Some Properties of a Trinomial Random Walk Conditioned on End Points

Poramin Gaengaew, Wasamon Jantai* and Monchai Kooakachai
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail : 6234324023@student.chula.ac.th (P. Gaengaew); Wasamon.J@chula.ac.th (W. Jantai); Monchai.K@chula.ac.th (M. Kooakachai)

Abstract

Given a sequence of trinomial random variables $\left\{X_{i}\right\}_{i=1}^{\infty}$ and define $S_{n}=\sum_{i=1}^{n} X_{i}$ and $S_{0}=0$, we study some properties of X_{i} conditioned on $S_{n}=0$. The mathematical expressions of expectation, variance and covariance were investigated. We found that the a finite sequence ($X_{1}, X_{2}, \ldots, X_{n}$) conditioned on $S_{n}=0$ is exchangeable. Moreover, the expectation of X_{i} is zero and the covariance of X_{i} and X_{j} where $i \neq j$ is nonpositive. Furthermore, we extend the previous setting to a rescaled trinomial random walk. Some properties on the extension were derived.

MSC: 60F0
Keywords: random walk; negative quadrant dependency; exchangeability

1. Introduction

One of the most basic stochastic processes is called a simple random walk which has many applications to areas of physics, economics, and finance. For example, the application of random walks to finance and economics was summarized in [9] where the author used a continuous time random walk to model the ruin theory of insurance companies and also to understand the dynamics of prices in financial markets. The random walk models give us a first approximation to the theory of Brownian motion. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent identically distributed (i.i.d.) random variables such that

$$
\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=-1\right)=p, \quad 0<p<1,
$$

for all i. The sequence $\left\{S_{n}, n \geq 0\right\}$ defined by $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}$ is called the simple random walk. Some properties of X_{i} conditioned on $S_{2 n}=0$ have been studied extensively. Moreover, an invariance principle for the random walk conditioned on $S_{2 n}=0$ has been studied by many authors in the literature (see [4, 7] for more details).

[^0]Let restrict our consideration to a trinomial random variable. For $0<p<\frac{1}{2}$, the trinomial random walk $\left\{S_{n}, n \geq 0\right\}$ can be written as $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}$, where $X_{i}, i=1,2, \ldots$ are i.i.d. random variables such that

$$
X_{i}= \begin{cases}-1, & \text { with probability } p \\ 0, & \text { with probability } 1-2 p \\ 1, & \text { with probability } p\end{cases}
$$

The main purpose of this paper is to explore properties of a finite sequence (X_{1}, \ldots, X_{n}) conditioned on $S_{n}=0$. We then investigate properties of a rescaled trinomial random conditioned on $S_{n}=0$.

The rest of the paper is organized as follows. Section 2 covers all necessary background for this field where the main results are discussed in Section 3.

2. Preliminaries

Let us first state the definition of negative quadrant dependency which was introduced by Lehmann [6] in 1966.
Definition 2.1. A pair of random variables, X and Y, is said to be negative quadrant dependent (NQD) if

$$
\mathbb{P}(X \leq x, Y \leq y) \leq \mathbb{P}(X \leq x) P(Y \leq y), \forall x, y \in \mathbb{R}
$$

The next definition is a concept of dependency which is stronger than NQD. This definition was introduced by Newman [8].
Definition 2.2. A sequence of random variables X_{n} is linearly negative quadrant dependent ($L N Q D$) if for any disjoint $A, B \subseteq \mathbb{N}$, and a positive sequence $\left\{\lambda_{i}\right\}$, the random variables $\Sigma_{i \in A} \lambda_{i} X_{i}$ and $\Sigma_{j \in B} \lambda_{j} X_{j}$ are negative quadrant dependent.

The strongest dependency, which was introduced by Joag-Dev and Proschan (1983) in [[5], Definition 2.1], is defined as follows.
Definition 2.3. A finite set of random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is said to be negatively associated if for any pair A and B of disjoint subsets of $\{1,2, \ldots, n\}$ the following holds

$$
\operatorname{Cov}\left(f\left(X_{i}, i \in A\right), g\left(X_{j}, j \in B\right)\right) \leq 0
$$

for all coordinate-wise increasing functions f on $\mathbb{R}^{|A|}$ and g on $\mathbb{R}^{|B|}$, whenever the respective covariances exist. An infinite sequence of random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is said to be negatively associated if every finite subfamily is negatively associated.

Next, let us recall the statistical concept of finite exchangeability. The exchangeability was introduced by de Finetti and he proved his famous representation theorem called de Finettis Theorem for an infinite sequence of binary random variables (see [2] for more details).
Definition 2.4. A finite sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of random variables is exchangeable if

$$
\left(X_{1}, \ldots, X_{n}\right) \stackrel{d}{=}\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)
$$

for all $\pi \in S(n)$ where $S(n)$ is the group of permutations of $\{1,2, \ldots, n\}$ and $\stackrel{d}{=}$ denotes equality in distribution. An infinite sequence of random variables is exchangeable if any finite sub-sequence is exchangeable.

We next recall the definition of Pólya frequency function of order 2 (see [3] and [10] for more details).

