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1. Introduction

Numerous researchers have dedicated their time and effort in the study of number
sequences, owing to their widespread utility in the realms of science, engineering, art,
and nature. A particularly fascinating sequence is the Jacobsthal sequence [3], which has
been extensively researched. This sequence is named after Ernst Jacobsthal, a renowned
mathematician hailing from Germany. It boasts a notable attribute, that is, the enumer-
ation of microcontroller skip instructions [1].

In 2014, Falcon [2] defined k−Jacobsthal and k−Jacobsthal-Lucas sequences and pre-
sented some properties. Subsequently, Uygun [9] introduced (s, t)−Jacobsthal and
(s, t)−Jacobsthal-Lucas sequences, as follows:

Definition 1.1. For any real numbers s, t such that s > 0, t 6= 0 and s2 + 8t > 0,
the (s, t)−Jacobsthal sequence {jn(s, t)}n∈N and the (s, t)−Jacobsthal-Lucas sequence
{cn(s, t)}n∈N are defined recurrently by, for n ≥ 2

jn(s, t) = sjn−1(s, t) + 2tjn−2(s, t) (1.1)
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and

cn(s, t) = sjn−1(s, t) + 2tjn−2(s, t), (1.2)

respectively, where j0(s, t) = 0, j1(s, t) = 1, c0(s, t) = 2, c1(s, t) = s.

Remark 1.2. In Definition 1.1, it can be observed that when s = 1 and 2t = k, the
resulted sequences are the k−Jacobsthal sequence and the k−Jacobsthal-Lucas sequence,
respectively. In the event that s = t = 1, the resulted sequences are the Jacobsthal
sequence and the Jacobsthal-Lucas sequence, respectively.

In 2018, Özdemir [7] presented a new number system within the structure of non-
commutative algebra known as hybrid numbers, which is a generalization of complex,
hyperbolic and dual numbers. The hybrid number Z can be written in form

Z = a+ ib+ εc+ hd

where a, b, c, d ∈ R and i, ε,h are hybrid units such that

i2 = −1,h2 = 1, ε2 = 0

and

ih = −hi = ε + i.

Let Z1 = a1 + ib1 + εc1 +hd1 and Z2 = a2 + ib2 + εc2 +hd2 denote two hybrid numbers.
Equality, addition, subtraction, scalar multiplication, and multiplication of two hybrid
numbers can be defined as follows:

Z1 = Z2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2
Z1 + Z2 = (a1 + a2) + i(b1 + b2) + ε(c1 + c2) + h(d1 + d2)
Z1 − Z2 = (a1 − a2) + i(b1 − b2) + ε(c1 − c2) + h(d1 − d2)

sZ1 = sa1 + isb1 + εsc1 + hsd1, s ∈ R
Z1Z2 = (a1 + ib1 + εc1 + hd1)(a2 + ib2 + εc2 + hd2)

= (a1a2 − b1b2 + b1c2 + c1b2 + d1d2)
+i(a1b2 + b1a2 + b1d2 − d1b2)
+ε(a1c2 + b1d2 + c1a2 − c1d2 − d1b2 + d1c2)
+h(a1d2 − b1c2 + c1b2 + d1a2).

The subsequent table presents the product of any two hybrid units.

· i ε h
i -1 1-h ε+ i
ε h+1 0 -ε
h -ε-i ε 1

Table 1. The hybrid numbers multiplication

It is apparent that the multiplication of hybrid numbers has the property of associativity,
but it lacks commutativity. The conjugate of a hybrid number Z is defined by

Z = a+ ib+ εc+ hd = a− ib− εc− hd.

The character of the hybrid number Z is

C (Z) = ZZ = ZZ = a2 + (b− c)2 − c2 − d2 = a2 + b2 − 2bc− d2.
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Many special kinds of hybrid numbers have been studied, including Fibonacci and Lu-
cas hybrid numbers [5], Padovan hybrid numbers [6], Jacobsthal and Jacobsthal-Lucas
hybrid numbers [8], as well as k−Jacobsthal and k−Jacobsthal-Lucas hybrid numbers [4].
These research articles have motivated us to define (s, t)−Jacobsthal and (s, t)−Jacobsthal-
Lucas hybrid numbers and explore their properties.

