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1. Introduction

Throughout the entire paper, let q be a prime and m ∈ N. Let Fqm be the finite field
of qm elements, let F∗qm := Fqm \ {0}, and let g : F∗qm → F∗qm be a function. The iterates
of g are defined by

g0(x) = x, gi(x) = g(gi−1(x)) (i ∈ N).

By Gg = (V,E), we refer to the directed graph whose vertex set is V ⊆ Fqm and whose
directed edges in E are denoted by (x, g(x)). The reverse graph of Gg, denoted by (Gg)R,
is the graph (V,ER) with directed edge set ER := {(x, y) : (y, x) ∈ E}.

For x ∈ Fqm , the orbit of x is the directed path in a graph Gg of the map g starting
at x. Since Fqm is a finite field, there exists the least non-negative integer t = t(x) such
that gt(x) = gs0(x) for some positive integer s0 > t. Let s be the least s0 such that
gt(x) = gs0(x), and let

c := c(x) = s− t > 0.

We then have gt(x) = gt+c(x). The tail of x is the list of elements

x, g(x), g2(x), . . . , gt−1(x),
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and t is called the tail length of x. The cycle of x is the list of elements

gt(x), . . . , gt+c−1(x),

and c is called the cycle length of x. For general references on finite fields and graph
theory, we refer to [4] and [10].

For n ∈ N, a ∈ Z such that gcd(a, n) = 1, denote by ordna the least positive integer
such that aordna ≡ 1 (mod n). For α ∈ F∗qm , the order of α, denoted by O(α), is the least

positive integer such that αO(α) = 1. For a prime p and n ∈ N, define vp(n) to be the

exponent of the largest power of p that divides n, i.e., pvp(n) | n but pvp(n)+1 - n.
In 1996, Rogers [8] studied properties of graphs obtained from iterating the quadratic

map g(x) = x2 over Fp for any p prime, and derived a formula for the number of cycles
relative to g. In 2004, Vasiga and Shalit [3] studied graphs resulted from iterating the
quadratic maps over the finite field Fp, where p is an odd prime. Among other things
they characterized the vertices of the corresponding directed graph in terms of primitive
elements, gave formulas for the tail and cycle lengths, and assuming the extended Riemann
hypothesis, derived asymptotic estimates for the sum of the number of elements in all
cycles and the sum of all tail lengths.

In this work, we complement these two earlier works by considering the graph obtained
from iterating the map g(x) = xp (p prime) over the finite field of qm elements extending
the ideas of [8] and [3]. Our discussion includes the structure of the graph so obtained,
characterization of vertices in terms of primitive elements, the number of cycles, tail and
cycle lengths, and asymptotic estimates, in the case p = 2, of the sum of the total number
of elements in all cycles and that of all tail lengths.

2. Basic Properties

We start by establishing basic properties about the graph (over F∗qm) obtained from
iterating the map g(x) = xp for a fixed prime p.

Theorem 2.1. Let α ∈ F∗qm be of order O(α) := pe`, where e ∈ N0 := N∪{0}, ` ∈ N with
gcd(p, `) = 1. Let t := t(α) and c := c(α) be the tail and the cycle lengths, respectively,
of α. Then t = vp(O(α)) and c = ord`p.

Proof. From αp
t

= gt(α) = gt+c(α) = αp
t+c

, we get

αp
t(pc−1) = αp

t+c−pt = 1.

Using the definition of order, we have pe` | pt(pc−1). Since gcd(pe, pc−1) = 1 = gcd(`, pt),
we get pe | pt and ` | (pc − 1). Clearly, e ≤ t. If e < t, since t is the smallest nonnegative
integer such that gt(α) = gt+c(α), we have

αp
e

= ge(α) 6= ge+c(α) = αp
e+c

and so αp
e(pc−1) = αp

e+c−pe 6= 1, contradicting αp
e` = 1 and ` | (pc − 1). Thus, t = e,

which proves the first assertion.
To prove the second assertion, from ` | (pc−1), we get pc ≡ 1(mod `), and so ord`p ≤ c.

