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1. Introduction

An exponential Diophantine equation is an equation of the form ax± by = zn for fixed
nonnegative integers a, b, n. Diophantine equations of this type have been studied for fixed
a, b and n = 2. One of the important theorems is known as Catalan’s conjecture [1] (stated
in Theorem 2.1) which was proved by Mihǎilescu in 2004. After that, most mathemati-
cians who are interested in solving the exponential Diophantine equations studied those
when n is even. However, there are a few studies of the exponential Diophantine equation
in the case of odd integer n. For example, Burshtein [2], in 2020, studied the solutions of
the Diophantine equation px + qy = z3 when both p and q are distinct primes and both x
and y are between 1 and 2. Recently, in 2022, Aquibo and Bacani [3] studied the equation
px + qy = z3 where p and q are twin primes. Furthermore, in the same year Mina and
Bacani [4] studied the same where p and q are cousin primes; that is, primes that differ
by four.

In this article, we are interested in the exponential Diophantine equations when n = 3
and either a or b is 3 with integer solutions. More precisely, we study the following

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2024 by TJM. All rights reserved.



228 Thai J. Math. Vol. 22 (2024) /P. Khanom et al.

equations:

3x + ay = z3

3x − ay = z3

ax − 3y = z3

for some conditions on the positive integer a. Most of the techniques in this article are
quite simple but some of them are different from the old ones (when n = 2), e.g. the
cubic residue.

The structure of this article was designed as follows: in the next section, we shall equip
some useful lemmas to prove our main results in the next two sections. In Section 3 we
study the Diophantine equation 3x + ay = z3 for some conditions of the integer a. For
the next section, we also do the same manner for the other two equations in Section 4.
In the last, we provide some examples and note some open problems which are related to
our exponential Diophantine equations.

2. Preliminaries

In this section, we state some well-known facts and recall some definitions which are
useful in this article. We first start with the well-known result in [1], called Catalan’s
conjecture.

Theorem 2.1 (Catalan’s conjecture). The only integer solution (a, b, x, y) of the equation
ax − by = 1 such that min {a, b, x, y} ≥ 2 is (3, 2, 2, 3).

Now we shall pause to note some applications of Catalan’s conjecture (Theorem 2.1).

Lemma 2.2. Let a be a positive integer. The equation 1 + ay = z3 has at most one
integer solution for fixed a, namely (y, z, a) =

(
1, 3
√
a+ 1, a

)
.

Proof. It suffices to assume that a ≥ 2 and z ≥ 2. Suppose that y ≥ 2. By Catalan’s
conjecture (Theorem 2.1), this equation has no integer solution. Hence, y must be 1 and
then the integer solution is (y, z, a) =

(
1, 3
√
a+ 1, a

)
.

Lemma 2.3. Let a be a positive integer. All nonnegative integer solutions (x, z, a) of the
equation ax − 1 = z3 are (0, 0, a) ,(x, 0, 1) ,

(
1, 3
√
a− 1, a

)
,(2, 2, 3).

Proof. For z = 0, 1, it is easy to see that all integer solutions(x, z, a) are (0, 0, a), (x, 0, 1),
(1, 1, 2). Assume that z ≥ 2. It implies that a ≥ 2. If x = 0, 1, we get that (x, z, a) =(
1, 3
√
a− 1, a

)
is the only one solution. If x ≥ 2, we get the other solutions are (x, z, a) =

(2, 2, 3) by Catalan’s conjecture (Theorem 2.1). Observe that (1, 1, 2) can be absorbed
into the form

(
1, 3
√
a− 1, a

)
when a = 2.

Next, we shall discuss the prime which is congruent 1 in modulo 3. (In fact, it is
congruent 1 in modulo 6.) It is well-known that the prime which is congruent to 1 in
modulo 4 can be expressed in the sum of the square of two integers. In the same way, we
can express the prime which is congruent 1 in modulo 3 as follows:

Theorem 2.4. Let p be a prime number such that p ≡ 1 (mod 3). Then there are unique
positive integers L and M such that 4p = L2 + 27M2.