2. Preliminaries

The roots of the characteristic equation x2−sx−2t = 0 associated with the recurrence
relation in Definition 1.1 are

α =
s+
√
s2 + 8t

2
and β =

s−
√
s2 + 8t

2
. (2.1)

Thus, the Binet formulas for (s, t)−Jacobsthal and (s, t)−Jacobsthal-Lucas sequences can
be expressed as follows:

jn(s, t) =
αn − βn

α− β
(2.2)

and

cn(s, t) = αn + βn. (2.3)

By utilizing (2.1), it is evident that

α+ β = s, α · β = −2t, α− β =
√
s2 + 8t. (2.4)

Uygun [9] has demonstrated the summation formulas for (s, t)−Jacobsthal sequence and
(s, t)−Jacobsthal-Lucas sequence as follows:

n∑
k=0

jk(s, t) =
1− jn+1(s, t)− 2tjn(s, t)

1− s− 2t
(2.5)

and
n∑
k=0

ck(s, t) =
2− cn+1(s, t)− s− 2tcn(s, t)

1− s− 2t
. (2.6)

Additionally, he has established the relationships between (s, t)−Jacobsthal and (s, t)−
Jacobsthal-Lucas sequences, which are listed below:

cn(s, t) = jn+1(s, t) + 2tjn−1(s, t) (2.7)

and

sjn(s, t) + cn(s, t) = 2jn+1(s, t). (2.8)

3. Main Results

Definition 3.1. Let n ≥ 1 be an integer. For any real numbers s, t ∈ R such that
s > 0, t 6= 0 and s2 + 8t > 0, the nth (s, t)−Jacobsthal hybrid numbers, Hjn(s, t), and
the nth (s, t)−Jacobsthal-Lucas hybrid numbers, Hcn(s, t), are defined by

Hjn(s, t) = jn(s, t) + ijn+1(s, t) + εjn+2(s, t) + hjn+3(s, t) (3.1)
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and

Hcn(s, t) = cn(s, t) + icn+1(s, t) + εcn+2(s, t) + hcn+3(s, t), (3.2)

respectively, where i, ε,h are hybrid units.

Remark 3.2. In Definition 3.1, if s = 1 and 2t = k, then we have the k−Jacobsthal and
the k−Jacobsthal-Lucas hybrid numbers, respectively. If s = t = 1, then we have the
Jacobsthal and Jacobsthal-Lucas hybrid numbers, respectively.

Lemma 3.3. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. Let n ≥ 1 be
an integer. Then

I. Hjn+1(s, t) = sHjn(s, t) + 2tHjn−1(s, t), (3.3)

II. Hcn+1(s, t) = sHcn(s, t) + 2tHcn−1(s, t), (3.4)

with Hj0(s, t) = i + ε(s) + h(s2 + 2t), Hj1(s, t) = 1 + i(s) + ε(s2 + 2t) + h(s3 + 4st),
Hc0(s, t) = 2 + i(s) + ε(s2 + 4t) + h(s3 + 6st) and Hc1(s, t) = s + i(s2 + 4t) + ε(s3 +
6st) + h(s4 + 8s2t+ 8t2).

Proof. Using (1.1) and (3.1), we obtain

Hjn+1(s, t) = jn+1(s, t) + ijn+2(s, t) + εjn+3(s, t) + hjn+4(s, t)

= sjn(s, t) + 2tjn−1(s, t) + i[sjn+1(s, t) + 2tjn(s, t)]

+ ε[sjn+2(s, t) + 2tjn+1(s, t)] + h[sjn+3(s, t) + 2tjn+2(s, t)]

= s[jn(s, t) + ijn+1(s, t) + εjn+2(s, t) + hjn+3(s, t)]

+ 2t[jn−1(s, t) + ijn(s, t) + εjn+1(s, t) + hjn+2(s, t)]

= sHjn(s, t) + 2tHjn−1(s, t).

From (1.2) and (3.2) to obtain

Hcn+1(s, t) = cn+1(s, t) + icn+2(s, t) + εcn+3(s, t) + hcn+4(s, t)

= scn(s, t) + 2tcn−1(s, t) + i[scn+1(s, t) + 2tcn(s, t)]

+ ε[scn+2(s, t) + 2tcn+1(s, t)] + h[scn+3(s, t) + 2tcn+2(s, t)]

= s[cn(s, t) + icn+1(s, t) + εcn+2(s, t) + hcn+3(s, t)]

+ 2t[cn−1(s, t) + icn(s, t) + εcn+1(s, t) + hcn+2(s, t)]

= sHcn(s, t) + 2tHcn−1(s, t).