Definition 2.5. A probability density function on the real line $f(x)$ is said to be a Pólya frequency function of order $2\left(P F_{2}\right)$ if $x_{2} \geq x_{1}, z_{2} \geq z_{1}$ implies

$$
\operatorname{det}\left(\begin{array}{ll}
f\left(x_{1}-z_{1}\right) & f\left(x_{1}-z_{2}\right) \\
f\left(x_{2}-z_{1}\right) & f\left(x_{2}-z_{2}\right)
\end{array}\right) \geq 0
$$

Similarly, the discrete analog for an integer-valued random variable is defined as follows.
Definition 2.6. An integer-valued random variable X is said to be $P F_{2}$ if for all pair of integers $m_{2} \geq m_{1}, n_{2} \geq n_{1}$ implies

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X=m_{1}-n_{1}\right) & \mathbb{P}\left(X=m_{1}-n_{2}\right) \\
\mathbb{P}\left(X=m_{2}-n_{1}\right) & \mathbb{P}\left(X=m_{2}-n_{2}\right)
\end{array}\right) \geq 0
$$

The next result shows a connection between $P F_{2}$ densities and negative association.
Theorem 2.7. [10] Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent random variables with $P F_{2}$ densities. Define $S_{n}=\sum_{i=1}^{n} X_{i}$. Then $X_{1}, X_{2}, \ldots, X_{n}$ conditioned on $S_{n}=s$ are negatively associated for almost all s.

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables such that for each $i \in \mathbb{N}$,

$$
\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=-1\right)=p, \quad 0<p<1 .
$$

The following corollary states that $\operatorname{Cov}\left(X_{i}, X_{j} \mid S_{2 n}=0\right)<0$ for all $i \neq j$. In fact, the finite sequence ($X_{1}, X_{2}, \ldots, X_{2 n}$) is negatively associated under the conditional probability $\mathbb{P}\left(\cdot \mid S_{2 n}=0\right)$.

Corollary 2.8. [4] Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables such that

$$
\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=-1\right)=p, \quad 0<p<1
$$

for all i. Then

$$
\operatorname{Cov}\left(X_{i}, X_{j} \mid S_{2 n}=0\right)=-\frac{1}{2 n-1}
$$

for all $i \neq j$.

3. Main Results

Throughout this section, we let X_{i} be i.i.d. random variables such that for each $i \in \mathbb{N}$,

$$
X_{i}= \begin{cases}-1, & \text { with probability } p \\ 0, & \text { with probability } 1-2 p \\ 1, & \text { with probability } p\end{cases}
$$

where $0<p<\frac{1}{2}$. The trinomial random walk started at 0 is the sequence $\left\{S_{n}\right\}_{n \geq 0}$ where $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}$ for $n \geq 1$. Let $\mathbb{P}_{0, n}$ denote the conditional probability $\mathbb{P}\left(\cdot \mid S_{n}=0\right)$ and $\mathbb{E}_{0, n}$ denote the conditional expectation $\mathbb{E}\left[\cdot \mid S_{n}=0\right]$.

3.1. Expectation, Covariance and Variance

In this subsection, we will find the mean, the covariance and the variance of a finite sequence ($X_{1}, X_{2}, \ldots, X_{n}$) under $\mathbb{P}_{0, n}$.

It is easy to see that the exchangeability under a probability $\mathbb{P}_{0, n}$ comes from the assumption that $\left\{X_{i}\right\}_{1 \leq i \leq n}$ are i.i.d. random variables.

Remark 3.1. A finite sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ under $\mathbb{P}_{0, n}$ is exchangeable.
The next remark follows immediately from exchangeability. Its proof follows the same reason as Corollary 3.1 of [4].

Remark 3.2. For $i=1,2, \ldots, n, \mathbb{E}_{0, n}\left[X_{i}\right]=0$.
As a consequence of Remark 3.1 and Remark 3.2, the variance of X_{i} under $P_{0, n}$, where $i=1,2, \ldots, n$, is obtained as follows.

Lemma 3.3. For $i \in\{1,2, \ldots, n\}$,

$$
\operatorname{Var}_{0, n}\left(X_{i}\right)=1-(1-2 p) \cdot \frac{\mathbb{P}\left(S_{n-1}=0\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

Proof. By Remark 3.1 and Remark 3.2, it suffices to show that

$$
\operatorname{Var}_{0, n}\left(X_{1}\right)=\mathbb{E}_{0, n}\left[X_{1}^{2}\right]=1-(1-2 p) \cdot \frac{\mathbb{P}\left(S_{n-1}=0\right)}{\mathbb{P}\left(S_{n}=0\right)}
$$

We first note that

$$
\begin{align*}
\mathbb{P}\left(S_{n}=0\right) & =\mathbb{P}\left(S_{n-1}=0, X_{n}=0\right)+\mathbb{P}\left(S_{n-1}=1, X_{n}=-1\right)+\mathbb{P}\left(S_{n-1}=-1, X_{n}=1\right) \\
& =\mathbb{P}\left(S_{n-1}=0, X_{n}=0\right)+2 \mathbb{P}\left(S_{n-1}=-1, X_{n}=1\right) \\
& =(1-2 p) \mathbb{P}\left(S_{n-1}=0\right)+2 p \mathbb{P}\left(S_{n-1}=-1\right) . \tag{3.1}
\end{align*}
$$

Then, by (3.1),

$$
\begin{aligned}
\mathbb{E}_{0, n}\left[X_{1}^{2}\right] & =\mathbb{P}_{0, n}\left(X_{1}=-1\right)+\mathbb{P}_{0, n}\left(X_{1}=1\right) \\
& =2 \mathbb{P}_{0, n}\left(X_{1}=1\right) \\
& =\frac{2 \mathbb{P}\left(X_{1}=1, S_{n}=0\right)}{\mathbb{P}\left(S_{n}=0\right)} \\
& =\frac{2 \mathbb{P}\left(X_{1}=1\right) \mathbb{P}\left(S_{n-1}=-1\right)}{\mathbb{P}\left(S_{n}=0\right)} \\
& =2 p \cdot \frac{\mathbb{P}\left(S_{n-1}=-1\right)}{\mathbb{P}\left(S_{n}=0\right)} \\
& =1-(1-2 p) \cdot \frac{\mathbb{P}\left(S_{n-1}=0\right)}{\mathbb{P}\left(S_{n}=0\right)} .
\end{aligned}
$$

The following corollary is an immediate consequence of Theorem 2.7.
Corollary 3.4. Assume that $0<p \leq \frac{1}{3}$. Then the finite sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is negatively associated under $\mathbb{P}_{0, n}$, whence $N Q D$ under $\mathbb{P}_{0, n}$.

