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Abstract An exponentially even integer is a positive integer whose prime factorization contains only

even prime powers, while an exponentially odd integer is a positive integer whose prime factorization

contains only odd prime powers. We investigate here the problem of counting the number of positive

integers that are semi-prime to an exponentially even integer, and to an exponentially odd integer. Basic

properties of the functions involved are established.
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1. Introduction

An arithmetic function, [1], [11], is a complex-valued function defined on the set of
positive integers, N. Over the set of arithmetic functions A, the operations of addition
+, and unitary convolution t, of two elements f, g ∈ A are defined respectively, by

(f + g)(n) = f(n) + g(n), (f t g)(n) =
∑
d|| n

f(d)g(n/d),

where d||n signifies the unitary divisor d of n, i.e., d|n and gcd(d, n/d) = 1. The identity
element with respect to the unitary convolution is the function

I(n) =

{
1 if n = 1,
0 if n > 1.

A function f ∈ A \ {0} is said to be multiplicative if f(mn) = f(m)f(n) whenever
gcd(m,n) = 1. It is well-known that the structure (A,+,t) is a commutative ring with
zero divisor and the unitary convolution of two multiplicative functions is a multiplicative
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function. Recall that the Euler totient function ϕ(n) counts the number of positive
integers ≤ n which are relatively prime to n, and has a representation [1, Theorem 2.3]

ϕ(n) =
∑
d|n

µ(d)n/d, (1.1)

where µ ∈ A is the well-known Möbius function. For x ∈ R, x ≥ 1 and n ∈ N, the
Legendre totient ϕ(x, n), is defined to be the number of positive integers ≤ x which are
relatively prime to n, and has a representation, [2, equation (3.8)],

ϕ(x, n) =
∑
d|n

µ(d) bx/dc ; (1.2)

clearly, ϕ(n, n) = ϕ(n). Extending the preceding discussion, the function ϕk(n) (k ∈ N)
([7], [8], [10, chapter 2, p.278], [11]) is defined to be the number of positive integers m ≤ n
such that gcd(m,n) is kth power-free (i.e., not divisible by any kth power of an integer
> 1). This function can be expressed as

ϕk(n) =
∑
d|n

µk(d)n/d, (1.3)

where µk is the Klee’s Möbius function defined by µk(n) = µ(n1/k) if n = hk for some
h ∈ N, and 0 otherwise ; clearly, µ1 = µ, ϕ1(n) = ϕ(n). For a, b, k ∈ N, let (a, b)k denote
the greatest among the common kth power divisors of a and b. If (a, b)k = 1, we say that
a is relatively k-prime to b. Suryanarayana [12] defined the function ϕk(x, n) (x ≥ 1) to
be the number of positive integers ≤ x which are relatively k-prime to n, and proved that

ϕk(x, n) =
∑
d|n

µk(d) bx/dc ; (1.4)

clearly ϕk(n, n) = ϕk(n), ϕ1(x, n) = ϕ(x, n). For a, b ∈ Z with b > 0, denote by (a, b)∗

the greatest divisor of a which is a unitary divisor of b ; when (a, b)∗ = 1, i.e., when
the greatest divisor of a which is a unitary divisor of b is 1, the integer a is said to be
semi-prime to b. In [2], Cohen defined the unitary Euler totient ϕ∗(n) to be the number
of positive integers ≤ n that are semi-prime to n, and proved that ([2, Corollary 2.4.1])

ϕ∗(n) =
∑
d||n

µ̄(d)n/d = (µ̄ t ζ1)(n) =
∏
p|n

(pνp(n) − 1) (1.5)

where µ̄(n) = (−1)ω(n), ω(n) being the number of distinct prime factors of n > 1 and
ω(1) = 0, ζ1(n) = n, and νp(n) is the highest power of p that divides n. In the same
paper, Cohen introduced the concept of an exponentially odd integer which is a positive
integer ≥ 2 whose prime factorization takes the form po11 · · · poss with all powers oi being
odd positive integers. Denote by Eo the set of all exponentially odd numbers; since a
positive integer belongs to Eo whenever its greatest unitary square divisor is 1, it then
makes sense to adopt the convention that 1 ∈ Eo. In [2], Cohen proved that