If there exists d ∈ N such that 1 ≤ d < c and pd ≡ 1(mod `). Then ` | (pd − 1) and so

pe` | pt(pd − 1). This implies that αp
t+d−pt = αp

t(pd−1) = 1, i.e.,

gt+d(α) = αp
t+d

= αp
t

= gt(α),

contradicting the minimality of s = t+ c.
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For convenience, throughout the rest of the paper, we fix the following notation. Write

qm − 1 = pτρ, where τ ∈ N0, ρ ∈ N, and gcd(p, ρ) = 1. (2.1)

The next theorem relates each tail with a primitive element.

Theorem 2.2. Let γ be a primitive element of F∗qm . Then

(a) {a ∈ F∗qm : t(a) = 0} = {γi : 1 ≤ i ≤ qm − 1, vp(i) ≥ vp(qm − 1)};
(b) for 1 ≤ k ≤ vp(qm − 1), we have

{a ∈ F∗qm : t(a) = k} = {γi : 1 ≤ i ≤ qm − 1, vp(i) = vp(q
m − 1)− k}.

Proof. (a) Any a ∈ F∗qm can be written as a = γi for some 1 ≤ i ≤ qm − 1.

If t(a) = 0, there is ` ∈ N such that a = g0(a) = g`+0(a) = ap
`

, and so (γi)p
`−1 =

ap
`−1 = 1, yielding pτρ | i(p` − 1). Since p - (p` − 1), we deduce that pτ | i, and so

vp(i) ≥ τ = vp(q
m − 1).

Conversely, consider a = γi ∈ F∗qm with 1 ≤ i ≤ qm − 1 and vp(i) ≥ vp(q
m − 1) = τ .

Then pτ | i. Let ` = ordρp. Then p` ≡ 1 (mod ρ), i.e., ρ | (p` − 1), and so pτρ | i(p` − 1)

yielding (γi)p
`−1 = 1. It follows that g`(γi) = (γi)p

`

= γi = g0(γi) implying that
t(a) = t(γi) = 0.

(b) Let k ∈ N with 1 ≤ k ≤ vp(q
m − 1). Let a = γi ∈ F∗qm (i ∈ {1, . . . , qm − 1}) be

such that t(a) = k. Then there exists ` ∈ N such that

(γi)p
k

= gk(a) = gk+`(a) = (γi)p
k+`

but (γi)p
k−1

= gk−1(a) 6= gk−1+`(a) = (γi)p
k−1+`

showing that (γi)p
k+`−pk = 1 but (γi)p

k−1+`−pk−1 6= 1. Thus,

pτρ | ipk(p` − 1) but pτρ - ipk−1(p` − 1). (2.2)

We claim now that pτ - ipk−1. Write i = prw for some r ∈ N0, w ∈ N with gcd(p, w) = 1.
If pτ | ipk−1 = prwpk−1, then pτ | prpk−1. Consequently, ρ|w(p` − 1) yielding pτρ |
ipk−1(p` − 1) which is a contradiction, and the claim is verified. From the claim and
(2.2), we get vp(p

τ ) = vp(ip
k), i.e., τ = vp(i) + k and so vp(i) = τ − k = vp(q

m − 1)− k.
Conversely, consider γi ∈ F∗qm with 1 ≤ i ≤ qm − 1 and vp(i) = vp(q

m − 1)− k. Then,

vp(ip
k) = vp(q

m − 1) = vp(p
τρ) implying that pτ | ipk but pτ - ipk−j for all 1 ≤ j ≤ k.

Since gcd(p, ρ) = 1, there exists ` ≥ 1 such that ρ | (p` − 1), and so pτρ | ipk(p` − 1) but
pτρ - ipk−j(p` − 1) for all 1 ≤ j ≤ k. Thus,

(γi)p
k(p`−1) = 1 but (γi)p

k−j(p`−1) 6= 1 (1 ≤ j ≤ k),

i.e., gk(γi) = gk+`(γi) but gk−1(γi) 6= gk−1+`(γi), and so t(γi) = k.