Proof. It suffices to show that X_{1} is $P F_{2}$. We proceed with proofs by cases.
Case 1: $m_{2}=1, m_{1}=-1, n_{2}=1, n_{1}=-1$. We have

$$
\operatorname{det}\left(\begin{array}{cc}
\mathbb{P}\left(X_{1}=0\right) & \mathbb{P}\left(X_{1}=-2\right) \\
\mathbb{P}\left(X_{1}=2\right) & \mathbb{P}\left(X_{1}=0\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1-2 p & 0 \\
0 & 1-2 p
\end{array}\right) \geq 0 .
$$

Case 2: $m_{2}=1, m_{1}=-1, n_{2}=1, n_{1}=0$. We have

$$
\operatorname{det}\left(\begin{array}{cc}
\mathbb{P}\left(X_{1}=-1\right) & \mathbb{P}\left(X_{1}=-2\right) \\
\mathbb{P}\left(X_{1}=1\right) & \mathbb{P}\left(X_{1}=0\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p & 0 \\
p & 1-2 p
\end{array}\right) \geq 0 .
$$

Case 3: $m_{2}=1, m_{1}=-1, n_{2}=0, n_{1}=-1$. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X_{1}=0\right) & \mathbb{P}\left(X_{1}=-1\right) \\
\mathbb{P}\left(X_{1}=2\right) & \mathbb{P}\left(X_{1}=1\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1-2 p & p \\
0 & p
\end{array}\right) \geq 0 .
$$

Case 4: $m_{2}=1, m_{1}=0, n_{2}=1, n_{1}=-1$. We have

$$
\operatorname{det}\left(\begin{array}{cc}
\mathbb{P}\left(X_{1}=1\right) & \mathbb{P}\left(X_{1}=-1\right) \\
\mathbb{P}\left(X_{1}=2\right) & \mathbb{P}\left(X_{1}=0\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p & p \\
0 & 1-2 p
\end{array}\right) \geq 0 .
$$

Case 5: $m_{2}=1, m_{1}=0, n_{2}=1, n_{1}=0$. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X_{1}=0\right) & \mathbb{P}\left(X_{1}=-1\right) \\
\mathbb{P}\left(X_{1}=1\right) & \mathbb{P}\left(X_{1}=0\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1-2 p & p \\
p & 1-2 p
\end{array}\right)=(1-3 p)(1-p),
$$

which is not negative when $0<p \leq \frac{1}{3}$.
Case 6: $m_{2}=1, m_{1}=0, n_{2}=0, n_{1}=-1$. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X_{1}=1\right) & \mathbb{P}\left(X_{1}=0\right) \\
\mathbb{P}\left(X_{1}=2\right) & \mathbb{P}\left(X_{1}=1\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p & 1-2 p \\
0 & p
\end{array}\right) \geq 0
$$

Case 7: $m_{2}=0, m_{1}=-1, n_{2}=1, n_{1}=-1$. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X_{1}=0\right) & \mathbb{P}\left(X_{1}=-2\right) \\
\mathbb{P}\left(X_{1}=1\right) & \mathbb{P}\left(X_{1}=-1\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1-2 p & 0 \\
p & p
\end{array}\right) \geq 0 .
$$

Case 8: $m_{2}=0, m_{1}=-1, n_{2}=1, n_{1}=0$.We have

$$
\operatorname{det}\left(\begin{array}{cc}
\mathbb{P}\left(X_{1}=-1\right) & \mathbb{P}\left(X_{1}=-2\right) \\
\mathbb{P}\left(X_{1}=0\right) & \mathbb{P}\left(X_{1}=-1\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p & 0 \\
1-2 p & p
\end{array}\right) \geq 0 .
$$

Case 9: $m_{2}=0, m_{1}=-1, n_{2}=0, n_{1}=-1$. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X_{1}=0\right) & \mathbb{P}\left(X_{1}=-1\right) \\
\mathbb{P}\left(X_{1}=1\right) & \mathbb{P}\left(X_{1}=0\right)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1-2 p & p \\
p & 1-2 p
\end{array}\right)=(1-3 p)(1-p),
$$

which is not negative when $0<p \leq \frac{1}{3}$.
Case 10: $m_{1}=m_{2}$ or $n_{1}=n_{2}$. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbb{P}\left(X_{1}=m_{1}-n_{1}\right) & \mathbb{P}\left(X_{1}=m_{1}-n_{2}\right) \\
\mathbb{P}\left(X_{1}=m_{2}-n_{1}\right) & \mathbb{P}\left(X_{1}=m_{2}-n_{2}\right)
\end{array}\right)=0
$$

Then X_{1} is $P F_{2}$. Therefore, the claim follows by applying Theorem 2.7.
Note that Corollary 3.4 shows that $\operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right) \leq 0$ for $i \neq j$ when $0<p \leq \frac{1}{3}$. In fact, for $0<p<\frac{1}{2}$, two random variables X_{i} and X_{j} have a nonpositive covariance under $\mathbb{P}_{0, n}$ for $i \neq j$. We have the following result.