(µ̄ t χo)(n) = K(n) :=

{
µ̄(
√
n) = µ̄(n) = (−1)ω(n) if n is a square

0 otherwise;
(1.6)

where χo is the characteristic function of Eo; note that being a unitary convolution of two
multiplicative functions, the function K is itself multiplicative. The following interesting
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identities related to the unitary Euler totient and greatest common divisor function are
derived in [15]

ϕ∗(k) =
∑

m mod k

(m, k)∗ cos

(
2πm

k

)
,

∑
m mod k

(m, k)∗ =
∑
d||k

ϕ∗(d)k/d.

In [6], Haukkanen defined the unitary analogue of the Legendre totient function ϕ∗(x, n).
For x ≥ 1, the function ϕ∗(x, n), which counts the number of positive integers a ≤ x such
that (a, n)∗ = 1, can be written as

ϕ∗(x, n) =
∑
d||n

µ̄(d)
⌊x
d

⌋
. (1.7)

Clearly, ϕ∗(n, n) = ϕ∗(n). Rao in [9] gave the following extension. For n,m, k ∈ N, let
(m,nk)∗k denote the largest unitary divisor of nk that divides m and is a kth power; note
that (m,n)∗1 = (m,n)∗. Rao’s extension of ϕ∗ is the function ϕ∗k(n) defined to be the
number of positive integers m ≤ nk such that (m,nk)∗k = 1. Its convolution representation
is

ϕ∗k(n) =
∑
d||n

µ̄(d) (n/d)
k

; (1.8)

clearly, ϕ∗1(n) = ϕ∗(n). An integer n ∈ N is said to be k-full (k ∈ N, k ≥ 2) if it has
no prime factor of multiplicity < k, and denote by Qk the set of k-full integers. In 1963,
Cohen [3] introduced the function ϕ̂k(n) which counts the number of integers ≤ n that are
relatively prime to the maximal divisor of n contained in Qk. In 1964, Cohen [4] defined
ϕ̄∗k(n) (k ∈ N) to be the number of integers ≤ n which are semi-prime to the maximal
unitary divisor of n contained in Qk. For m,n ∈ N, let (m,n)∗∗ denote the greatest
common unitary divisor of m and n, i.e., (m,n)∗∗ = max{d ∈ N | d||m, d||n}. Note that
(m,n)∗∗ ≤ (m,n)∗ ≤ gcd(m,n), and it is known, [13], that ϕ(n) ≤ ϕ∗(n) ≤ ϕ∗∗(n). In
[5], the bi-unitary analogue of Euler’s totient function ϕ∗∗(n) is defined to be the number
of positive integers m ≤ n such that (m,n)∗∗ = 1. Its convolution representation is

ϕ∗∗(n) =
∑
d||n

µ(d)ϕ(d, n/d). (1.9)

Pushing further these earlier works as well as complementing Cohen’s concept of an
exponentially odd integer, we introduce here the notion of an exponentially even integer
which is defined to be a positive integer ≥ 2, whose prime factorization contains only
even prime powers, i.e., a perfect square ≥ 2. Adding to the set Eo of exponentially odd
integers, let Ee be the set of all exponentially even integers. We adopt the convention that
1 belongs to both Eo and Ee. For a positive integer n > 1, its unique prime factorization
can be written according to odd and even powers of primes (henceforth referred to as its
unique odd-even prime representation) under the form

n = po11 · · · poss · q
e1
1 · · · qerr ,

where p1, . . . , ps, q1, . . . , qr are distinct primes, o1, . . . , os are odd positive integers, and
e1, . . . , er are even positive integers; we adopt the convention that if there is no such odd
or even prime powers, i.e., if there is no such s or r, the corresponding part is taken to
be 1. Define the e-odd part of n by

α(n) =

{
po11 · · · poss if there is such an s ∈ N,
1 if there is no such s,
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and the e-even part of n by

β(n) =

{
qe11 · · · qerr if there is such an r ∈ N,
1 if there is no such r.