Proof. See [5, Proposition 8.3.2].
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This expression is useful to determine the existence of solutions of some equations.
Recall that let two integers m ≥ 2 and a be such that gcd(a,m) = 1. We call a a
quadratic residue of m if the congruence x2 ≡ a (mod m) has a solution. Similarly,
we call a a cubic residue of m if the congruence x3 ≡ a (mod m) has a solution. The
following determines whether 3 is a cubic residue in modulo p or not.

Theorem 2.5. Let p be a prime number such that p = 1
4

(
L2 + 27M2

)
≡ 1 (mod 3).

Then 3 is a cubic residue modulo p if and only if 3 |M .

Proof. See [6, Proposition 7.2].

Observe that p in the above theorem can be written in that form by Theorem 2.4.
Although there is a notation for the cubic residue like the Legendre symbol in quadratic
case, we do not use it in this article.

3. Additive Cubic Exponential Diophantine Equations

In this section, our main goal is to find all integer solutions of the equation 3x+py = z3

for some prime p. The answer is shown in Corollary 3.8. However, we shall study the
equation in a more general form 3x + ay = z3, where a is not necessarily prime.

First, we shall consider the equation 3x + ay = z3 where a is not a multiple of 3. We
start with the case where a is a cubic integer.

Theorem 3.1. Let a be a positive integer such that 3 - a. The equation 3x + a3y = z3

has no nonnegative integer solution.

Proof. Let (x, y, z, a) be a nonnegative integer solution of the equation 3x + a3y = z3.
Then

3x = z3 − a3y =(z − ay)
(
z2 + ayz + a2y

)
.

Let z − ay = 3k for some nonnegative integer k. Then

3x−k = z2 + ayz + a2y = 32k + 3k+1ay + 3a2y.

It is easy to see that x is a positive integer by Lemma 2.2 and then so is k. Since
9 ≤ 32k ≤ 3x−k, we have x− k ≥ 2. Then

3a2y ≡ 32k + 3k+1ay + 3a2y = 3x−k ≡ 0 (mod 9).

This implies that 3 | a which contradicts the fact that 3 - a. This proof is completed.

Observe that if we can force the exponent of a to be divisible by 3, we can apply the
previous theorem to show that it has no nonnegative integer solution. The following is
an application of Theorem 3.1.

Theorem 3.2. Let a be a positive integer such that 3 - a and a 6≡ ±1 (mod 9). The
nonnegative integer solutions (x, y, z, a) of the equation 3x + ay = z3 are

(
0, 1, 3
√
a+ 1, a

)
or x = 1.

Proof. Assume that x 6= 1. For x = 0 or y = 0, the solution (x, y, z, a) =
(
0, 1, 3
√
a+ 1, a

)
is only one solution (for fixed a) by Lemma 2.2. From now on, we assume that y ≥ 1 and
x ≥ 2. It is easy to see that 3 | y by the condition of the integer a. There is a positive
integer yo such that y = 3yo. Applying Theorem 3.1 to the equation 3x + a3yo = z3, we
obtain that there is no nonnegative integer solution in this case.
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According to Theorem 3.2, several integer solutions may arise from the case x = 1.
To deal with this issue, we say that an integer a has property P if there is a prime
p = 1

4

(
L2 + 27M2

)
≡ 1 (mod 6) such that p | a and 3 - M . This idea follows from the

cubic residue (like the quadratic residue).

Theorem 3.3. Let a be a positive integer such that 3 - a and a 6≡ ±1 (mod 9). If the
integer a satisfies the property P, then the equation 3x + ay = z3 has at most one integer
solution and that solution is (x, y, z, a) =

(
0, 1, 3
√
a+ 1, a

)
.

Proof. Suppose that x = 1. It is easy to see that y 6= 0 and then we have

z3 = 3 + ay ≡ 3 (mod p).

Since 3 -M , we get that 3 is not a cubic residue modulo p by Theorem 2.5. Hence, x 6= 1.
By Theorem 3.2, the equation 3x + ay = z3 has at most one integer solution, namely
(x, y, z, a) =

(
0, 1, 3
√
a+ 1, a

)
.

