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Abstract : By generalizing a theorem of G.Meinardus [Arch. Rational Mech.
Anal. 14(1963), 301-303], B.Brosowski [Mathematica (Cluj) 11(1969), 195-200]
proved a result on invariant approximation using fixed point theory. Subsquently,
many generalizations of Brosowski’s result have appeared. We also obtain several
Brosowski-Meinardus type theorems for nonexpansive mappings defined on a class
of nonconvex sets containing the class of starshaped sets thereby extending and
generalizing various known results on the subject.
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1 Introduction and Preliminaries

W.J.Dotson Jr. [4] proved some results concerning the existence of fixed
points of nonexpansive mappings on a certain class of nonconvex sets. For prov-
ing these results, which extended his previous work [3] on starshaped sets, he
introduced the following class of nonconvex sets:

Suppose S is a subset of a Banach space E, and let F = {fα}α∈S be a family
of functions from [0, 1] into S, having the property that for each α ∈ S we have
fα(1) = α. Such a family F is said to be contractive provided there exists a
function ϕ : (0, 1) → (0, 1) such that for all α and β in S and for all t in (0, 1) we
have

‖fα(t) − fβ(t)‖ ≤ ϕ(t)‖α − β‖.

Such a family F is said to be jointly continuous provided that if t → t◦ in [0, 1]
and α → α◦ in S then fα(t) → fα◦

(t◦) in S.
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This notion can easily be extended to metric spaces. Also it is easy to observe
that if S is a starshaped (with z as star center) subset of a normed space E and
fz(t) = tx + (1 − t)z, x ∈ S, t ∈ [0, 1], then F = {fx : x ∈ S} is a contractive
jointly continuous family with ϕ(t) = t. Thus the class of subsets of E with the
property of contractive and joint continuity contains the class of starshaped sets
which in turn contains the class of convex sets.

Ever since Dotson’s work [4], efforts have been made by many researchers
(see e.g. [9], [10]) to extend results proved on convex sets and starshaped sets
to the above class of nonconvex sets. The present paper is also a step in the
same direction in which we prove some results on common fixed points and best
approximation. To start with, we recall some definitions and known facts to be
used in the sequel.

Let G be a self-mapping on a metric space (X, d). Then a self-mapping T on
X is said to be (s.t.b.) G-nonexpansive if

d(Tx, T y) ≤ d(Gx, Gy) for all x, y ∈ X (1.1)

If strict inequality holds in (1.1) for distinct points, then T is s.t.b. G-
contractive.

Clearly, G-nonexpansive and G-contractive maps are continuous, whenever G

is continuous.
For a metric space (X, d), a continuous mapping W : X × X × [0, 1] → X is

s.t.b. a convex structure on X if for all x, y ∈ X and λ ∈ [0, 1], we have

d(u, W (x, y, λ)) ≤ λd(u, x) + (1 − λ)d(u, y)

for all u ∈ X . The metric space (X, d) together with a convex structure is called
a convex metric space [12].

A subset K of a convex metric space (X, d) is s.t.b. a convex set [12] if
W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1]. The set K is said to be p-
starshaped [5] if there exists a p ∈ K such that W (x, p, λ) ∈ K for all x ∈ K and
λ ∈ [0, 1].

Clearly, each convex set is starshaped but not conversely.
A convex metric space (X, d) is said to satisfy Property (I) [5] if for all

x, y, q ∈ X and λ ∈ [0, 1],

d(W (x, q, λ), W (y, q, λ)) ≤ λd(x, y).

A normed linear space and each of its convex subsets are simple examples of
convex metric spaces. There are many convex metric spaces which are not normed
linear spaces (see [5], [12]). Property (I) is always satisfied in a normed linear
space.

For a non-empty subset K of a metric space (X, d) and x ∈ X , an element
y ∈ K is s.t.b. a best approximant to x or a best K-approximant to x if
d(x, y) = d(x, K) ≡ inf{d(x, y) : y ∈ K}. The set of all such y ∈ K is denoted by
PK(x).
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For a convex subset K of a convex metric space (X, d), a mapping g : K → X

is s.t.b. affine for all x, y ∈ K, g(W (x, y, λ)) = W (gx, gy, λ) for all λ ∈ [0, 1].
Throughout, we shall write F (S) for set of fixed points of a mapping S and

F (T, S) for set of fixed points of both T and S.