Clearly, β(n) = n when n is perfect square, while α(n) = n when n is itself exponentially
odd, and α(1) = 1 = β(1), gcd(α(n), β(n)) = 1, n = α(n)β(n). The concepts of expo-
nentially odd and exponentially even integers are closely connected to that of maximal
unitary divisors. Indeed, it is easy to see that for each n ∈ N, its e-odd part α(n) (∈ Eo)
is the maximal unitary divisor of n that is a perfect square, and that its e-even part β(n)
(∈ Ee) is the maximal unitary divisor of n that is exponentially odd. Recently in [14],
we defined the odd-phi function, ϕ∗(α;n) to be the number of integers ≤ n which are
semi-prime to α(n), and analogously the even-phi function, ϕ∗(β;n) to be the number of
integers ≤ n which are semi-prime to β(n). It is shown in [14] that both of these functions
are multiplicative and have convolution representations of the form

ϕ∗(α;n) =
∑
d||n

K(d) n/d, ϕ∗(β;n) =
∑
d||n

T (d) n/d, (1.10)

where K is as in (1.6) and the multiplicative function T is defined at prime powers by

T (pa) =

{
−1 if a is odd,
0 if a is even ≥ 2.

For n ∈ N, we clearly see that

T (n) =

{
µ̄(n) = (−1)ω(n) if n ∈ Eo,
0 if n /∈ Eo.

(1.11)

The objective of the present work is to establish basic algebraic properties of the
following two counting functions related and/or complementing those of (1.1), (1.2), (1.3),
(1.4), (1.5), (1.7), (1.8), (1.9), (1.10), namely,

• ϕ∗(α;x, n) which counts the number of positive integers ≤ x that are semi-
prime to α(n), the e-odd part of n and ϕ∗(α;n, n) =: ϕ∗(α;n);
• ϕ∗(β;x, n) which counts the number of positive integers ≤ x that are semi-
prime to β(n), the e-even part of n and ϕ∗(β;n, n) =: ϕ∗(β;n).

2. Basic Properties

Recall that for a ∈ Z, b ∈ N, the symbol (a, b)∗ refers to the greatest divisor of a which
is a unitary divisor of b. Clearly, if gcd(a, b) = 1, then (a, b)∗ = 1, but the converse is not
necessarily true. For example, (2, 12)∗ = 1, but gcd(2, 12) = 2. The next three lemmas
collect some basic properties of this function.

Lemma 2.1. Let a, b ∈ N whose unique prime representations are so arranged as

a = kap
B1
1 · · · pBu

u qy11 · · · qyvv , b = kbp
b1
1 · · · pbuu q

Y1
1 · · · qYv

v ,

where pi, qj are distinct primes, and ka, kb ∈ N are such that

1 = gcd(ka, kb) = gcd(ka, pi) = gcd(ka, qj) = gcd(kb, pi) = gcd(kb, qj),

bi ≤ Bi, yj < Yj (i = 1, . . . , u; j = 1, . . . , v).

These two unique prime factorization of a and b are written with the same set of primes
that actually appear in any of a or b. This allows zero exponent for some prime that
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appears in one but not both factorization and also allow the integers a and b to be 1.
Then

A) (a, b)∗ =

{
pb11 · · · pbuu if there is such an integer u,

1 if there is no such an integer u.

B) (a, b)∗ = `⇐⇒ (a/`, b/`)
∗

= 1

Proof. A) If (1,m)∗ = (1, n)∗, it is obviously that (1,mn)∗ = 1 for all m,n ∈ N. If
either a or b is equal to 1, then the result is trivial. Assume now that both a and b are
> 1. If there is no such u, then a = kaq

y1
1 · · · qyvv , b = kbq

Y1
1 · · · qYv

v . Since each Yj > yj ,

it follows that (a, b)∗ = 1. If there is such a u, then a = kap
B1
1 · · · pBu

u qy11 · · · qyvv , b =

kbp
b1
1 · · · pbuu q

Y1
1 · · · qYv

v . Since each bi ≤ Bi and each yj < Yj , we easily see that (a, b)∗ =

pb11 · · · pbuu .