Now, we shall consider the case where 3 | a. The main goals in this part are Theorems
3.6 and 3.7. We can find some conditions which guarantee that the equation has no integer
solution. Before we go to our goal, we shall consider two equations which are the main
tools for our main goals. Both theorems describe the existence of the integer solutions of
the equation 1 + 3xay = z3 when a is not multiple of 3. Now, we start the case where the
integer a is odd.

Lemma 3.4. Let a be an odd positive integer such that 3 - a and a ≡ 1, 3 (mod 8). Then
the equation 1 + 3xay = z3 has no nonnegative integer solution.

Proof. Let (x, y, z, a) be a nonnegative integer solution of the equation 1 + 3xay = z3.
Note that z is even. We consider

3xay = z3 − 1 =(z − 1)
(
z2 + z + 1

)
and

gcd
(
z − 1, z2 + z + 1

)
= gcd(z − 1, 3) = 1, 3.

Now, we write a = st where gcd(s, t) = 1. If gcd
(
z − 1, z2 + z + 1

)
= 1, then

• if z − 1 = 3xsy, then ty = 32xs2y + 3x+1sy + 3 which implies that x = 0. Then
by Lemma 2.2, we get that y = 1. This is impossible since

0 ≡ z3 = 1 + a ≡ 2, 4 (mod 8).

• if z − 1 = sy, then 3xty = s2y + 3sy + 3 which also implies that x = 0. It is
impossible in the same way as the previous one.

Similarly, if gcd
(
z − 1, z2 + z + 1

)
= 3, then

• if z − 1 = 3sy, then 3x−1ty = 32s2y + 32sy + 3 which implies that x = 2 and y
is odd. This is impossible since

0 ≡ z3 = 1 + 9ay ≡ 2, 4 (mod 8).

• if z − 1 = 3x−1sy, then 3ty = 32x−2s2y + 3xsy + 3 which implies that y is odd.
This is also impossible. More precisely, if x is odd, then

a = st ≡ s2 + 4s ≡ 5 (mod 8).

If x is even, then a ≡ 7 (mod 8) for the same reason.

Consequently, the equation has no integer solution.
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Next, we also consider the equation 1 + 3xay = z3 for the even integer a.

Lemma 3.5. Let a be an odd positive integer such that 3 - a. For any positive integer k

such that a < 4k, the equation 1 + 3x
(
2ka

)y
= z3 has no nonnegative integer solution.

Proof. Let(x, y, z, a) be a nonnegative integer solution of the equation 1+3x
(
2ka

)y
= z3.

We consider

3x2kyay = z3 − 1 =(z − 1)
(
z2 + z + 1

)
and

gcd
(
z − 1, z2 + z + 1

)
= gcd(z − 1, 3) = 1, 3.

Note that z2+z+1 is odd and write a = st where gcd(s, t) = 1. If gcd
(
z − 1, z2 + z + 1

)
=

1, then

• if z − 1 = 3x2kysy, then ty = 32x22kys2y + 3x+12kysy + 3 which implies that
x = 0. By Lemma 2.2, we have y = 1, so t = 22ks2 + 3 · 2ks+ 3. It is impossible
since

a3 ≥ t3 = 22ka2 + 3 · 2kat+ 3t2 =⇒ a > 4k.

• if z − 1 = 2kysy, then 3xty = 22kys2y + 3 · 2kysy + 3 which also implies that
x = 0. It is also impossible by the same argument as the previous case.

Similarly, if gcd
(
z − 1, z2 + z + 1

)
= 3, then

• if z − 1 = 3 · 2kysy, then 3x−1ty = 3222kys2y + 322kysy + 3 which implies that
x = 2. It is also impossible since

a3 ≥ t3 > 22ks2t2 = 22ka2 =⇒ a > 4k.

• if z − 1 = 3x−12kysy, then 3ty = 32x−222kys2y + 3x2kysy + 3. Similarly to the
previous one, it is also impossible.

Consequently, the equation has no nonnegative integer solution.

Now, we are ready to consider the equation when a = 3na∗ is a multiple of 3 where
3 - a∗. The first one is considered when the integer a∗ is cubic.