The next theorem deals with cycles.

Theorem 2.3. We have

(a) the total number of elements in all cycles is ρ;
(b) off each element in the cycles, there hangs a reversed complete p-ary tree of

height τ − 1 containing pτ−1
p−1 elements.

Proof. Let γ be a primitive element of F∗qm and a ∈ F∗qm .
(a) If a is in a cycle, then t(a) = 0, and Theorem 2.2 (a) shows that

a = γi (1 ≤ i ≤ qm − 1), and vp(i) ≥ vp(qm − 1) = τ
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so that the exponent i must be of the form i = jpτ with 1 ≤ j ≤ ρ, showing that the
total number of elements in all cycles is ρ.

(b) For an element γjp
τ−1

in a cycle, since all the roots of the equation xp = γjp
τ

take

the form x = γjp
τ−1+

k(qm−1)
p (0 ≤ k ≤ p − 1), these are all elements whose first iterate

gives γjp
τ

. Among these p roots, there is exactly one root, γjp
τ−1

, being its preceding
element in the cycle, and the remaining p − 1 roots are elements with tail length being
precisely 1. From (2.1) and Theorem 2.1, the longest tail length of any nonzero element
in Fqm is τ , so there hang from each of these p − 1 elements of tail length 1, a reversed

complete p-ary tree of height τ − 1 containing 1 + p+ p2 + · · ·+ pτ−1 = pτ−1
p−1 elements.

To analyze certain asymptotics about tail and cycle lengths extending those in [9], we
define

• T0(qm, p) to be the total number of elements in all cycles, i.e., the number of
elements a ∈ F∗qm for which t(a) = 0;
• T (qm, p) to be the average value of t(a) (a ∈ F∗qm), i.e.,

T (qm, p) = 1
qm−1

∑
a∈F∗

qm
t(a).

Theorem 2.4. We have

(a) T0(qm, p) = ρ;

(b) T (qm, p) = τ − pτ−1
pτ (p−1) .

Proof. Part (a) is Theorem 2.3 (a). To prove (b), note that by Theorem 2.1, t(α) = vp(O),
where pe` = O(α) := O | (qm− 1) = pτρ. Since there are ϕ(O) elements having the same
order O, we get

T (qm, p) =
1

qm − 1

∑
α∈F∗

qm

t(α) =
1

qm − 1

∑
O|qm−1

ϕ(O)vp(O) =
1

pτρ

∑
pe`|pτρ

ϕ(pe`)vp(p
e`)

=
1

pτρ

∑
`|ρ

∑
0≤e≤τ

ϕ(`)ϕ(pe)e =
1

pτρ

∑
`|ρ

ϕ(`)
∑

1≤e≤τ

pe−1(p− 1) · e

=
1

pτρ
(p− 1)ρ · (p− 1)(τ + 1)pτ − (pτ+1 − 1)

(p− 1)2
= τ − pτ − 1

pτ (p− 1)
.

3. Asymptotic Estimates

For large x > 0, denote by π(x, `, k) the number of primes ≤ x which are congruent to
k mod `, where `, k are positive integers with gcd(k, `) = 1. For our asymptotic estimate,
the usual prime number theorem for arithmetic progressions is not sufficient to obtain a
good error term. To this end, we adopt the following version of extended prime number
theorem for arithmetic progressions due to E. Alkan [1, Equation (3.36), p. 11]. Assume
that there exists a real number θ ∈ [1/2, 1) such that for all ` ≤ x, we have

π(x, `, k) =
li(x)

ϕ(`)
+O(xθ log x), (3.1)

where li(x) =
∫ x
2

1
log tdt.

As mentioned in [1], this version of the prime number theorem for arithmetic progressions
is a consequence of the following weak Riemann hypothesis:
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assume that there exists a real number 1/2 ≤ θ < 1 such that all zeros of all Dirichlet
L-functions L(s, χ) satisfy <(s) ≤ θ.