B) follows immediately from part A).

Lemma 2.2. Let a,m, n ∈ N.

A) If (a,m)∗ = 1 = (a, n)∗, then (a,mn)∗ = 1.

B) If gcd(m,n) = 1 and (a,mn)∗ = 1, then (a,m)∗ = 1 = (a, n)∗.

C) We have

gcd(a,m) = (a,m)∗ ⇐⇒ either i) a or m equals 1

or ii) ordp(a) ≥ ordp(m) for all primes p | gcd(a,m).

Proof. For a = 1, the three result are initial. Henceforth, assume a > 1 let a =
qα1
1 · · · qαv

v > 1 be its unique prime representation where qj ’s are distinct primes and
each αj ∈ N.

A) For the case (1,m)∗ = 1 = (1, n)∗, the proof is trivial. If (a,m)∗ = 1 = (a, n)∗, then
Lemma 2.1 indicates that “m = km qA1

m1
· · · qAw

mw
or m = km” and “n = kn q

B1
n1
· · · qBu

nu
or

n = kn” for distinctmi, nj ∈ {1, . . . , v} andAi > αi, Bj > αj , gcd(km, qi) = gcd(kn, qj) =
1. The product mn either contains a prime factor qj of power > αj , or does not contain
such a prime factor. In either case, Lemma 2.1 implies that (a,mn)∗ = 1.

B) If gcd(m,n) = 1 and (1,mn)∗ = 1 then (1,m)∗ = 1 = (1, n)∗ . If gcd(m,n) =

1 and (a,mn)∗ = 1, then by Lemma 2.1 “m = km qA1
1 · · · q

Ay
y or m = km” and

“n = kn q
Ay+1

y+1 · · · qAz
z or n = kn” for some y, z ∈ {1, . . . , v} with y + z ≤ v and

Ai > αi, gcd(km, qi) = gcd(kn, qj) = gcd(km, kn) = 1. The product mn either contains
a prime factor qj of power > αj , or does not contain such a prime factor. In either case,
Lemma 2.1 implies that (a,m)∗ = 1 = (a, n)∗.

C) i) If m = 1, the result is trivial.

ii) Assume that gcd(a,m) = (a,m)∗ = pb11 · · · pbvv for dictinct primes pi and each bi ∈
N. By Lemma 2.1, we have a = kap

B1
1 · · · pBv

v and m = kmp
b1
1 · · · pbvv , where bi ≤

Bi, gcd(ka, km) = gcd(pi, ka) = gcd(pi, km) = 1 for i ∈ {1, . . . , v} yielding ordp(a) ≥
ordp(m). Conversely, assume that ordp(a) ≥ ordp(m) for all primes p | gcd(a,m). Then

we can write a = `ap
B1
1 · · · pBv

v and m = `mp
b1
1 · · · pbvv , where Bj ≥ bj , gcd(pj , `a) =

gcd(pj , `m) = 1 yielding gcd(a,m) = pb11 · · · pbvv = (a,m)∗.
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Lemma 2.3. For a fixed a ∈ N, the function (a, n)∗ is multiplicative in n ∈ N.

Proof. Let the unique prime representations (with corresponding parameters as given in
Lemma 2.1) of m,n and a be

m = kmp
A1
1 · · · pAu

u qb11 · · · qbvv , n = knr
C1
1 · · · rCy

y sd11 · · · sdzz
a = kap

a1
1 · · · pauu qB1

1 · · · qBv
v rc11 · · · rcyy s

D1
1 · · · sDz

z ,

If gcd(m,n) = 1, then by Lemma 2.1 A)

(a,m)∗ = qb11 · · · qbvv , (a, n)∗ = sd11 · · · sdzz and (a,mn)∗ = qb11 · · · qbvv s
d1
1 · · · sdzz

showing at once that (a,mn)∗ = (a,m)∗(a, n)∗.

Some interesting unitary connections between the set of exponentially even and ex-
ponentially odd integers are now established. To do so, define the constant 1-function
U ∈ A by U(n) = 1 (n ∈ N); clearly U is a multiplicative function.