Corollary 3.5. Let $i, j \in\{1,2, \ldots, n\}$. Then

$$
\operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right)=-\frac{1}{n-1} \mathbb{E}_{0, n}\left[X_{1}^{2}\right]
$$

for all $i \neq j$.
Proof. We follow the same procedure as Corollary 2.8. Note that $0 \leq \mathbb{E}_{0, n}\left[X_{1}^{2}\right] \leq 1$. Applying Remark 3.1 and Remark 3.2, we have

$$
\begin{aligned}
\mathbb{E}_{0, n}\left[X_{1}^{2}\right] & =\frac{1}{n} \mathbb{E}_{0, n}\left[\sum_{k=1}^{n} X_{k}^{2}\right] \\
& =\frac{1}{n} \mathbb{E}_{0, n}\left[S_{n}^{2}\right]-\frac{2}{n} \sum_{\substack{i<j \\
i, j=1}}^{n} \mathbb{E}_{0, n}\left[X_{i} X_{j}\right] \\
& =-\frac{2}{n}\binom{n}{2} \mathbb{E}_{0, n}\left[X_{1} X_{2}\right] \\
& =-(n-1) \mathbb{E}_{0, n}\left[X_{1} X_{2}\right] \\
& =-(n-1) \operatorname{Cov}_{0, n}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

It implies that, for all $i \neq j$,

$$
\operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right)=\frac{-1}{n-1} \mathbb{E}_{0, n}\left[X_{1}^{2}\right]
$$

Letting $t \in(0,1)$, the following result shows that the variance of $S_{\lfloor n t\rfloor}$ can be computed as follows.

Corollary 3.6. For $t \in(0,1)$,

$$
\operatorname{Var}_{0, n}\left(S_{\lfloor n t\rfloor}\right)=\frac{\lfloor n t\rfloor(n-\lfloor n t\rfloor)}{n-1} \mathbb{E}_{0, n}\left[X_{1}^{2}\right]
$$

Proof. Applying Remark 3.1, Remark 3.2 and Corollary 3.5, we obtain

$$
\begin{aligned}
\operatorname{Var}_{0, n}\left(S_{\lfloor n t\rfloor}\right) & =\operatorname{Var}_{0, n}\left(\sum_{i=1}^{\lfloor n t\rfloor} X_{i}\right) \\
& =\lfloor n t\rfloor \operatorname{Var}_{0, n}\left(X_{1}\right)+2 \sum_{i<j} \operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right) \\
& =\lfloor n t\rfloor \operatorname{Var}_{0, n}\left(X_{1}\right)+2\binom{\lfloor n t\rfloor}{ 2} \operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right) \\
& =\lfloor n t\rfloor \operatorname{Var}_{0, n}\left(X_{1}\right)-2\binom{\lfloor n t\rfloor}{ 2}\left(\frac{1}{n-1}\right) \operatorname{Var}_{0, n}\left(X_{1}\right) \\
& =\frac{\lfloor n t\rfloor(n-\lfloor n t\rfloor)}{n-1} \operatorname{Var}_{0, n}\left(X_{1}\right) \\
& =\frac{\lfloor n t\rfloor(n-\lfloor n t\rfloor)}{n-1} \mathbb{E}_{0, n}\left[X_{1}^{2}\right\rfloor .
\end{aligned}
$$

Under a suitable scaling, the rescaled trinomial random walk has mean zero under $\mathbb{P}_{0, n}$. Fix $0 \leq t \leq 1$. As $n \rightarrow \infty$, the variance of the scaled trinomial random walk at time t converges to $t(1-t)$ under $\mathbb{P}_{0, n}$. Thus, we state the following remark.

Remark 3.7. Assume $0<\mathbb{E}_{0, n}\left[X_{1}^{2}\right]=\sigma<\infty$.
(1) Using Remark 3.2, the mean of $\frac{1}{\sqrt{\sigma n}} S_{\lfloor n t\rfloor}$ is zero under $\mathbb{P}_{0, n}$.
(2) Applying Corollary 3.6, $\operatorname{Var}_{0, n}\left(\frac{1}{\sqrt{\sigma n}} S_{\lfloor n t\rfloor}\right) \longrightarrow t(1-t)$ as $n \rightarrow \infty$.

3.2. Some Properties on Exchangeable Pairs

For each $n \in \mathbb{N}$, we now define

$$
\begin{equation*}
W_{n}(t)=\frac{1}{\sigma_{n}} S_{\lfloor n t\rfloor}, 0 \leq t \leq 1, \tag{3.2}
\end{equation*}
$$

where $\sigma_{n}^{2}=\frac{\lfloor n t\rfloor(n-\lfloor n t\rfloor)}{n-1}$. Let $\tau=(i j)$ be a permutation that i and j are each chosen independently and uniformly from $\{1,2, \ldots,\lfloor n t\rfloor\}$ and $\{\lfloor n t\rfloor+1, \ldots, n\}$, respectively. Define

$$
\begin{equation*}
W_{n}^{\tau}=W_{n}+\frac{X_{j}-X_{i}}{\sigma_{n}} \tag{3.3}
\end{equation*}
$$

By abuse of notation, we will denote W_{n}^{τ} by $W_{i j}^{n}$.
We devote this subsection to explore some properties of W_{n} if we perturb W_{n} by a small amount to get another random variable $W_{i j}^{n}$ without changing the distribution under $\mathbb{P}_{0, n}$.