2 Main Results

Al-Thagafi [1] obtained the following common fixed point theorem for com-
muting mappings:
Theorem A. Let D be a closed subset of a metric space (X, d) and let I and T

be self maps of D with T (D) ⊂ I(D). If T (D) is complete, I is continuous, I and
T are commuting and T is I-contraction, then I and T have a unique common
fixed point.

Using this fixed point theorem of Al-Thagafi, we have the following theorem
on common fixed points of commuting mappings for contractive jointly continuous
family:
Theorem 1. Let D be a closed subset of a metric space (X,d), I and T be self maps
of D with T (D) ⊆ I(D). Suppose D has a contractive jointly continuous family
F = {fx : x ∈ D} such that I(fx(α)) = fI(x)(α) for all x ∈ D and α ∈ [0, 1]. If

T (D) is compact, I is continuous, I and T are commuting and T is I-nonexpansive
then I and T have a common fixed point.
Proof. For each positive integer n, let kn = n

n+1 and define Tn : D → D as
Tn(x) = fTx(kn), x ∈ D. Consider

Tn(I(x)) = fT (I(x))(kn) = fI(T (x))(kn) as I and T commute

= IfTx(kn)

= ITn(x), x ∈ D

i.e. for each n, Tn commutes with I and Tn(D) ⊆ I(D).
Since F is contractive and T is I-nonexpansive, we have

d(Tnx, Tny) = d(fTx(kn), fTy(kn)) ≤ ϕ(kn)d(Tx, T y) ≤ ϕ(kn)d(Ix, Iy)

for every x, y ∈ D. Therefore each Tn is I-contraction. Since T (D) is compact, T is
I-nonexpansive and I is continuous so Tn(D) is also compact. Hence by Theorem
A there exists xn ∈ D such that xn ∈ F (Tn, I) for each n. Since < T (xn) > is a
sequence in the compact set T (D), there exists a subsequence < T (xnj

) > with

T (xnj
) → x◦ ∈ T (D). Since xnj

= Tnj
(xnj

) = fTxnj
(knj

) → fx◦
(1) = x◦, the

continuity of I and T imply x◦ ∈ F (T, I).
Corollary 1. Let D be a compact subset of a metric space (X, d), I and T be self
maps of D with T (D) ⊆ I(D). Suppose D has a contractive jointly continuous
family F such that I(fx(α)) = fIx(α) for all x ∈ D and α ∈ [0, 1]. If I and T are
commuting, I is continuous and T is I-nonexpansive then I and T have a common
fixed point.
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Remarks. If D is a p-starshaped subset of a convex metric space (X, d) with
Property (I), define the family F as fx(α) = W (x, p, α). Then

d(fx(α), fy(α)) = d(W (x, p, α), W (y, p, α))

≤ α d(x, y),

so taking ϕ(α) = α, 0 < α < 1, the family is a contractive jointly continuous family.
Moreover, if D is a p-starshaped, I is affine and p ∈ F (I) then I(fx(α)) = fIx(α)
is satisfied. Consequently, we have:

Corollary 2. Let D be a closed p-starshaped subset of a convex metric space
(X, d) satisfying Property (I) and T (D) is compact, Suppose S and T are self maps
on D with T (D) ⊆ S(D), p ∈ F (S), S is continuous, S and T are commuting and
T is S-nonexpansive then S and T have a common fixed point.

Since a normed linear space is a convex metric space with Property (I), we
have:

Corollary 3 (Theorem 2.2 [1]). Let D be a closed subset of a normed linear space
X , S and T self maps of D with T (D) ⊆ S(D), p ∈ F (S). If D is p-starshaped,
T (D) is compact, S is continuous and linear, S and T are commuting with T is
S-nonexpansive, then S and T have a common fixed point.

Remark. Corollary 3 holds even when S is only an affine map.

Taking S as the Identity map, we have:

Corollary 4 (Theorem 3 [2]). Let (X, d) be a convex metric space satisfying
property (I) and D a closed and p-starshaped subset of X . If T is a nonexpansive
self mapping on D and T (D) is compact then T has a fixed point.

Corollary 5 (Theorem 4 [6]). Let D be a closed p-starshaped subset of a normed
linear space X and T is nonexpansive self map of D. If T (D) is compact, then T

has a fixed point.

Remarks. Dotson [3] proved Corollary 5 in Banach spaces, and Guay et al. [5]
in convex metric spaces for compact sets D.

Corollary 6 (Theorem 1 [4]). Suppose S is a compact subset of a Banach space
E, and suppose there exists a contractive jointly continuous family F of functions
associated with S. Then any nonexpansive self mapping T of S has a fixed point.

