≥ 2

F (m− 1, k) + F (m− 2, k − 1) if 1 ≤ k ≤ bm/2c, m ≥ 3

0 if k > bm/2c, m ≥ 3.

(2.1)

Proof. Let X ∈ Dm with |X| = k. If k = 0 and m ≥ 2, then the only set X is the empty
set, and so F (m, 0) = 1.

Next consider the case m ≥ 3. If k > bm/2c, since the elements in X are differed by
at least 2, there is no such X, and so F (m, k) = 0. If 1 ≤ k ≤ bm/2c, then there are two
possible cases, i.e., the largest element in X is < m − 2 or the largest element in X is
m−2. In the former case, the number of such X is F (m−1, k). In the latter case, consider
discarding the largest element, we see that the number of such X is F (m− 2, k− 1), and
so F (m, k) = F (m− 1, k) + F (m− 2, k − 1).
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Based on Theorems 2.1, we next deduce our anticipated identities.

Corollary 2.2. For integers k ≥ 0, n ≥ 2 and n ≥ k + 1, we have

I. F (n, k) =

(
n− k

k

)
;

II.
∑

X∈Dn

06∈X, |X|=k

1 =
∑

X∈Dn−1

|X|=k

1 =

(
n− 1− k

k

)
.

Proof. I. If k = 0, then by Theorem 2.1 we have F (n, 0) = 1 =
(
n−0
0

)
for all n ≥ 2.

If k = 1, n ≥ 2, there are n − 1 singleton sets in Dn, namely, {0}, {1}, . . . , {n − 2}, and
so F (n, 1) = n− 1 =

(
n−1
1

)
.

If k = 2, n ≥ k + 1 = 3, the number of the sets in Dn with cardinality 2 is equal to
the number of sets containing 2 elements from the set {0, 1, . . . , n− 2} subtracted by the
number of sets containing two consecutive elements from the set {0, 1, . . . , n − 2}, i.e.,
F (n, 2) =

(
n−1
2

)
− (n− 2) =

(
n−2
2

)
.

For k ≥ 2, n ≥ k + 1, assume now that F (n, k) =
(
n−k
k

)
.

If k + 1 > bn/2c, then by Theorem 2.1, F (n, k + 1) = 0 which is also equal to
(
n−k−1
k+1

)
by

convention.
If k + 1 ≤ bn/2c, by the recurrence relation in Theorem 2.1, we get

F (n, k + 1) = F (n− 1, k + 1) + F (n− 2, k)

F (n− 1, k + 1) = F (n− 2, k + 1) + F (n− 3, k)

...

F (2k + 3, k + 1) = F (2k + 2, k + 1) + F (2k + 1, k)

F (2k + 2, k + 1) = F (2k + 1, k + 1) + F (2k, k).

Summing all the identities, we obtain

F (n, k + 1) = F (n− 2, k) +F (n− 3, k) + · · ·+F (2k + 1, k) +F (2k, k) +F (2k + 1, k + 1).

Since F (2k + 1, k + 1) = 0 (Theorem 2.1), by induction, we get

F (n, k + 1) =

(
n− k − 2

k

)
+

(
n− k − 3

k

)
+ · · ·+

(
k

k

)
=

(
n− k − 1

k + 1

)
,

which proves the first assertion.
II. Consider any set X belonging to the second summation

∑
X∈Dn−1

|X|=k

1. If 0 6∈ X, then

X also belongs to the first summation. If 0 ∈ X, then discard this 0, subtract 1 from
each remaining element, and insert the element n− 2 to the set X to get a new set that
clearly belongs to the first summation. This shows the elements in the second summation
form a subset of those in the first summation

∑
X∈Dn

06∈X, |X|=k
1. Reversing the preceding

arguments, the opposite inclusion is verified yielding their equality. The binomial value
is merely an application of the first assertion.
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3. Applications

Let (yn(t))n≥0 be a sequence of functions that satisfies the second-order homogeneous
difference equation

yn(t) = bn−1(t)yn−1(t) + an−2(t)yn−2(t), n ≥ 2, (3.1)

where (an(t))n≥0 and (bn(t))n≥1 are two sequences of polynomials in t. As applications
to our results in Section 1, explicit solutions of four well-known recurrences (3.1) are
determined.

3.1. Fibonacci Polynomials

Consider the recurrence (3.1) with initial values of the form

yn(t) = tyn−1(t) + yn−2(t) (n ≥ 2), y0(t) = 0, y1(t) = 1. (3.2)

Comparing with (3.1), we have ai(t) = 1 (i ≥ 0), bi(t) = t (i ≥ 1). The expressions (1.3)
and (1.4) are

Dn(t) =
∑

X∈Dn
0∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

t

(∏
i∈X

1

)
=
∑

X∈Dn
0∈X

tn−2|X|,

En(t) =
∑

X∈Dn
06∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

t

(∏
i∈X

1

)
=
∑

X∈Dn
06∈X

tn−1−2|X|.