Using, [3, p. 28],∫ x

2

1

log t
dt =

x

log x
+O

( x

(log x)2

)
(3.2)

and

lim
x→∞

xθ log x

x/(log x)2
= 0. (3.3)

We start our asymptotic analysis with some useful results.

Lemma 3.1. Let `, k be as above. For x ≥ 2, let f be a real-valued continuously differ-
entiable function on [1, x]. Then∑

q≤x, q primes
q≡k(mod `)

f(q) =
1

ϕ(`)

∫ x

2

f(t)

log t
dt+ f(x)ε(x)−

∫ x

2

f ′(t)ε(t)dt+O(1),

where ε(x) := O(xθ log x).

Proof. Let

a(n) =

{
1 if n is prime, n ≡ k (mod `),

0 otherwise,

so that

A(x) :=
∑
n≤x

a(n) =
∑

n≤x, n primes
n≡k (mod `)

1 = π(x, `, k).

Since A(x) is a step function with jump a(n) at each n ∈ N, the sum can be expressed as
a Stieltjes integral∑

2≤q≤x, q primes
q≡k(mod `)

f(q) =
∑

2≤n≤x

a(n)f(n) =

∫ x

2

f(t)dA(t). (3.4)

Using the definition of li and integration by parts, we get∫ x

2

f(t)dA(t) =

∫ x

2

f(t)d

(
1

ϕ(`)
li(t) + ε(t)

)
=

1

ϕ(`)

∫ x

2

f(t)

log t
dt+

∫ x

2

f(t)ε′(t)dt+O(1)

=
1

ϕ(`)

∫ x

2

f(t)

log t
dt+ f(x)ε(x)−

∫ x

2

f ′(t)ε(t)dt+O(1). (3.5)

and the desired result follows immediately from (3.4) and (3.5).
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Lemma 3.2. Assume the weak Riemann hypothesis. For i ∈ N0 and k, N ∈ N with
gcd(k, p) = 1. we have

π(N1/2, pi+1, k) :=
∑

q≤N1/2, q primes
q≡k(mod pi+1)

1 =
1

pi(p− 1)

(
N1/2

logN1/2
+O

( N1/2

(logN)2

))

+O(Nθ/2 logN) (3.6)∑
q≤N1/2, q primes
q≡k(mod pi+1)

q2 =
1

pi(p− 1)

(
N3/2

logN3/2
+O

( N3/2

(logN)2

))
+O

(
N1+ θ

2 logN
)
(3.7)∑

q≤N1/2, q primes

q2 =
2N3/2

3 logN
+O

( N3/2

(logN)2

)
+O

(
N1+ θ

2 logN
)
, (3.8)

provided that for (3.6) and (3.7) to make sense the index i is subject to the condition

i ≤ N1 := blog2

( N
1−θ
2

(logN)3

)
c.

(Note as in (3.1) that the expression on the right-hand side of (3.7) is independent of k.)

Proof. From (3.1), we have

π(N1/2, pi+1, k) =
∑

q≤N1/2, q primes
q≡k(mod pi+1)

1 =
1

pi(p− 1)

(
N1/2

logN1/2
+O

( N1/2

(logN)2

))

+O(Nθ/2 logN).

To prove (3.7), we substitute f(t) = t2, x = N1/2, ` = pi+1 into Lemma 3.1, we get∑
q≤N1/2, q primes
q≡k(mod pi+1)

q2 =
1

ϕ(pi+1)

∫ N1/2

2

t2

log t
dt+Nε(N1/2)−

∫ N1/2

2

2t ε(t)dt+O(1)

=
1

pi(p− 1)

∫ N3/2

23

1

log u
du+O

(
N1+θ/2(logN)

)
.