Theorem 3.4. (Binet formulas for (s, t)−Jacobsthal hybrid number and (s, t)−Jacobsthal-
Lucas hybrid number) Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. Let
m ≥ 0 be an integer. Then

I. Hjm(s, t) =
αmα̂− βmβ̂

α− β
, (3.5)

II. Hcm(s, t) = αmα̂+ βmβ̂, (3.6)



The (s, t)−Jacobsthal Hybrid Numbers ... 243

where α̂ = 1 + iα+ εα2 + hα3 and β̂ = 1 + iβ + εβ2 + hβ3.

Proof. By using (3.1) and (2.2), we have

Hjm(s, t) = jm(s, t) + ijm+1(s, t) + εjm+2(s, t) + hjm+3(s, t)

=
αm − βm

α− β
+ i

(
αm+1 − βm+1

α− β

)
+ ε

(
αm+2 − βm+2

α− β

)
+ h

(
αm+3 − βm+3

α− β

)
=
αm(1 + iα+ εα2 + hα3)− βm(1 + iβ + εβ2 + hβ3)

α− β

=
αmα̂− βmβ̂

α− β
.

Next, we use (3.2) and (2.3) to obtain

Hcm(s, t) = cm(s, t) + icm+1(s, t) + εcm+2(s, t) + hcm+3(s, t)

= αm + βm + i(αm+1 + βm+1) + ε(αm+2 + βm+2) + h(αm+3 + βm+3)

= αm(1 + iα+ εα2 + hα3) + βm(1 + iβ + εβ2 + hβ3)

= αmα̂+ βmβ̂.

Theorem 3.5. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. The gen-
erating function for (s, t)−Jacobsthal hybrid number and (s, t)-Jacobsthal hybrid number
are

I.

∞∑
m=0

Hjm(s, t)xm =
Hj0(s, t) + x[Hj1(s, t)− sHj0(s, t)]

1− sx− 2tx2
, (3.7)

II.

∞∑
m=0

Hcm(s, t)xm =
Hc0(s, t) + x[Hc1(s, t)− sHc0(s, t)]

1− sx− 2tx2
, (3.8)

respectively.

Proof. Assume that the generating function of the (s, t)-Jacobsthal hybrid number se-
quence Hjn(s, t) has the form A(x) =

∑∞
m=0Hjm(s, t)xm. Then

A(x) = Hj0(s, t) + xHj1(s, t) + x2Hj2(s, t) + ... (3.9)

Multiply (3.9) on both sides by −sx and then by −2tx2 we have

−sxA(x) = −sxHj0(s, t)− sx2Hj1(s, t)− sx3Hj2(s, t)− ... (3.10)

−2tx2A(x) = −2tx2Hj0(s, t)− 2tx3Hj1(s, t)− 2tx4Hj2(s, t)− ... (3.11)
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By adding (3.9)-(3.11), we have

(1− sx− 2tx2)A(x) =Hj0(s, t) + x[Hj1(s, t)− sHj0(s, t)]

+ x2[Hj2(s, t)− sHj1(s, t)− 2tHj0(s, t)]

+ x3[Hj3(s, t)− sHj2(s, t)− 2tHj1(s, t)]

+ x4[Hj4(s, t)− sHj3(s, t)− 2tHj2(s, t)] + ...

Since the coefficients of tm for m ≥ 2 are equal to zero,

A(x) =

∞∑
m=0

Hjm(s, t)tm =
Hj0(s, t) + x[Hj1(s, t)− sHj0(s, t)]

1− sx− 2tx2
.

Assume that the generating function of the (s, t)-Jacobsthal hybrid number sequence
Hcn(s, t) has the form B(x) =

∑∞
m=0Hcm(s, t)xm. Then

B(x) = Hc0(s, t) + xHc1(s, t) + x2Hc2(s, t) + ... (3.12)

Multiply (3.12) on both sides by −sx and then by −2tx2 we have

−sxB(x) = −sxHc0(s, t)− sx2Hc1(s, t)− sx3Hc2(s, t)− ... (3.13)

−2tx2B(x) = −2tx2Hc0(s, t)− 2tx3Hc1(s, t)− 2tx4Hc2(s, t)− ... (3.14)

By adding (3.12)-(3.14), we have

(1− sx− 2tx2)B(x) =Hc0(s, t) + x[Hc1(s, t)− sHc0(s, t)]

+ x2[Hc2(s, t)− sHc1(s, t)− 2tHc0(s, t)]

+ x3[Hc3(s, t)− sHc2(s, t)− 2tHc1(s, t)]

+ x4[Hc4(s, t)− sHc3(s, t)− 2tHc2(s, t)] + ...