Theorem 3.6. Let n and a = 2kao be positive integers (where ao is odd) satisfying one
of the followings:

• a ≡ 1, 19 (mod 24) (i.e. a ≡ 1 (mod 3) and a ≡ 1, 3 (mod 8)), or
• ao < 4k and a ≡ 1 (mod 3).

Then the equation 3x +
(
3na3

)y
= z3 has no nonnegative integer solution.

Proof. If x < ny, then we have

z3 = 3x
(
1 + 3ny−xa3y

)
.

This implies that 1 + 3ny−xa3y is cubic. There is no nonnegative integer solution in this
case by Lemma 3.4 for an odd integer a and Lemma 3.5 for an even integer a, respectively.
If x ≥ ny, then we have

z3 = 3ny
(
3x−ny + a3y

)
.

Since a ≡ 1 (mod 3), this implies that 3 | ny and 3x−ny + a3y is cubic. By Theorem 3.1,
there is no nonnegative integer solution in this case.
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The following is similar to the previous one but the integer a∗ is not cubic where
a = 3na∗ (with 3 - a∗).

Theorem 3.7. Let n and a = 2kao be positive integers (where ao is odd) satisfying one
of the following:

• a ≡ 25, 43, 49, 67 (mod 72) (i.e. a ≡ 4, 7 (mod 9) and a ≡ 1, 3 (mod 8)), or
• ao < 4k, and a ≡ 4, 7 (mod 9).

If the integer a satisfies the property P, then the equation 3x +(3na)
y

= z3 has no non-
negative integer solution.

Proof. If x < ny, then we have

z3 = 3x
(
1 + 3ny−xay

)
.

This implies that 1 + 3ny−xay is cubic. There are no nonnegative integer solutions in this
case by Lemma 3.4 for an odd integer a and Lemma 3.5 for an even integer a, respectively.
If x ≥ ny, then we have

z3 = 3ny
(
3x−ny + ay

)
.

Since a ≡ 1 (mod 3), this implies that 3 | ny and 3x−ny + ay is cubic. By Theorem 3.3,
it implies that y = 1 and x = n. Hence, (x, y, z, n, a) =

(
3α, 1, 3α 3

√
a+ 1, 3α, a

)
for all

nonnegative integer α. It is easy to see that if a is odd, then a ≡ 7 (mod 8) since 3
√
a+ 1

is an even integer. Hence, a is even. Then ao < 4k. Let zo = 3
√
a+ 1. Then

2kao = a = z3o − 1 =(zo − 1)
(
z2o + zo + 1

)
.

This implies that zo ≥ 2k + 1. Since z3o = 2kao + 1 ≤ 8k, we have zo ≤ 2k. Hence, this
equation has no nonnegative integer solution.

Finally, we end this section with the equation

3x + py = z3,

where p is prime. Note that for any prime p, it is easy to see that the number 3
√
p+ 1 is

an integer if and only if p = 7. We immediately obtain the following consequences:

Corollary 3.8. Let p be prime.

(1) The equation 1 + py = z3 has a unique nonnegative integer solution (y, z, p) =
(1, 2, 7).

(2) The equation 3x + 3y = z3 has no nonnegative integer solution.
(3) If p 6= 3 and p 6≡ ±1 (mod 9), then the nonnegative integer solutions (x, y, z, p)

of the equation 3x + py = z3 are (0, 1, 2, 7) or x = 1.
(4) If p = 1

4

(
L2 + 27M2

)
≡ 1 (mod 6) such that 3 -M , then the equation 3x+py =

z3 has a unique nonnegative integer solution, namely, (x, y, z, p) =(0, 1, 2, 7).

Proof. The first item follows from Lemma 2.2. The second item follows from Theorem 3.6
when a = 1. The third item follows from Theorem 3.2 and finally, the last item follows
from Theorem 3.3.
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4. Negative Cubic Exponential Diophantine Equations

In this section, we shall do the same manner as Section 3. Note that there are bijections{
the integer solutions of 3x + ay = z3

}
⇐⇒

{
the integer solutions of − 3x − ay = z3

}
(x, y, z, a) =(xo, yo, zo, ao) 7→ (x, y, z, a) =(xo, yo,−zo, ao)

and{
the integer solutions of 3x − ay = z3

}
⇐⇒

{
the integer solutions of ax − 3y = z3

}
(x, y, z, a) =(xo, yo, zo, ao) 7→ (x, y, z, a) =(yo, xo,−zo, ao) .