We now treat the terms on the right-hand side separately. Using (3.2), the main term is

1

pi(p− 1)

∫ N3/2

23

1

log u
du =

1

pi(p− 1)

(
2N3/2

3 logN
+O

( N3/2

(logN)2

))
. (3.9)

Then we have (3.7).
The proof of (3.8) is simpler but follows the same line as that of (3.7). Using [3,

Theorem 2.7.1, p. 29] with f(t) = t2, x = N1/2 and proceed with the above computations,
we get ∑

q≤N1/2, q primes

q2 =
2N3/2

3 logN
+O

( N3/2

(logN)2

)
+O(Nθ/2 logN).
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Lemma 3.3. For each i ∈ N0, we have pi || (q2 − 1) if and only if there exists a unique
r ∈ {1, 2, . . . , p− 1} such that q2 − 1 ≡ rpi (mod pi+1).

Proof. The sufficiency part is clear. To prove the necessity part, assume that pi || (q2−1).
Then pi | (q2 − 1) and pi+1 - (q2 − 1) implying that there exists a unique ` ∈ N such
that q2 − 1 = pi`, gcd(p, `) = 1. The last requirement shows that there are unique
k ∈ N0, r ∈ {1, . . . , p− 1} such that ` = pk + r. Thus, q2 − 1 = pi(pk + r) = pi+1k + rpi,
and the desired assertion follows.

Lemma 3.4. Given i ∈ N0, the congruence q2 ≡ 2i + 1 (mod 2i+1) has

• when i = 0 exactly one solution q = 2 ≡ 0 (mod 2);
• when i = 1, 2 no solution;
• when i ≥ 3 a total of four solutions

Proof. The cases i = 0, 1, 2 are easily checked directly. For i ≥ 3, From [5, Theorem 4.6,
p. 174], the congruence has four solutions. Indeed, it is readily checked that the four
solutions are 2i−1 ± 1, 2i + 2i−1 ± 1.

Our first asymptotic result deals with the case m = 2, and the iteration map g(x) = x2

over F∗q2 .

Theorem 3.5. Assume the weak Riemann hypothesis. Let

ST0(2, N) :=
∑

q2≤N, q primes

T0(q2, 2),

where T0 is as in Theorem 2.4. Then

ST0(2, N) =
1

18

N3/2

logN
+O

(
N3/2

(logN)2

)
.

Proof. Write q2 − 1 = 2τρ, where τ = v2(q2 − 1) and gcd(2, ρ) = 1. From Theorem 2.4,

we know that T0(q2, 2) = q2−1
2v2(q2−1)

, and so

ST0(2, N) =
∑

q≤N1/2, q primes

q2 − 1

2v2(q2−1)
=

∑
0≤i≤blog2(N−1)c

∑
q≤N1/2, q primes

2i||(q2−1)

q2 − 1

2i
.

(3.10)

By Lemma 3.3, we have

ST0(2, N) =
∑

0≤i≤blog2(N−1)c

1

2i

 ∑
q≤N1/2, q primes

q2≡2i+1 (mod 2i+1)

q2 −
∑

q≤N1/2, q primes
q2≡2i+1 (mod 2i+1)

1

 .

(3.11)
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If i ≥ 3, by Lemma 3.4 and its proof, we get∑
q≤N1/2, q primes

q2≡2i+1 (mod 2i+1)

q2 =
∑

q≤N1/2, q primes
q≡2i−1+1 (mod 2i+1)

q2 +
∑

q≤N1/2, q primes
q≡2i−1−1 (mod 2i+1)

q2

+
∑

q≤N1/2, q primes
q≡2i−1+2i+1 (mod 2i+1)

q2 +
∑

q≤N1/2, q primes
q≡2i−1+2i−1 (mod 2i+1)

q2

Using the estimate from Lemma 3.2 and (3.3), for i ≥ 3 we obtain

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2 = 4
∑

q≤N1/2

q≡k (mod 2i+1)

q2 =
4

2i

(
N3/2

logN3/2
+O

( N3/2

(logN)2

))

+O
(
N1+ θ

2 logN
)
. (3.12)