Lemma 2.4. Let Ee, Eo be the respective sets of exponentially even and exponentially
odd integers, whose characteristic functions are, respectively, χe, χo. Then

χe t χo = U, T t U = χe.

Proof. To verify the first relation, we start with (χe t χo) (1) = χe(1)χo(1) = 1 = U(1).
For n > 1, since χe and χo are multiplicative, we need to show that (χe t χo) (pa) = U(pa).
This follows from

(χe t χo)(pa) = χe(1)χo(p
a) + χe(p

a)χo(1) =

{
1 + 0 = 1 if a is odd,

0 + 1 = 1 if a is even
= U(pa).

To prove the second relation, we first check (T t U)(1) = T (1)U(1) = 1 = χe(1). For
n > 1, since T and U are multiplicative, it suffices to verify the relation at prime powers
pa, i.e., (T t U)(pa) = χe(p

a). This follows from

(T t U)(pa) = T (1) + T (pa) =

{
1− 1 = 0 if a is odd

1 + 0 = 1 if a is even
= χe(p

a).

The functions T and K, as defined in (1.11) and (1.6), respectively, satisfy the following
inversion formulae.

Theorem 2.5. Let f, g ∈ A. Then

f = g t T ⇐⇒ g = f t χo, f = g tK ⇐⇒ g = f t χe.

Proof. By Lemma 2.4, we have

f = g t T ⇐⇒ f t U = g t χe ⇐⇒ f t χo t U = g t U ⇐⇒ f t χo = g,

which is the first relation. The proof of the second relation is similar, i.e., from Lemma
2.4 and (1.6), we have

f = g tK ⇐⇒ f t U = g t χo ⇐⇒ f t χe t U = g t U ⇐⇒ f t χe = g.
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3. Counting Formulae

Unitary convolution formulae in the last theorem enable us to relate the functions
T and K to the two counting functions ϕ∗(α;x, n) and ϕ∗(β;x, n) mentioned in the
introduction.We first note, [14], that ϕ∗(α;x, n) and ϕ∗(β;x, n) are not multiplicative in
n, but the functions ϕ∗(α;n) and ϕ∗(β;n) are multiplicative.

Theorem 3.1. For n ∈ N and real number x ≥ 2, we have

ϕ∗(α;x, n) =
∑
d||n

T (d) bx/dc , ϕ∗(β;x, n) =
∑
d||n

K(d) bx/dc .

Proof. Since the e-odd part α(1) = 1, from its definition we get

ϕ∗(α;x, 1) :=
∑
m≤x

(m,α(1))∗=1

1 =
∑
m≤x

(m,1)∗=1

1 = bxc =
∑
d||1

T (d) bx/dc .

Let n be a positive integer> 1 with odd-even prime representation n = po11 · · · poss q
e1
1 · · · qerr .

Then α(n) = po11 · · · poss . By the inclusion-exclusion principle, we have

ϕ∗(α;x, n) :=
∑
m≤x

(m,α(n))∗=1

1 =
∑
m≤x

(m,p
o1
1 ···p

os
s )∗=1

1 = bxc −
∑
m≤x

(m,p
o1
1 ···p

os
s )∗ 6=1

1 (3.1)

= bxc −
s∑
i=1

⌊
x

poii

⌋
+

s∑
i,j=1
i<j

⌊
x

poii p
oj
j

⌋
+ · · ·+ (−1)s

⌊
x

po11 · · · p
os
s

⌋
. (3.2)

Since T (po11 · · · poss q
e1
1 · · · qerr ) = 0 if there is such an integer r ∈ N, we get∑

d||n

T (d) bx/dc =
∑

d||po11 ···p
os
s

T (d) bx/dc (3.3)

= T (1)bxc+

s∑
i=1

T (poii )

⌊
x

poii

⌋
+

s∑
i,j=1
i<j

T (poii p
oj
j )

⌊
x

poii p
oj
j

⌋
+ · · · (3.4)

+ T (po11 · · · poss )

⌊
x

po11 · · · p
os
s

⌋
(3.5)

= bxc −
s∑
i=1

⌊
x

poii

⌋
+

s∑
i,j=1
i<j

⌊
x

poii p
oj
j

⌋
+ · · ·+ (−1)s

⌊
x

po11 · · · p
os
s

⌋
= ϕ∗(α;x, n).