Hence, it suffices to consider only two equations ax − 3y = z3 and 3x − ay = z3 for
nonnegative integer z. First, we study the equation ax − 3y = z3 when a is cubic.

Theorem 4.1. Let a be a positive integer such that 3 - a. The nonnegative integer
solutions of the equation a3x − 3y = z3 are (x, y, z, a) =(0, 0, 0, a) ,(x, 0, 1, 1).

Proof. If y = 0, the nonnegative integer solutions in this case are (0, 0, 0, a) ,(x, 0, 1, 1) by
Lemma 2.3. Assume that y > 0. We consider

3y = a3x − z3 =(ax − z)
(
a2x + axz + z2

)
.

Let ax − z = 3k for some nonnegative integer k. Then we have

3y−k = a2x + axz + z2 = 3a2x − 3k+1ax + 32k.

It is easy to see that k is a positive integer and y−k ≥ 2. This is impossible since 3 - a.

Similarly to Theorem 3.2, we can replace the cubic condition with the condition a 6≡ ±1
(mod 9) as follows:

Theorem 4.2. Let a be a positive integer such that 3 - a and a 6≡ ±1 (mod 9). All non-
negative integer solutions(x, y, z, a) of the equation ax−3y = z3 are (0,0,0, a),

(
1, 0, 3
√
a−1, a

)
or y = 1.

Proof. Assume that y 6= 1. If y = 0, then all nonnegative integer solutions in this case
are

(0, 0, 0, a) ,
(
1, 0, 3
√
a− 1, a

)
by Lemma 2.3. If y ≥ 2, then by the conditions of a it is easy to see that 3 | x. We write
x = 3xo for some nonnegative integer xo. By Theorem 4.1, this case has no nonnegative
integer solution.

Next, we shall consider the equation 3x − ay = z3 when an integer a is cubic.

Theorem 4.3. Let a be a positive integer such that 3 - a. All nonnegative integer solutions
(x, y, z, a) of the equation 3x − a3y = z3 are (0, 0, 0, a), (0, y, 0, 1), (2, 0, 2, a), (2, y, 2, 1) ,
(2, 1, 1, 2) .

Proof. For x = 0, 1, this equation has exactly two nonnegative integer solutions, namely
(0, 0, 0, a) ,(0, y, 0, 1). Assume x ≥ 2. We consider

3x = z3 + a3y =(z + ay)
(
z2 − ayz + a2y

)
.

Let z+ ay = 3k for some nonnegative integer k. This implies that 3x−k = 32k− 3k+1ay +
3a2y. It is easy to see that k is a positive integer and x− k ≤ 1 since 3 - a. If x− k = 0,
then we have a2y ≤ 4

3 which implies that ay = 1. This case does not occur by Lemma

2.3. Now, we have x− k = 1. Then 3 = z2 − ayz + a2y. It implies that a2y ≥ 4
(
a2y − 3

)
,
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i.e. a2y ≤ 4. Hence, we obtain three nonnegative integer solutions (x, y, z, a) in this case,
namely, (2, 0, 2, a) ,(2, y, 2, 1)(2, 1, 1, 2).

Similarly, the cubic condition can be changed to the condition a 6≡ ±1 (mod 9) as
follows:

Theorem 4.4. Let a be a positive integer such that 3 - a and a 6≡ ±1 (mod 9). All non-
negative integer solutions (x, y, z, a) of the equation 3x− ay = z3 are (0, 0, 0, a) ,(1, 1, 1, 2),
(2, 0, 2, a) ,(2, 3, 1, 2).

Proof. For x = 0, 1, all nonnegative integer solutions (x, y, z, a) are (0, 0, 0, a) ,(1, 1, 1, 2).
Assume that x ≥ 2. By the conditions of the integer a, we obtain that 3 | y. There is a
nonnegative integer yo such that y = 3yo. Applying Theorem 4.3, the other nonnegative
integer solutions (x, y, z, a) are (2, 0, 2, a) ,(2, 3, 1, 2).