Going back to (3.11), making use of Lemma 3.4 and the observations after (3.1) and in
Lemma 3.2, we have

ST0(2, N) =

4 +
∑

3≤i≤blog2(N−1)c

1

2i

∑
q≤N1/2, q primes

q2≡2i+1 (mod 2i+1)

q2



−

1 +
∑

3≤i≤blog2(N−1)c

1

2i

∑
q≤N1/2, q primes

q2≡2i+1 (mod 2i+1)

1



= 3 +
∑

3≤i≤blog2(N−1)c

4

2i

 ∑
q≤N1/2, q primes
q≡k (mod 2i+1)

q2 −
∑

q≤N1/2, q primes
q≡k (mod 2i+1)

1

 := 3 +A−B,

(3.13)

for some fixed k ∈ N, where

A :=
∑

3≤i≤blog2(N−1)c

4

2i

∑
q≤N1/2, q primes
q≡k (mod 2i+1)

q2, B :=
∑

3≤i≤blog2(N−1)c

4

2i

∑
q≤N1/2, q primes
q≡k (mod 2i+1)

1.

We apply the estimate (3.7) to compute A, so to ensure that the main term in the sum
A is strictly greater than the second error term, the corresponding index i must satisfy
i ≤ https : //www.overleaf.com/project/656d4d4e8c41f0768c4454a3N1 with N1 as in
Lemma 3.2. So we split the sum A into two sums

A := A1 +A2, (3.14)
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where

A1 =
8

3

∑
3≤i≤N1

1

2i

{
1

2i

(
N3/2

logN
+O

( N3/2

(logN)2

))
+O

(
N1+ θ

2 logN
)}

=
8

3

∑
3≤i≤N1

1

4i

(N3/2

logN

)
+O

( N3/2

(logN)2

)
+O

(
N1+ θ

2 logN
)

=
8

3

(
1

48
+O

( (logN)4

N1−θ

))(N3/2

logN

)
+O

( N3/2

(logN)2

)
=

1

18

(N3/2

logN

)
+O

( N3/2

(logN)2

)
.

By (3.8) in Lemma 3.2, we have ∑
q≤N1/2, q primes
q≡k (mod 2i+1)

q2 � 1

2i

(N3/2

logN

)
,

and so

A2 =
∑

N1<i≤blog2(N−1)c

4

2i

∑
q≤N1/2, q primes
q≡k (mod 2i+1)

q2

�
∑

N1<i≤blog2(N−1)c

1

2i
· 1

2i

(N3/2

logN

)
= O(N1/2+θ(logN)5).

Applying (3.6) of Lemma 3.2 and proceeding as in the computation of A, we get

B =
∑

3≤i≤N1

4

2i

{
1

2i

(
2N1/2

logN
+O

( N1/2

(logN)2

))
+O(Nθ/2 logN)

}
+

∑
N1<i≤blog2(N−1)c

4

2i

∑
q≤N1/2, q primes
q≡k (mod 2i+1)

1

=
1

6

N1/2

logN
+O

( N1/2

(logN)2

)
(3.15)

The desired result now follows from (3.13) to (3.15).

Theorem 3.6. Assume the weak Riemann hypothesis. Let

ST (2, N) :=
∑

q2≤N, q primes

∑
a∈F∗

q2

t(a),

where t(a) is the tail length of a ∈ F∗q2 . Then

ST (2, N) =
37

18

N3/2

logN
+O

( N3/2

(logN)2

)
.
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Proof. From the definition of T (q2, 2), equation (2.1) and Theorem 2.4 (b), we have

ST (2, N) =
∑

q≤N1/2, q primes

(q2 − 1)

(
v2(q2 − 1)− 2v2(q

2−1) − 1

2v2(q2−1)

)
= A1 −A2 −A3 +A4, (3.16)

where

A1 :=
∑

q≤N1/2, q primes

q2v2(q2 − 1), A2 :=
∑

q≤N1/2, q primes

v2(q2 − 1)