Recall that a pair of random variables $\left(W, W^{\prime}\right)$ is called exchangeable if $\left(W, W^{\prime}\right)$ and $\left(W^{\prime}, W\right)$ are equal in distribution. The exchangeable pair approach of Stein can prove a central limit theorem for W (see [1] for more details).

From our construction, $W_{n} \stackrel{d}{=} W_{i j}^{n}$ under $\mathbb{P}_{0, n}$. Let $0<t<1$. Let C and M be random variables that count the number of zeros on $[0,\lfloor n t\rfloor]$, and $[0, n]$, respectively, for the trinomial random walk conditioned on $S_{n}=0$. We assume further that the number of zeros on $[0, n]$ is m where $0 \leq m \leq n$ and the number of zeros on $[0,\lfloor n t\rfloor]$ is c where $0 \leq c \leq\lfloor n t\rfloor$.

Imagine a particle performing the trinomial random walk on the integer points of the real line, where it in each step moves to the right, moves to the left, or stays the same. The particle will reach the point $S_{\lfloor n t\rfloor}$ in $\lfloor n t\rfloor$ steps. Observe that each path containing c steps to stay the same in $\lfloor n t\rfloor$ steps contains $\frac{S_{\lfloor n t\rfloor}+\lfloor n t\rfloor-c}{2}$ steps to the right and $\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2}$ steps to the left. Since the particle must reach 0 in n steps, the particle will reach the point $-S_{\lfloor n t\rfloor}$ in $n-\lfloor n t\rfloor$ steps. Since each path contains $m-c$ steps to stay the same in $n-\lfloor n t\rfloor$ steps, it contains $\frac{\left.n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}\right\rfloor m+c}{2}$ steps to the right and $\frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2}$ steps to the left.

The following table summarizes the observations of counting the number of $+1,-1$ and 0 when $C=c$ and $M=m$.

Interval	$\#(+1)$	$\#(-1)$	$\# 0$
On $[0,\lfloor n t\rfloor]$	$\frac{S_{\lfloor n t\rfloor}+\lfloor n t\rfloor-c}{2}$	$\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2}$	c
On $[\lfloor n t\rfloor+1, n]$	$\frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2}$	$\frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2}$	$m-c$

Recall that i and j are each chosen independently and uniformly from $\{1,2, \ldots,\lfloor n t\rfloor\}$ and $\{\lfloor n t\rfloor+1, \ldots, n\}$, respectively. The following remark shows how to calculate the probability of swapping of two numbers and will be used in the proof of our main results.

Remark 3.8. Based on the information presented in the above table, the following statements hold for every sufficiently large n.
(1) $\mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{1}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right)$
$=\mathbb{P}_{0, n}\left(X_{i}=-1, X_{j}=0 \mid S_{\lfloor n t\rfloor}, C=c, M=m\right)$
$+\mathbb{P}_{0, n}\left(X_{i}=0, X_{j}=1 \mid S_{\lfloor n t\rfloor}, C=c, M=m\right)$
$=\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor}\right)\left(\frac{m-c}{n-\lfloor n t\rfloor}\right)+\left(\frac{c}{\lfloor n t\rfloor}\right)\left(\frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right)$
(2) $\mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{2}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right)$

$$
\begin{aligned}
& =\mathbb{P}_{0, n}\left(X_{i}=-1, X_{j}=1 \mid S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& =\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor}\right)\left(\frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right)
\end{aligned}
$$

(3) $\mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{-1}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right)$
$=\mathbb{P}_{0, n}\left(X_{i}=1, X_{j}=0 \mid S_{\lfloor n t\rfloor}, C=c, M=m\right)$ $+\mathbb{P}_{0, n}\left(X_{i}=0, X_{j}=-1 \mid S_{\lfloor n t\rfloor}, C=c, M=m\right)$
$=\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor}\right)\left(\frac{m-c}{n-\lfloor n t\rfloor}\right)+\left(\frac{c}{\lfloor n t\rfloor}\right)\left(\frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right)$

$$
\text { (4) } \begin{aligned}
& \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{-2}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad= \mathbb{P}_{0, n}\left(X_{i}=1, X_{j}=-1 \mid S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad=\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor}\right)\left(\frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) .
\end{aligned}
$$

The following remark gives us conditions that c and m must satisfy in order for the conditional event to occur.

Remark 3.9. In order to ensure that $\mathbb{P}_{0, n}\left(S_{\lfloor n t\rfloor}, C=c, M=m\right)>0$, we have that c and m are integers such that $0 \leq c \leq\lfloor n t\rfloor, c \leq m \leq c+n-\lfloor n t\rfloor$ and $m \equiv n \bmod 2$.

To be more easily understandable, we provide an example below.
Example 3.10. Assume $n=10$ and $\lfloor n t\rfloor=5$. If $S_{5}=0$, then the number of 0 on $[0,5]$ can be 1,3 or 5 and the number of 0 on $[6,10]$ can be 1,3 or 5 . Then the possible ordered pairs (c, m) are $(1,2),(1,4),(1,6),(3,4),(3,6),(3,8),(5,6),(5,8),(5,10)$. If $S_{5}=1$, then the number of 0 on $[0,5]$ can be 0,2 or 4 and the number of 0 on $[6,10]$ can be 0,2 or 4 . Then the possible ordered pairs (c, m) are $(0,0),(0,2),(0,4),(2,2),(2,4),(2,6),(4,4),(4,6)$, $(4,8)$. In the remaining cases, we follow the same arguments. Therefore, the set of all possible ordered pairs (c, m) is

$$
\begin{aligned}
& \{(0,0),(0,2),(0,4),(1,2),(1,4),(1,6),(2,2),(2,4),(2,6) \\
& (3,4),(3,6),(3,8),(4,4),(4,6),(4,8),(5,6),(5,8),(5,10)\} .
\end{aligned}
$$

The following theorems are our main results of this subsection. Theorem 3.11 gives us how to find the mean value of $W_{i j}^{n}-W_{n}$ given the event $\left\{S_{\lfloor n t\rfloor}, C=c, M=m\right\}$ under $\mathbb{P}_{0, n}$.