Since the coefficients of tm for m ≥ 2 are equal to zero,

B(x) =

∞∑
m=0

Hcm(s, t)tm =
Hc0(s, t) + x[Hc1(s, t)− sHc0(s, t)]

1− sx− 2tx2
.

Theorem 3.6. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2+8t > 0. The exponen-
tial generating function for (s, t)−Jacobsthal hybrid numbers and (s, t)−Jacobsthal-Lucas
hybrid numbers are

I.

∞∑
m=0

Hjm(s, t)
ym

m!
=
α̂eαy − β̂eβy

α− β
, (3.15)

II.

∞∑
m=0

Hcm(s, t)
ym

m!
= α̂eαy + β̂eβy, (3.16)

respectively.
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Proof. By using (3.5), we obtain

∞∑
m=0

Hjm(s, t)
ym

m!
=

∞∑
m=0

(
αmα̂− βmβ̂

α− β

)
ym

m!

=

(
α̂

α− β

) ∞∑
m=0

(αy)m

m!
−

(
β̂

α− β

) ∞∑
m=0

(βy)m

m!

=
α̂eαy

α− β
− β̂eβy

α− β

=
α̂eαy − β̂eβy

α− β
.

By using (3.6), we obtain

∞∑
m=0

Hcm(s, t)
ym

m!
=

∞∑
m=0

(αmα̂+ βmβ̂)
ym

m!

= α̂

∞∑
m=0

(αy)m

m!
+ β̂

∞∑
m=0

(βy)m

m!

= α̂eαy + β̂eβy.

Theorem 3.7. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. Let n ≥ 0
be an integer. Then

I.

n∑
k=0

Hjk(s, t) =
1 +Hj0(s, t)−Hjn+1(s, t)− 2tHjn(s, t) + 2εtj1(s, t) + 2htj2(s, t)

1− s− 2t

(3.17)

II.
n∑

k=0

Hck(s, t) =
Hc0(s, t)−Hcn+1(s, t)− 2tHcn(s, t)− c1(s, t) + 2tic0(s, t) + 2tεc1(s, t) + 2thc2(s, t)

1− s− 2t
.

(3.18)

Proof. Using (1.1), (2.5) and (3.1), we have

n∑
k=0

Hjk(s, t) = Hj0(s, t) +Hj1(s, t) +Hj2(s, t) + ...+Hjn(s, t)

= (j0(s, t) + ij1(s, t) + εj2(s, t) + hj3(s, t)) + (j1(s, t) + ij2(s, t) + εj3(s, t)

+ hj4(s, t)) + ...+ (jn(s, t) + ijn+1(s, t) + εjn+2(s, t) + hjn+3(s, t))

= (j0(s, t) + j1(s, t) + ...+ jn(s, t)) + i(j1(s, t) + j2(s, t) + ...+ jn+1(s, t) + j0(s, t)

− j0(s, t)) + ε(j2(s, t) + j3(s, t) + ...+ jn+2(s, t) + j0(s, t)− j0(s, t) + j1(s, t)

− j1(s, t)) + h(j3(s, t) + j4(s, t) + ...+ jn+3(s, t) + j0(s, t)− j0(s, t) + j1(s, t)

− j1(s, t) + j2(s, t)− j2(s, t))
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=

(
1− jn+1(s, t)− 2tjn(s, t)

1− s− 2t

)
+ i

(
1− jn+2(s, t)− 2tjn+1(s, t)

1− s− 2t
− j0(s, t)

)
+ ε

(
1− jn+3(s, t)− 2tjn+2(s, t)

1− s− 2t
− j0(s, t)− j1(s, t)

)
+ h

(
1− jn+4(s, t)− 2tjn+3(s, t)

1− s− 2t
− j0(s, t)− j1(s, t)− j2(s, t)

)
=
j1(s, t) + ij1(s, t) + εj2(s, t) + hj3(s, t) + 2εtj1(s, t) + 2htj2(s, t)

1− s− 2t
−Hjn+1(s, t)− 2tHjn(s, t) + j0(s, t)− j0(s, t)

1− s− 2t

=
1 +Hj0(s, t)−Hjn+1(s, t)− 2tHjn(s, t) + 2εtj1(s, t) + 2htj2(s, t)

1− s− 2t
.