Next we state the following common fixed point theorem for two maps in
metric spaces. This theorem for p-normed spaces was proved by Khan et al. [9]
and it is easy to see that as in the proof of Theorem 1, the proof given in [9] can
easily be extended to metric spaces.

Theorem 2. Let I and T be self maps on a metric space (X, d), u ∈ F (T )∩F (I)
and S is T -invariant subset of X . Suppose I and T are commuting on D = PS(u),
I is continuous on D, T is I-nonexpansive on D ∪ {u} and I(D) = D. Suppose
that D has a contractive jointly continuous family F such that I(fx(α)) = fIx(α)
for all x ∈ D and α ∈ [0, 1]. Then I and T have a common fixed point on D.

Corollary 1 (Theorem 3 [11]). Let T, I : X → X be operators, C be a subset
of X such that T : ∂C → C, and x◦ ∈ F (T ) ∩ F (I). Further, T and I satisfy
‖Tx− Ty‖ ≤ ‖Ix− Iy‖ for all x, y ∈ D and let I be linear, continuous on D, and
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ITx = TIx for all x in D. If D is nonempty, compact and starshaped with respect
to a point q ∈ F (I) and if I(D) = D, then D ∩ F (T ) ∩ F (I) 6= φ.

Corollary 2 (Theorem 6 [2]). Let (X, d) be a convex metric space satisfying
property (I). Let T, S : X → X be operators, C a subset of X such that T : ∂C →
C, and x◦ ∈ F (T )∩ F (S). Further, T and S satisfy d(Tx, T y) ≤ d(Sx, Sy) for all
x, y in PC(x◦)∪{x◦} and let S be continuous and affine on PC(x◦), and STx = TSx

for all x in PC(x◦). If PC(x◦) is nonempty, compact and q-starshaped with respect
to a point q ∈ F (S) and if S(PC(x◦)) = PC(x◦), then PC(x◦)∩ F (T )∩F (S) 6= φ.

Jungck [7] obtained the following common fixed point theorem for G-contractive
mappings.

Theorem B. Let F and G be commuting mappings of a compact metric space
(X, d) into itself such that F (X) ⊂ G(X), and G is continuous. If F is G-
contractive map on the metric space X , then there is a unique common fixed
point of F and G.

Using this fixed point theorem of Jungck, we have the following theorem on
common fixed points of commuting mappings in metric spaces:

Theorem 3. Let (X, d) be a metric space, F and G : X → X be commuting
mappings such that F is G-nonexpansive where G satisfies G2 = G. Let C be a
subset of X and x a point of X such that both are invariant under F and G. Let
D = PC(x) be the set of best approximant of x in C. If G is continuous on D,
F (D) ⊆ G(D) and D is nonempty compact and has jointly continuous contractive
family F such that G(fy(α)) = fGy(α), for all y ∈ D and α ∈ [0, 1], then D contains
a point invariant under both F and G.

Proof. We first observe that both F and G are self maps on D. Let y ∈ D.
Consider

d(x, GFy) = d(x, FGy) = d(Fx, FGy) ≤ d(x, G2y) = d(x, Gy) = d(x, C). (2.1)

Also,

d(x, GGy) = d(x, Gy) = d(x, C). (2.2)

From relations (2.1) and (2.2) we have F (y) ∈ D and G(y) ∈ D. Thus F and G

are self mappings on D.

Define Fn : D → D as Fn(x) = fF (x)(tn), x ∈ D and < tn > is a sequence of
real numbers in (0, 1) such that tn → 1.

Since F and G commute on D, it follows from the property of the family F

that Fn(G(x)) = fG(F (x))(tn) = GfF (x)(tn) = G(Fn(x)) for each x ∈ D. Thus for
each n, Fn commutes with G and Fn(D) ⊆ G(D). Since F is contractive and F is
G-nonexpansive, we get

d(Fny, Fnz) = d(fF (y)(tn), fF (z)(tn)) ≤ ϕ(tn)d(F (y), F (z)) ≤ ϕ(tn)d(G(y), G(z))

for every y, z ∈ D and so Fn is G-nonexpansive for each n.