Appealing to Theorem 1.1 and Corollary 2.2, the recurrence relation (3.2) has an explicit
solution given by

yn(t) = y0(t)Dn(t) + y1(t)En(t)

= 0 +
∑

X∈Dn
06∈X

tn−1−2|X| =

bn−1
2 c∑

k=0

 ∑
X∈Dn

06∈X,|X|=k

tn−1−2k



=

bn−1
2 c∑

k=0

tn−1−2k

 ∑
X∈Dn

0 6∈X,|X|=k

1



=

bn−1
2 c∑

k=0

tn−1−2k

 ∑
X∈Dn−1

|X|=k

1

 =

bn−1
2 c∑

k=0

tn−1−2k
(
n− 1− k

k

)
.

3.2. Generalized Fibonacci Polynomials (Panwar et al. [2])

Consider the recurrence (3.1) with initial values of the form

yn(t) = tyn−1(t) + yn−2(t) (n ≥ 2), y0(t) = c, y1(t) = ct (c ∈ C). (3.3)
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Proceeding as before, ai(t) = 1 (i ≥ 0), bi(t) = t (i ≥ 1) and

Dn(t) =
∑

X∈Dn
0∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

t

(∏
i∈X

1

)
=
∑

X∈Dn
0∈X

tn−2|X|,

En(t) =
∑

X∈Dn
06∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

t

(∏
i∈X

1

)
=
∑

X∈Dn
06∈X

tn−1−2|X|.

An explicit solution of (3.3) is given by

yn(t) = y0(t)Dn(t) + y1(t)En(t)

= c
∑

X∈Dn
0∈X

tn−2|X| + ct
∑

X∈Dn
06∈X

tn−1−2|X| = c
∑

X∈Dn
0∈X

tn−2|X| + c
∑

X∈Dn
06∈X

tn−2|X|

= c
∑

X∈Dn

tn−2|X| = c

bn2 c∑
k=0

tn−2k

 ∑
X∈Dn

|X|=k

1

 = c

bn2 c∑
k=0

tn−2k
(
n− k

k

)
.

3.3. Generalized Lucas Polynomials (Panwar et al. [2])

Consider the recurrence (3.1) with initial values of the form

yn(t) = tyn−1(t) + yn−2(t), (n ≥ 2), y0(t) = 2c, y1(t) = ct (c ∈ C). (3.4)

Proceeding as before ai(t) = 1 (i ≥ 0), bi(t) = t (i ≥ 1) and

Dn(t) =
∑

X∈Dn
0∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

t

(∏
i∈X

1

)
=
∑

X∈Dn
0∈X

tn−2|X|,

En(t) =
∑

X∈Dn
06∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

t

(∏
i∈X

1

)
=
∑

X∈Dn
06∈X

tn−1−2|X|.

An explicit solution of (3.4) is given by

yn(t) = y0(t)Dn(t) + y1(t)En(t)

= 2c
∑

X∈Dn
0∈X

tn−2|X| + ct
∑

X∈Dn
0 6∈X

tn−1−2|X|

= 2c
∑

X∈Dn

tn−2|X| − c
∑

X∈Dn
06∈X

tn−2|X|
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= c

bn2 c∑
k=0

tn−2k

2
∑

X∈Dn

|X|=k

1−
∑

X∈Dn

06∈X,|X|=k

1


= c

bn2 c∑
k=0

tn−2k
(

2

(
n− k

k

)
−
(
n− 1− k

k

))

= c

bn2 c∑
k=0

tn−2k
(
n− k

k

)
n

n− k
.

3.4. Chebyshev Polynomials of the Second Kind

Consider the recurrence (3.1) with initial values of the form

yn(t) = 2tyn−1(t)− yn−2(t) (n ≥ 2), y0(t) = 1, y1(t) = 2t. (3.5)

Proceeding as before, ai(t) = −1 (i ≥ 0), bi(t) = 2t (i ≥ 1) and

Dn(t) =
∑

X∈Dn
0∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

2t

(∏
i∈X

(−1)

)
=
∑

X∈Dn
0∈X

(2t)n−2|X|(−1)|X|,

En(t) =
∑

X∈Dn
06∈X

 ∏
i∈[1,n−1]\(X∪(X+{1}))

2t

(∏
i∈X

(−1)

)
=
∑

X∈Dn
06∈X

(2t)n−1−2|X|(−1)|X|.

An explicit solution of (3.5) is given by

yn(t) = y0(t)Dn(t) + y1(t)En(t)

=
∑

X∈Dn
0∈X

(2t)n−2|X|(−1)|X| + 2t
∑

X∈Dn
06∈X

(2t)n−1−2|X|(−1)|X|

=
∑

X∈Dn
0∈X

(2t)n−2|X|(−1)|X| +
∑

X∈Dn
06∈X

(2t)n−2|X|(−1)|X| =
∑

X∈Dn

(2t)n−2|X|(−1)|X|

=

bn2 c∑
k=0

 ∑
X∈Dn

|X|=k

(2t)n−2k(−1)k

 =

bn2 c∑
k=0

(2t)n−2k(−1)k

 ∑
X∈Dn

|X|=k

1


=

bn2 c∑
k=0

(2t)n−2k(−1)k
(
n− k

k

)
.

Our demonstration of the explicit solution of Chebyshev polynomials appears to be less
complicated compared to the proof presented in Mallik’s work [3].

Postscript (December 2023). The results in this paper have now been further extended
in [4].
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