In this section, we cannot use the same technique when 3 | a as in Section 3 because
the conditions are too strong to find an integer a satisfying that conditions. However, we
would like to fulfill when 3 | a. We provide the easiest case a = 3 as follows:

Theorem 4.5. The equation 3x − 3y = z3 has infinitely many nonnegative integer solu-
tions. More precisely, all nonnegative integer solutions (x, y, z) are in the following forms
(k, k, 0) or

(
3k + 2, 3k, 2 · 3k

)
for all nonnegative integers k.

Proof. It is clear that if x = y, then all nonnegative integer solutions in this case are in
the form (x, y, z) =(x, x, 0). If x > y, then we consider

z3 = 3x − 3y = 3y
(
3x−y − 1

)
.

Then 3 | y and 3x−y − 1 is cubic. By Lemma 2.3, it implies that all nonnegative integer
solutions (x, y, z) are

(
3k + 2, 3k, 2 · 3k

)
for all nonnegative integer k.

Finally, we also end this section with the equations

3x − py = z3 and px − 3y = z3,

where p is prime. Note that for prime p, it is easy to see that the number 3
√
p− 1 is an

integer if and only if p = 2. We immediately obtain the following consequence.

Corollary 4.6. Let p be prime.

(1) The equation px−1 = z3 has exactly three nonnegative integer solutions(x, z, p),
namely, (0, 0, p) ,(1, 1, 2) ,(2, 2, 3).

(2) The equation 3x − 3y = z3 has infinitely many nonnegative integer solutions
(x, y, z) in the forms (k, k, 0) or

(
3k + 2, 3k, 2 · 3k

)
for all nonnegative integer k.

(3) If p 6= 3 and p 6≡ ±1 mod 9, then the nonnegative integer solutions (x, y, z, p)
of the equation px − 3y = z3 are (0, 0, 0, p) ,(1, 0, 1, 2) or y = 1.

(4) If p 6= 3 and p 6≡ ±1 mod 9, then the equation 3x − py = z3 has exactly four
nonnegative integer solutions (x, y, z, p), namely, (0, 0, 0, p) ,(1, 1, 1, 2) ,(2, 0, 2, p),
(2, 3, 1, 2).

Proof. The first item follows from Lemma 2.3; the second one follows from Theorem 4.5;
the third item follows from Theorem 4.2 and the final item follows from Theorem 4.4.
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5. Conclusions

In this section, we shall discuss the main results in two previous sections. In Section 3,
we obtain that the following equations have no integer solutions:

(1) 3x + ay = z3 when a positive integer a (where gcd(a, 3) = 1) has one of the
followings:

• a is cubic;
• a ≡ 2, 4, 5, 7 (mod 9), 3

√
a+ 1 is not an integer and satisfies property P.

(2) 3x +
(
3na3

)y
= z3 when a positive integer a = 2kao (where gcd(ao, 6) = 1) has

one of the followings:
• a ≡ 1, 19 (mod 24);
• ao < 4k and a ≡ 1 (mod 3).

(3) 3x +(3na)
y

= z3 when a positive integer a = 2kao (where gcd(ao, 6) = 1) has
one of the followings:

• a ≡ 25, 43, 49, 67 (mod 72) satisfies property P, or
• ao < 4k, a ≡ 1 (mod 3) and the integer a satisfies property P.

In the case a = p is prime, we obtain that the equation 3x + py = z3 has no integer
solution when p satisfies one of the followings:

• p = 3, or
• p 6= 7 and p = 1

4

(
L2 + 27M2

)
≡ 1 (mod 6) such that 3 -M .