Theorem 3.11. Let W_{n} and $W_{i j}^{n}$ be random elements constructed as in (3.2) and (3.3), repectively. Then, for each $t \in(0,1)$,

$$
\mathbb{E}_{0, n}\left[W_{i j}^{n}-W_{n} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right]=-\frac{n}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} W_{n} .
$$

Proof. Using the definition of the conditional expectation, we have

$$
\begin{aligned}
& \mathbb{E}_{0, n}\left[W_{i j}^{n}-W_{n} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right] \\
& =\frac{2}{\sigma_{n}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{2}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad+\frac{1}{\sigma_{n}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{1}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad-\frac{1}{\sigma_{n}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{-1}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad-\frac{2}{\sigma_{n}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{-2}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{2}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& +\frac{1}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& -\frac{1}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& -\frac{2}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) . \tag{3.4}
\end{align*}
$$

Calculating the sum of the first and fourth terms in (3.4), we have

$$
\begin{align*}
& \frac{2}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right. \\
& \left.-\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& =\frac{1}{2 \sigma_{n}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}\left(n\lfloor n t\rfloor-\lfloor n t\rfloor^{2}-\lfloor n t\rfloor S_{\lfloor n t\rfloor}-m\lfloor n t\rfloor+c\lfloor n t\rfloor-n S_{\lfloor n t\rfloor}+\lfloor n t\rfloor S_{\lfloor n t\rfloor}\right. \\
& +S_{\lfloor n t\rfloor}^{2}+m S_{\lfloor n t\rfloor}-c S_{\lfloor n t\rfloor}-c n+c\lfloor n t\rfloor+c S_{\lfloor n t\rfloor}+c m-c^{2}-(n\lfloor n t\rfloor \\
& -\lfloor n t\rfloor^{2}+\lfloor n t\rfloor S_{\lfloor n t\rfloor}-m\lfloor n t\rfloor+c\lfloor n t\rfloor+n S_{\lfloor n t\rfloor}-\lfloor n t\rfloor S_{\lfloor n t\rfloor} \\
& \left.\left.+S_{\lfloor n t\rfloor}^{2}-m S_{\lfloor n t\rfloor}+c S_{\lfloor n t\rfloor}-c n+c\lfloor n t\rfloor-c S_{\lfloor n t\rfloor}+c m-c^{2}\right)\right) \\
& =\frac{1}{2 \sigma_{n}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}\left(-2 n S_{\lfloor n t\rfloor}+2 m S_{\lfloor n t\rfloor}\right) \\
& =\frac{S_{\lfloor n t\rfloor}}{\sigma_{n}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}(m-n)=\frac{m-n}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} W_{n} . \tag{3.5}
\end{align*}
$$

Calculating the sum of the second and third terms in (3.4), we obtain

$$
\begin{align*}
& \frac{1}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& -\frac{1}{\sigma_{n}}\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& =\frac{1}{2 \sigma_{n}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}\left(m\lfloor n t\rfloor-c\lfloor n t\rfloor-m S_{\lfloor n t\rfloor}+c S_{\lfloor n t\rfloor}-c m-c^{2}+c n-c\lfloor n t\rfloor-c S_{\lfloor n t\rfloor}\right. \\
& \quad \quad-c m+c^{2}-\left(m\lfloor n t\rfloor-c\lfloor n t\rfloor+m S_{\lfloor n t\rfloor}-c S_{\lfloor n t\rfloor}-c m+c^{2}+c m\right. \\
& \left.\left.\quad \quad+c^{2}+c n-c m+c^{2}+c n-c\lfloor n t\rfloor+c S_{\lfloor n t\rfloor}-c m+c^{2}\right)\right)
\end{aligned} \quad \begin{aligned}
& =\frac{-2 m S_{\lfloor n t\rfloor}}{2 \sigma_{n}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}=-\frac{m}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} W_{n} .
\end{align*}
$$

Adding (3.5) and (3.6) gives

$$
\mathbb{E}_{0, n}\left[W_{i j}^{n}-W_{n} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right]=-\frac{n}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} W_{n}
$$

The following theorem refers to a statistical measurement of the distance of $W_{i j}^{n}$ and W_{n} given the event $\left\{S_{\lfloor n t\rfloor}, C=c, M=m\right\}$ under $\mathbb{P}_{0, n}$.