(3.6)

To verify the second relation, we first look at the case n = 1. Since β(1) = 1, we have

ϕ∗(β;x, 1) =
∑
m≤x

(m,β(1))∗=1

1 =
∑
m≤x

(m,1)∗=1

1 = bxc =
∑
d||1

K(d) bx/dc .

Let n be a positive integer> 1 with odd-even prime representation n = po11 · · · poss q
e1
1 · · · qerr .

Then β(n) = qe11 · · · qerr . Following the same proof as in (3.1) - (3.5), replacing odd prime
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parts by even prime parts, we obtain

ϕ∗(β;x, n) = bxc −
r∑
i=1

⌊
x

qeii

⌋
+

r∑
i,j=1
i<j

⌊
x

qeii q
ej
j

⌋
+ · · ·+ (−1)r

⌊
x

qe11 · · · q
er
r

⌋

=
∑
d||n

K(d) bx/dc .

Remark 3.2. I. Since ϕ∗(α;n, n) = ϕ∗(α;n) and ϕ∗(β;n, n) = ϕ∗(β;n), Theorem 3.1
gives

ϕ∗(α;n) =
∑
d||n

T (d)n/d, and ϕ∗(β;n) =
∑
d||n

K(d)n/d,

the identities that have already appeared in [14, Theorem 3.4].

II. Using the definitions of the odd-phi function, the even-phi function and the unitary
Euler’s totient, we see that ϕ∗(α;n) = ϕ∗(α(n)) and ϕ∗(β;n) = ϕ∗(β(n)). These relations
enable to obtain an alternative proof of Theorem 3.1 as follows:

ϕ∗(α;x, n) = ϕ∗(x, α(n)) =
∑

d||α(n)

(−1)ω(d)
⌊x
d

⌋
=

∑
d||α(n)
d∈Eo

(−1)ω(d)
⌊x
d

⌋
=
∑
d||n

T (d)
⌊x
d

⌋
,

ϕ∗(β;x, n) = ϕ∗(x, β(n)) =
∑
d||β(n)

(−1)ω(d)
⌊x
d

⌋
=

∑
d||α(n)
d∈Ee

(−1)ω(d)
⌊x
d

⌋
=
∑
d||n

K(d)
⌊x
d

⌋
.

Next, we prove some results related to (1.5) by specializing the values of n.

Corollary 3.3. Let n ∈ N and x ∈ R, x ≥ 2.
i) If n ∈ Eo, then

ϕ∗(α;x, n) =
∑
d||n

µ̄(d) bx/dc , ϕ∗(α;n) = ϕ∗(n); ϕ∗(β;x, n) = bxc, ϕ∗(β;n) = n.

ii) If n ∈ Ee, then

ϕ∗(α;x, n) = bxc, ϕ∗(α;n) = n; ϕ∗(β;x, n) =
∑
d||n

µ̄(d) bx/dc , ϕ∗(β;n) = ϕ∗(n).

Proof. The results hold trivially for n = 1.
i) For n > 1, since n ∈ Eo, we have α(n) = n, β(n) = 1, T (n) = µ̄(n) and K(n) = 0,

and the assertions are immediate consequences of Theorem 3.1.
The proof for ii) is similar.

Corollary 3.4. We have

ϕ∗(α;n)ϕ∗(β;n) = nϕ∗(n).
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Proof. Clearly, ϕ∗(α; 1)ϕ∗(β; 1) = 1 × 1 = 1 × ϕ∗(1). Let n > 1 with odd-even prime
representation n = po11 · · · poss q

e1
1 · · · qerr . By [14, Lemma 3.1] and the relation (1.5), we

have

ϕ∗(α;n) =

s∏
i=1

(poii − 1) qe11 · · · qerr , ϕ∗(β;n) = po11 · · · poss
r∏
j=1

(
q
ej
j − 1

)
,

and the desired identity is immediate.
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