A3 :=
∑

q≤N1/2, q primes

(q2 − 1), A4 :=
∑

q≤N1/2, q primes

q2 − 1

2v2(q2−1)

Using (3.8) and the Prime Number Theorem [3, p.29], the third term in (3.16) becomes

A3 =
2N3/2

3 logN
+O

(
N3/2

(logN)2

)
. (3.17)

From (3.10) and the result of Theorem 3.5, the last term in (3.16) becomes

A4 = ST0(2, N) =
1

18

N3/2

logN
+O

( N3/2

(logN)2

)
. (3.18)

To compute the first term in (3.16), we proceed along the line of the proof of Theorem
3.5, appealing to the number of solutions of relevant congruences in Lemma 3.4, using
Lemma 3.2 and splitting the sum into suitable ranges, to get

A1 =
∑

1≤i≤blog2(N−1)c

∑
q≤N1/2, q primes

2i||(q2−1)

iq2 =
∑

1≤i≤blog2(N−1)c

∑
q≤N1/2, q primes
q2≡2i+1(mod 2i+1)

iq2

:= A11 +A12,

where

A11 =
∑

1≤i≤N1

∑
q≤N1/2, q primes
q2≡2i+1(mod 2i+1)

iq2 =
∑

3≤i≤N1

i · 4
∑

q≤N1/2, q primes
q≡k (mod 2i+1)

q2

=
∑

3≤i≤N1

4i

{
1

2i

(
2N3/2

3 logN
+O

( N3/2

(logN)2

))
+O

(
N1+θ/2 logN

)}

=

(
2N3/2

3 logN
+O

( N3/2

(logN)2

))(
4 +O

( logN

N

))
+O

(
N1+θ/2(logN)3

)
=

8N3/2

3 logN
+O

( N3/2

(logN)2

)
.
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and

A12 =
∑

N1<i≤blog2(N−1)c

∑
q≤N1/2, q primes

q2≡2i+1 (mod 2i+1)

iq2 =
∑

N1<i≤blog2(N−1)c

i · 4
∑

q≤N1/2, q primes
q≡k (mod 2i+1)

q2

�
∑

N1<i≤blog2(N−1)c

4i
1

2i

(N3/2

logN

)
= O

(
N1+θ/2(logN)3

)
.

Finally to compute the second term in (3.16), we proceed along a similar line as making
use of Lemma 3.2, to get

A2 =
∑

1≤i≤blog2(N−1)c

∑
q≤N1/2, q primes

2i||(q2−1)

i =
∑

1≤i≤blog2(N−1)c

∑
q≤N1/2, q primes
q2≡2i+1(mod 2i+1)

i

=
∑

3≤i≤blog2(N−1)c

∑
q≤N1/2, q primes

q2≡2i+1 (mod 2i+1)

i =
∑

3≤i≤blog2(N−1)c

i · 4
∑

q≤N1/2, q primes
q≡k (mod 2i+1)

1

:= A21 +A22.

where

A21 =
∑

3≤i≤N1

4i
∑

q≤N1/2, q primes
q≡k (mod 2i+1)

1

=
∑

3≤i≤N1

4i

{
1

2i

(
2N1/2

logN
+O

( N1/2

(logN)2

))
+O

(
Nθ/2 logN

)}

=

(
2N1/2

logN
+O

( N1/2

(logN)2

))(
4 +O

( logN

N

))
+O

(
Nθ/2(logN)3

)
=

8N1/2

logN
+O

( N1/2

(logN)2

)
,

and

A22 =
∑

N1<i≤blog2(N−1)c

4i
∑

q≤N1/2, q primes
q≡k (mod 2i+1)

1.

For n > N1, the dominant term is order Nθ/2 logN . Thus,

A22 �
∑

N1<i≤blog2(N−1)c

4i ·Nθ/2 logN

= O
(
Nθ/2(logN)3

)
.

Collecting all four terms, the desired estimate follows.
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