Theorem 3.12. Let W_{n} and $W_{i j}^{n}$ be random elements constructed as in (3.2) and (3.3), repectively. Then, for each $t \in(0,1)$,

$$
\begin{aligned}
& \mathbb{E}_{0, n}\left[\left(W_{i j}^{n}-W_{n}\right)^{2} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right]=\frac{2 c\lfloor n t\rfloor-c n-2\lfloor n t\rfloor}{}{ }^{2}-m\lfloor n t\rfloor+2 n\lfloor n t\rfloor \\
& \sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor) \\
&+\frac{2 W_{n}^{2}}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\mathbb{E}_{0, n}\left[\left(W_{i j}^{n}-W_{n}\right)^{2} \mid S_{\lfloor n t\rfloor}, C, M\right] & =\frac{2 C\lfloor n t\rfloor-C n-2\lfloor n t\rfloor^{2}-M\lfloor n t\rfloor+2 n\lfloor n t\rfloor}{\sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor)} \\
& +\frac{2 W_{n}^{2}}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} .
\end{aligned}
$$

Proof. Using the definition of the conditional expectation, we have

$$
\begin{align*}
& \mathbb{E}_{0, n}\left[\left(W_{i j}^{n}-W_{n}\right)^{2} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right] \\
& = \\
& \frac{4}{\sigma_{n}^{2}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{2}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad+\frac{1}{\sigma_{n}^{2}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{1}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad+\frac{4}{\sigma_{n}^{2}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{-2}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& \quad+\frac{1}{\sigma_{n}^{2}} \mathbb{P}_{0, n}\left(\left.W_{i j}^{n}-W_{n}=\frac{-1}{\sigma_{n}} \right\rvert\, S_{\lfloor n t\rfloor}, C=c, M=m\right) \\
& = \\
& \frac{4}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& \quad+\frac{1}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \tag{3.7}\\
& \quad+\frac{4}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& \quad+\frac{1}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) .
\end{align*}
$$

Calculating the sum of the first and third terms in (3.7), we have

$$
\begin{aligned}
& \frac{4}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right. \\
& \left.\quad+\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right)
\end{aligned}
$$

$$
\begin{align*}
=\frac{4}{4 \sigma_{n}^{2}(\lfloor n t\rfloor)(n-\lfloor n t\rfloor)} & \left(n\lfloor n t\rfloor-\lfloor n t\rfloor^{2}-\lfloor n t\rfloor S_{\lfloor n t\rfloor}-m\lfloor n t\rfloor+c\lfloor n t\rfloor-n S_{\lfloor n t\rfloor}+\lfloor n t\rfloor S_{\lfloor n t\rfloor}\right. \\
& +S_{\lfloor n t\rfloor}^{2}+m S_{\lfloor n t\rfloor}-c S_{\lfloor n t\rfloor}-c n+c\lfloor n t\rfloor+c S_{\lfloor n t\rfloor}+c m-c^{2} \\
& +n\lfloor n t\rfloor-\lfloor n t\rfloor^{2}+\lfloor n t\rfloor S_{\lfloor n t\rfloor}-m\lfloor n t\rfloor+c\lfloor n t\rfloor+n S_{\lfloor n t\rfloor}-\lfloor n t\rfloor S_{\lfloor n t\rfloor} \\
& \left.+S_{\lfloor n t\rfloor}^{2}-m S_{\lfloor n t\rfloor}+c S_{\lfloor n t\rfloor}-c n+c\lfloor n t\rfloor-c S_{\lfloor n t\rfloor}+c m-c^{2}\right) \\
=\frac{1}{\sigma_{n}^{2}(\lfloor n t\rfloor)((n-\lfloor n t\rfloor))} & \left(2 n\lfloor n t\rfloor-2\lfloor n t\rfloor^{2}-2 m\lfloor n t\rfloor+4 c\lfloor n t\rfloor+2 S_{\lfloor n t\rfloor}^{2}-2 c n+2 c m-2 c^{2}\right) . \tag{3.8}
\end{align*}
$$

Calculating the sum of the second and fourth terms in (3.7), we obtain

$$
\begin{align*}
& \frac{1}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor-S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& +\frac{1}{\sigma_{n}^{2}}\left(\frac{\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-c}{2\lfloor n t\rfloor} \cdot \frac{m-c}{n-\lfloor n t\rfloor}+\frac{c}{\lfloor n t\rfloor} \cdot \frac{n-\lfloor n t\rfloor+S_{\lfloor n t\rfloor}-m+c}{2(n-\lfloor n t\rfloor)}\right) \\
& =\frac{1}{2 \sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}\left(m\lfloor n t\rfloor-c\lfloor n t\rfloor-m S_{\lfloor n t\rfloor}+c S_{\lfloor n t\rfloor}-c m+c^{2}+c n-c\lfloor n t\rfloor-c S_{\lfloor n t\rfloor}\right. \\
& \left.-c m+c^{2}+m\lfloor n t\rfloor-c\lfloor n t\rfloor+m S_{\lfloor n t\rfloor}-c S_{\lfloor n t\rfloor}-c m+c^{2}+c n-c\lfloor n t\rfloor+c S_{\lfloor n t\rfloor}-c m+c^{2}\right) \\
& =\frac{1}{2 \sigma_{n}^{2}\lfloor n t\rfloor((n-\lfloor n t\rfloor))}\left(2 m\lfloor n t\rfloor-4 c\lfloor n t\rfloor-4 c m+4 c^{2}+2 c n\right) \\
& =\frac{1}{\sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}\left(m\lfloor n t\rfloor-2 c\lfloor n t\rfloor-2 c m+2 c^{2}+c n\right) . \tag{3.9}
\end{align*}
$$