The proof of equation (3.18) is similar and is omitted.

Theorem 3.8. (Catalan’s identity) Suppose that s, t ∈ R such that s > 0, t 6= 0 and
s2 + 8t > 0. Let m and r be integers such that m ≥ r ≥ 0. Then, we obtain

I. Hjm−r(s, t)Hjm+r(s, t)−Hj2m(s, t) =
1

s2 + 8t
[α̂β̂(−2t)m(1− β

r

αr
)+β̂α̂(−2t)m(1−α

r

βr
)]

(3.19)

II. Hcm−r(s, t)Hcm+r(s, t)−Hc2m(s, t) = α̂β̂(−2t)m(
βr

αr
−1)+β̂α̂(−2t)m(

αr

βr
−1). (3.20)

Proof. By using (3.5), we have
Hjm−r(s, t)Hjm+r(s, t)−Hj2m(s, t)

=

(
αm−rα̂− βm−rβ̂

α− β

)(
αm+rα̂− βm+rβ̂

α− β

)
−

(
αmα̂− βmβ̂

α− β

)2

=
−α̂β̂αm−rβm+r − β̂α̂βm−rαm+r + α̂β̂αmβm + β̂α̂βmαm

(α− β)2

=

(
α̂β̂(αβ)m

(
1− βr

αr

))
+
(
β̂α̂(βα)m

(
1− αr

βr

))
(α− β)2

=
1

s2 + 8t

[
α̂β̂(−2t)m

(
1− βr

αr

)
+ β̂α̂(−2t)m

(
1− αr

βr

)]
.

The proof (3.20) is similar to the proof of (3.19), so it is omitted.

Remark 3.9. For r = 1 in Theorem 3.8, we have the Cassini’s identity for both
(s, t)−Jacobsthal and (s, t)−Jacobsthal-Lucas hybrid numbers, that is,

I. Hjm−1(s, t)Hjm+1(s, t)−Hj2m(s, t) =
1

s2 + 8t

[
α̂β̂(−2t)m

(
1− β

α

)
+ β̂α̂(−2t)m

(
1− α

β

)]

II. Hcm−1(s, t)Hcm+1(s, t)−Hc2m(s, t) = α̂β̂(−2t)m
(
β

α
− 1

)
+ β̂α̂(−2t)m

(
α

β
− 1

)
.
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Theorem 3.10. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. Let m and
n be integers such that m ≥ n ≥ 0. Then

I. Hjm(s, t)Hjn+1(s, t)−Hjm+1(s, t)Hjn(s, t) =
(−2t)n(αm−nα̂β̂ − βm−nα̂β̂)√

s2 + 8t
, (3.21)

II. Hcm(s, t)Hcn+1(s, t)−Hcm+1(s, t)Hcn(s, t) =
√
s2+8t (−2t)n(βm−nα̂β̂−αm−nα̂β̂),

(3.22)

III. Hjm(s, t)Hcn(s, t)−Hcm(s, t)Hjn(s, t) =
2(−2t)n(αm−nα̂β̂ − βm−nα̂β̂)√

s2 + 8t
. (3.23)

Proof. If we consider (3.6) and the (2.4), we obtain
Hjm(s, t)Hjn+1(s, t)−Hjm+1(s, t)Hjn(s, t)

=

(
αmα̂− βmβ̂

α− β

)(
αn+1α̂− βn+1β̂

α− β

)
−

(
αm+1α̂− βm+1β̂

α− β

)(
αnα̂− βnβ̂
α− β

)

=
α̂β̂(αβ)n(αm−n − βm−n)

α− β

=
(−2t)n(αm−nα̂β̂ − βm−nα̂β̂)√

s2 + 8t
.

The proofs of equations (3.22) and (3.23) are similar and have been omitted.

Equations (3.21) and (3.22) represent the d’Ocagne’s identity for (s, t)−Jacobsthal and
(s, t)−Jacobsthal-Lucas hybrid numbers, correspondingly.

Theorem 3.11. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. Let n ≥ 0
and m ≥ 0 be an integer. Then

Hcn(s, t) = Hjn+1(s, t) + 2tHjn−1(s, t),

sHjm(s, t) +Hcm(s, t) = 2Hjm+1(s, t).