Now, we consider the prime p such that 3x + py = z3 has a nonnegative integer solution.
From Corollary 3.8, if p 6= 3, 7, p 6≡ ±1 (mod 9) and the equation has a nonnegative
integer solution, then x = 1. According to the computation, there is no integer y ≥ 2
and the prime number p such that 3 + py = z3 when z ≤ 100, 000. In the other word,
if z ≤ 100,000, the equation 3 + py = z3 has at most one nonnegative integer solution
and that solution is (y, z, p) =

(
1, 3
√
p+ 3, p

)
. In particular, there are 4,389 primes such

that the equation has a nonnegative integer solution. The following are those first twenty
primes:

5 61 509 997 2,741
4,093 17,573 39,301 54,869 63,997

405,221 511,997 1,191,013 1,330,997 1,560,893
1,906,621 2,515,453 3,944,309 5,639,749 6,229,501

Hence, the following conjectures are stated from the observation:

Conjecture 5.1. Let p be prime.

(1) The equation 3 + py = z3 has at most one nonnegative integer solution for
fixed prime p and the nonnegative integer solution is (y, z, p) =

(
1, 3
√
p+ 3, p

)
.

(2) There are infinitely many primes p such that 3
√
p+ 3 is an integer.

Furthermore, in this section, we also consider the other two equations which are in-
gredients to prove Theorems 3.6 and 3.7. Those equations are 1 + 3xay = z3 (Lemma
3.4) and 1 + 3x

(
2ky

)
= z3 (Lemma 3.5). If we remove the condition “a ≡ 1, 3 (mod 8)

in Lemma 3.4, we cannot conclude that the equation 1 + 3xay = z3 has no nonnegative
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integer solutions, for example,

x y z a
2 1 4 7
3 1 10 37
2 1 16 455
2 1 22 1,183
4 1 28 271

Similarly, if we remove the condition “a < 4k” in Lemma 3.5, we cannot conclude that
the equation 1 + 3x

(
2ka

)y
= z3 has no nonnegative integer solutions, for example,

x y z k a
2 1 7 1 19
2 1 13 2 61
3 1 19 1 127
2 1 25 3 217
2 1 31 1 1,655

Next, we shall discuss the condition “p = 1
4

(
L2 + 27M2

)
≡ 1 (mod 6)” in the proper-

ty P. This condition is effective in dealing with the case x = 1 of the equation 3x+ay = z3.
Hence, we shall note the first fifty primes p = 1

4

(
L2 + 27M2

)
≡ 1 (mod 6) and 3 - M as

follows:

7 13 19 31 37 43 61 67 73 79
97 103 109 127 139 151 157 163 181 193
199 211 223 229 241 271 277 283 307 313
331 337 349 367 373 379 397 409 421 433
439 457 463 487 499 523 541 547 571 577

In Section 4, we get all nonnegative integer solutions of the following equations:

• a3x − 3y = z3 and 3x − a3y = z3 when 3 - a;
• 3x − ay = z3 when 3 - a and a 6≡ ±1 (mod 9).

By the way for the equation ax − 3y = z3, we cannot conclude the explicit nonnegative
integer solutions when y = 1.

In the case a = p is prime, we obtain all nonnegative integer solutions of the equation
3x − py = z3 when p 6≡ ±1 (mod 9). For the equation px − 3y = z3 we cannot conclude
when y = 1. By the computation (again!) for z ≤ 100,000, the equation px−3 = z3 has at
most one nonnegative integer solution for fixed p and the nonnegative integer solution is
(x, z, p) =

(
1, 3
√
p− 3, p

)
. In this situation, there are 4,453 primes such that the equation

has a nonnegative integer solution. The following are those first twenty primes:

3 11 67 4,099 10,651
17,579 32,771 125,003 140,611 238,331
262,147 405,227 438,979 636,059 830,587

1,000,003 1,124,867 1,191,019 1,906,627 2,744,003

Similarly, the following conjectures are also stated from the observation:

Conjecture 5.2. Let p be prime.

(1) The equation px − 3 = z3 has at most one nonnegative integer solution for
fixed prime p and the nonnegative integer solution is (x, z, p) =

(
1, 3
√
p− 3, p

)
.



On Cubic Exponential Diophantine Equations ±3x ± ay = z3 237

(2) There are infinitely many primes p such that 3
√
p− 3 is an integer.

However, in Section 4 we have no results for the case 3 | a except for a = 3 because we
cannot use the same techniques used in Section 3. Furthermore, in this article, we do not
study when a ≡ ±1 (mod 9) is not cubic. These are still open problems and we invite
readers to study these in the future.
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