By (3.7), (3.8) and (3.9), we have

$$
\begin{aligned}
& \mathbb{E}_{0, n}\left[\left(W_{i j}^{n}-W_{n}\right)^{2} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right\rfloor \\
& =\frac{1}{\sigma_{n}^{2}(\lfloor n t\rfloor)((n-\lfloor n t\rfloor))}\left(2 n\lfloor n t\rfloor-2\lfloor n t\rfloor^{2}-2 m\lfloor n t\rfloor+4 c\lfloor n t\rfloor+2 S_{\lfloor n t\rfloor}^{2}-2 c n+2 c m-2 c^{2}\right) \\
& +\frac{1}{\sigma_{n}^{2}(\lfloor n t\rfloor)(n-\lfloor n t\rfloor)}\left(m\lfloor n t\rfloor-2 c\lfloor n t\rfloor-2 c m+2 c^{2}+c n\right) \\
& =\frac{2 n\lfloor n t\rfloor-2\lfloor n t\rfloor^{2}-m\lfloor n t\rfloor+2 c\lfloor n t\rfloor+2 S_{\lfloor n t\rfloor}^{2}-c n}{\sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor)} \\
& =\frac{2 n\lfloor n t\rfloor-2\lfloor n t\rfloor^{2}-m\lfloor n t\rfloor+2 c\lfloor n t\rfloor-c n}{\sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor)}+\frac{2 W_{n}^{2}}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} .
\end{aligned}
$$

4. Conclusion

Let $0<p<\frac{1}{2}$. Suppose X_{1}, X_{2}, \ldots is a sequence of i.i.d. random variables with

$$
X_{i}= \begin{cases}-1, & \text { with probability } p \\ 0, & \text { with probability } 1-2 p \\ 1, & \text { with probability } p\end{cases}
$$

The finite sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ under $\mathbb{P}_{0, n}$ satisfies many interesting properties and can be summarized as follows.
(1) The finite sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ under $\mathbb{P}_{0, n}$ is exchangeable.
(2) $\mathbb{E}_{0, n}\left[X_{i}\right]=0$ for $i=1,2, \ldots, n$.
(3) For $0<p \leq \frac{1}{3}$, the finite sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is negatively associated under $\mathbb{P}_{0, n}$, hence $\operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right) \leq 0$ for all $i \neq j$. In fact,

$$
\operatorname{Cov}_{0, n}\left(X_{i}, X_{j}\right)=-\frac{1}{n-1} \mathbb{E}_{0, n}\left[X_{1}^{2}\right]
$$

for all $i \neq j$.
(4) $\operatorname{Var}_{0, n}\left(X_{i}\right)=1-(1-2 p) \cdot \frac{\mathbb{P}\left(S_{n-1}=0\right)}{\mathbb{P}\left(S_{n}=0\right)}$ for all $i=1,2, \ldots, n$.

Let W_{n} and $W_{i j}^{n}$ be random elements constructed as in (3.2) and (3.3), repectively. Applying all the above properties to the rescaled trinomial random walk, we can show that

$$
\frac{1}{\sqrt{n \operatorname{Var}_{0, n}\left(X_{1}\right)}} \mathbb{E}_{0, n}\left[W_{n}(t)\right]=0
$$

and

$$
\frac{1}{\sqrt{n \operatorname{Var}_{0, n}\left(X_{1}\right)}} \operatorname{Var}_{0, n}\left(W_{n}(t)\right) \longrightarrow t(1-t)
$$

as $n \rightarrow \infty$. Moreover, the mean value of $W_{i j}^{n}-W_{n}$ and the distance between $W_{i j}^{n}$ and W_{n} given the event $\left\{S_{\lfloor n t\rfloor}, C=c, M=m\right\}$ under $\mathbb{P}_{0, n}$ were derived, which are very helpful in studying the convergence of the rescaled trinomial random walk returning to the origin. We have the following results.

$$
\begin{equation*}
\mathbb{E}_{0, n}\left[W_{i j}^{n}-W_{n} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right]=-\frac{n}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} W_{n} . \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\mathbb{E}_{0, n}\left[\left(W_{i j}^{n}-W_{n}\right)^{2} \mid S_{\lfloor n t\rfloor}, C=c, M=m\right] & =\frac{2 c\lfloor n t\rfloor-c n-2\lfloor n t\rfloor^{2}-m\lfloor n t\rfloor+2 n\lfloor n t\rfloor}{\sigma_{n}^{2}\lfloor n t\rfloor(n-\lfloor n t\rfloor)} \tag{2}\\
& +\frac{2 W_{n}^{2}}{\lfloor n t\rfloor(n-\lfloor n t\rfloor)} .
\end{align*}
$$

The study of an invariance principle for the rescaled trinomial random walk returning to the origin is left as a future work.

Acknowledgements

The authors would like to thank the reviewers for their insightful comments and helpful suggestions. I also thank Nat Yonghint for his helpful comments.

References

[1] L. H. Y. Chen, L. Goldstein, Q-M. Shao, Normal Approximation by Stein's Method, Springer Berlin, Heidelberg, 2011.
[2] B. de Finetti, Sur la Condition d'Équivalence Partielle, Actualités Scientifiques et Industrielles 739. Paris: Herman and Cie (1938).
[3] B. Efron, Increasing properties of Polya frequency function, Ann. Math. Statist. 36 (1) (1965) 272-279.
[4] W. Jantai, Proving Limit Theorems for Associated Random Variables via Stein's Method, Oregon State University, 2021.
[5] K. Joag-Dev, F. Proschan, Negative association of random variables with applications, Ann. Stat. 11 (1) (1983) 286-295.
[6] E.L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966) 11371153.
[7] T.M. Liggett, An invariance principle for conditioned sums of independent random variables, J. Math. Mech. 18 (6) (1968) 559-570.
[8] C.M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, IMS Lecture Notes Monogr. Ser. 5 (1984) 127140.
[9] E. Scalas, The application of continuous-time random walks in finance and economics, Phys. A: Stat. Mech. Appl. 362 (2) (2006) 225-239.
[10] R. Szekli, Stochastic Ordering and Dependence in Applied Probability, Springer Verlag, New York, 1995.

[^0]: *Corresponding author.