Proof. Using (3.1) and (2.7), we have

Hcn(s, t) = cn(s, t) + icn+1(s, t) + εcn+2(s, t) + hcn+3(s, t)

= jn+1(s, t) + 2tjn−1(s, t) + i(jn+2(s, t) + 2tjn(s, t)) + ε(jn+3(s, t)

+ 2tjn+1(s, t)) + h(jn+4(s, t) + 2tjn+2(s, t))

= (jn+1(s, t) + ijn+2(s, t) + εjn+3(s, t) + h(jn+4(s, t))

+ 2t(jn−1(s, t) + ijn(s, t) + εjn+1(s, t) + hjn+2(s, t))

= Hjn+1(s, t) + 2tHjn−1(s, t).
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By virtue of (3.1), (3.2) and (2.8), we find that

sHjm(s, t) +Hcm(s, t) = (sjm(s, t) + sijm+1(s, t) + sεjm+2(s, t) + shjm+3(s, t))

+ (cm(s, t) + icm+1(s, t) + εcm+2(s, t) + hcm+3(s, t))

= sjm(s, t) + cm(s, t) + i(sjm+1(s, t) + cm+1(s, t))

+ ε(sjm+2(s, t) + cm+2(s, t)) + h(sjm+3(s, t) + cm+3(s, t))

= 2jm+1(s, t) + 2ijm+2(s, t) + 2εjm+3(s, t) + 2hjm+4(s, t)

= 2Hjm+1(s, t).

Next, we present a matrix generator for the computation of (s, t)−Jacobsthal hybrid
numbers and (s, t)−Jacobsthal-Lucas hybrid numbers, as follows:

Theorem 3.12. Suppose that s, t ∈ R such that s > 0, t 6= 0 and s2 + 8t > 0. Let m ≥ 0
be an integer. Then

I.

[
Hjm+2(s, t) Hjm+1(s, t)
Hjm+1(s, t) Hjm(s, t)

]
=

[
Hj2(s, t) Hj1(s, t)
Hj1(s, t) Hj0(s, t)

] [
s 1
2t 0

]m
II.

[
Hcm+2(s, t) Hcm+1(s, t)
Hcm+1(s, t) Hcm(s, t)

]
=

[
Hc2(s, t) Hc1(s, t)
Hc1(s, t) Hc0(s, t)

] [
s 1
2t 0

]m
.

Proof. For m = 0, we let the matrix to the power 0 be the identity matrix. Therefore,
the result can be readily obtained. Consider m = 1. By (3.3), we have[

Hj3(s, t) Hj2(s, t)
Hj2(s, t) Hj1(s, t)

]
=

[
sHj2(s, t) + 2tHj1(s, t) Hj2(s, t)
sHj1(s, t) + 2tHj0(s, t) Hj1(s, t)

]
=

[
Hj2(s, t) Hj1(s, t)
Hj1(s, t) Hj0(s, t)

] [
s 1
2t 0

]1
.

Therefore, the case m = 1 is true. Next, assume for some integer m ≥ 1,[
Hjm+2(s, t) Hjm+1(s, t)
Hjm+1(s, t) Hjm(s, t)

]
=

[
Hj2(s, t) Hj1(s, t)
Hj1(s, t) Hj0(s, t)

] [
s 1
2t 0

]m
.

By (3.3), we have[
Hjm+3(s, t) Hjm+2(s, t)
Hjm+2(s, t) Hjm+1(s, t)

]
=

[
sHjm+2(s, t) + 2tHjm+1(s, t) Hjm+2(s, t)
sHjm+1(s, t) + 2tHjm(s, t) Hjm+1(s, t)

]
=

[
Hjm+2(s, t) Hjm+1(s, t)
Hjm+1(s, t) Hjm(s, t)

] [
s 1
2t 0

]
=

[
Hj2(s, t) Hj1(s, t)
Hj1(s, t) Hj0(s, t)

] [
s 1
2t m

]m [
s 1
2t 0

]
=

[
Hj2(s, t) Hj1(s, t)
Hj1(s, t) Hj0(s, t)

] [
s 1
2t 0

]m+1

.

Thus, the proof is completed. Using a similar approach, we can construct a matrix
generator for (s, t)-Jacobsthal-Lucas hybrid numbers.
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