It follows from Theorem B that there is a unique common fixed point, say
xn ∈ D, of Fn and G for each n i.e. Gxn = xn = Fnxn for each n. Since D
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is compact, < xn > has a subsequence < xni
>→ x◦ ∈ D and hence F (xni

) →
F (x◦). The joint continuity of F gives

xni
= Fni

xni
= fFxni

(tni
) → fFx◦

(1) = F (x◦)

and so x◦ = F (x◦). Also continuity of G gives G(x◦) = G(limxni
) = lim G(xni

) =
limxni

= x◦. Thus x◦ ∈ D is invariant under both F and G.

Corollary 1 (Theorem 3.1 [10]). Let F and G be commuting operators on a
normed linear space X such that F is G-nonexpansive, where G is linear, contin-
uous and satisfies G2 = G. Let C be a subset of X , x a point of X such that
both of them are invariant under both F and G. Let D = {y ∈ C : Gy is a best
C-approximant to x}. If F (D) ⊂ G(D), and also D is nonempty, compact and
G-starshaped with respect to G, then D contains a point invariant under both F

and G.

Assuming G = I (the identity mapping), we obtain the following:

Corollary 2 (Theorem 3.4 [10]). Let F be a nonexpansive operator on a normed
linear space X . Let C be an F -invariant subset of X and x an F -invariant point.
If the set of best C-approximants to x is nonempty, compact and for which there
exists a contractive jointly continuous family F of functions, then it contains an
F -invariant point.

We shall be using the following result of Jungck [8] to prove our next theorem:

Theorem C. Let f be a continuous self map of a compact metric space (X, d).
If f(x) 6= f(y) implies d(fx, fy) < d(gx, hy) for some g, h ∈ Cf , where Cf is the
set of all maps g : X → X such that gf = fg, then there is a unique point a ∈ X

such that a = f(a). Infact a = h(a) for all h ∈ Cf .

Using Theorem C, we have:

Theorem 4. Let (X, d) be a metric space, I and T : C → C be commuting maps
where C is a compact subset of X and has jointly continuous contractive family
F satisfying I(fx(α)) = fIx(α) for all x ∈ C and α ∈ [0, 1]. If for each x, y ∈ C,
there exists I = I(x, y), J = J(x, y) ∈ CT such that

d(Tx, T y) ≤ d(Ix, Jy) (2.3)

then there exists a ∈ C such that a = Ta and a = Ia for all continuous I ∈ CT .

Proof. Let < tn > be a sequence of real numbers in (0, 1) such that tn → 1. Let
Tn : C → C be defined as Tn(x) = fTx(tn). Since I and T commute, it follows
from the property of the family F that

Tn(I(x)) = fT (I(x))(tn) = fI(T (x))(tn) as I and T commute

= IfTx(tn)

= ITn(x)

for each x ∈ C. Thus for each n, TnI = ITn.

Now fix n. By hypothesis, for each x, y ∈ C there exists I, J ∈ CT such that
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d(Tx, T y) ≤ d(Ix, Jy). So,

d(Tnx, Tny) = d(fTx(tn), fTy(tn))

≤ ϕ(tn)d(Tx, T y)

≤ ϕ(tn)d(Ix, Jy)

Therefore, for all x, y ∈ C, Tn(x) 6= Tn(y) implies d(Tnx, Tny) ≤ d(Ix, Jy) for
some I, J ∈ CT . Since Tn is continuous, by Theorem C there is unique xn ∈ C

such that for all I ∈ CT , xn = Tnxn = Ixn. Since C is compact, < xn > has a
subsequence < xni

>→ a ∈ C. Now

a = limxni
= limTni

xni
= lim fTxni

(tni
) → fTa(1) = Ta

Also, a = lim xni
= lim Ixni

= I lim xni
= Ia for all continuous I ∈ CT . Thus

a = Ta and a = Ia for all continuous I ∈ CT .
Corollary. Let C be a compact subset of a metric space (X, d), T, I : C → C

be continuous commuting maps, C has jointly continuous contractive family F

satisfying I(fx(α)) = fIx(α) for all x ∈ C and α ∈ [0, 1]. If for x, y ∈ C, there
exists n = n(x, y), m = m(x, y) in N ∪ {0} such that

d(Tx, T y) ≤ d(Imx, Iny) (2.4)

then there exists a ∈ C such that a = Ta and a = Ia.
Proof. For each n,

Tn(Inx) = fT (Inx)(tn) = fTI(In−1x)(tn)

= fIT (In−1x)(tn) = IfT (In−1x)(tn) = ... = In(Tnx)

i.e. TnIn = InTn for each n and In : C → C. Therefore (2.4) implies that
members of F satisfy (2.3) and so the result follows from Theorem 4.
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