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Abstract In the Fibonacci sequence, the first two numbers are 0 and 1, and the next numbers are equal

to the sum of the previous two numbers. In this paper, the concept of the Fibonacci sequence is extended

to polynomial functions which can be effectively applied in various function approximations. Based on

these Fibonacci-based polynomials and the Galerkin method, we develop a Fibonacci Galerkin method

(FGM) to solve some types of boundary value problems (BVPs) such as a linear singular two-point BVP

and a nonlinear multi-point BVP. The FGM process constructs a residual function for a BVP by utilizing

an approximate solution formed by the method and then evaluating the integral of the product between

residual functions and weight functions over a domain. Equating the value of the integral close to zero,

one obtains an analytical solution of the BVP. As examples, we apply the method to certain types of

BVPs including a linear singular two-point BVP, a nonlinear multi-point BVP and a regular two-point

BVP whose exact solutions are given. Their semi-analytical solutions are obtained. By comparing the

solutions of the proposed boundary value problems obtained by this technique with their exact solutions,

we believe that the technique is highly accurate and effective.
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1. Introduction

Nonlinear ordinary differential equations (NODEs) have been used as models for a
variety of problems in many fields such as engineering [1], chemistry [2], physics [3], and
biology [4, 5]. In most cases, it is very difficult to find exact solutions for these nonlinear

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2024 by TJM. All rights reserved.



180 Thai J. Math. Vol. 22 (2024) /S. Koonprasert et al.

problems using analytical methods [6]. Therefore, numerical methods have been used to
find approximate solutions for these problems including initial value problems (IVPs) and
boundary value problems (BVPs). There have been many different methods developed
for solving differential equations, for example, finite element methods [7], finite difference
methods [8], shooting method [9], Raleigh method [10] and spectral methods [11, 12].

Spectral methods [11, 12] are a type of numerical method for solving differential equa-
tions that use a combination of interpolation and approximation techniques to represent
a solution as a sum of simple functions. These simple functions are often orthogonal
functions, such as Fourier series [13], Chebyshev polynomials [14] and Legendre polyno-
mials [15]. Spectral methods are particularly effective for problems for which the solutions
are smooth as the methods can then converge exponentially fast to exact solutions and
they require relatively few function evaluations. Under these conditions, the spectral
methods become efficient, reliable, and effective for solving problems that need high-
precision solutions or that have complex geometries such as fluid flows with irregular
boundaries.

Another advantage of spectral methods is their versatility because they can be utilized
to solve a wide range of differential equations including linear and nonlinear problems,
initial value problems, and boundary value problems. They can also be adapted to han-
dle partial differential equations. In addition, spectral methods are known to be highly
parallelizable and therefore suitable for implementation on modern computing architec-
tures. Generally, spectral methods are powerful and flexible tools for solving differential
equations and their combination of accuracy and efficiency makes them a popular choice
in many computational fields.

A basic idea of spectral methods is to assume an approximate solution written in
terms of a finite sum of a product of simple functions such as polynomials or elementary
functions with unknown coefficients. Here, we assume that an analytic function f(x) is a

solution of a given problem and that its approximation f̃(x) can be expressed as

f̃(x) =

N∑
n=0

anψn(x), (1.1)

where the set of ψn(x) contains special trial polynomial (or function) bases and an are
unknown constant coefficients. In general, the main idea of these methods is to convert
the given ODEs to a system of algebraic equations of the unknown coefficients. Then,
depending upon the linearity or nonlinearity of the system of algebraic equations, it is
usually easy to solve the system using analytical or numerical methods to obtain values
for the unknown coefficients and therefore obtain the solution of the original problem.

Smooth or orthogonal polynomials are a commonly used type of basis functions in
spectral methods. These polynomials are defined on a given interval. For example,
Chebyshev polynomials are an important kind of polynomial that is commonly used in
spectral methods. They are usually defined on the interval [−1, 1]. Shifted Chebyshev
polynomials are a variation of Chebyshev polynomials that are defined on a different
interval such as [0, 1]. Legendre polynomials are also another kind of polynomial type
that is commonly used in spectral methods. They are also defined on the interval [−1, 1].
Shifted Legendre polynomials are a variation of Legendre polynomials that are constructed
on a different interval such as [0, 1].

Many researchers have used a variety of types of polynomials in spectral methods in
order to solve ODEs, IVPs and BVPs. In this paper, we are interested in exploring the
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use of Fibonacci polynomials as a basis for the Galerkin method [16] for solving boundary
value problems. The Galerkin method is a well-known numerical technique that has
been used for many years for solving these types of problems. Since the method uses a
suitable set of basis functions for approximating solutions to the problem, the accuracy
of the method depends on the choice of the basis functions. The Galerkin method has
many interesting properties that are useful and appropriate for the basis functions used
in deriving the coefficients of the Galerkin approximation. Consequently, seeking new
basis functions such as Fibonacci polynomials could lead to more accurate and efficient
methods of solution.

The Fibonacci polynomials [17] satisfy the following recurrence relation

Fn+2(x)− xFn+1(x)− Fn(x) = 0, −∞ < x <∞, (1.2)

with initial conditions

F0(x) = 1, F1(x) = x. (1.3)

The Fibonacci polynomials are of interest because of their mathematical applications
such as the golden ratio, Fibonacci numbers and quasi-crystals. These applications can
provide insights into the behavior of the solutions to boundary value problems and inspire
new research directions. Therefore, the use of Fibonacci polynomials as a basis function
for the Galerkin method is a promising approach to solving boundary value problems.

In this paper, we aim to develop a new type of Galerkin method for solving some
boundary value problems based on the Fibonacci polynomials. As far as the authors are
aware, the Fibonacci polynomials have never been used as a set of basis functions for
the Galerkin method. Even though we will only test the FGM on BVPs in this paper,
we believe that the method could be successfully used for solving related problems. The
remaining parts of this paper are organized as follows. In Section 2, we define Fibonacci
polynomials and discuss some of their important properties. In Section 3, we propose the
Fibonacci Galerkin method (FGM) and we discuss its applications for solving BVPs in
Section 4. Finally, in Section 5, we discuss some conclusions for the paper.

2. Definition and Properties of the Fibonacci Polynomials

In this section, we provide a definition of the k-Fibonacci sequence and Fibonacci
polynomials [16, 17]. The characteristics of these polynomials are also given.

Definition 2.1. For any positive real number k, the k-Fibonacci sequence is recursively
defined as

Fk,n+1 = kFk,n + Fk,n−1, n ≥ 1, (2.1)

with the initial conditions

Fk,0 = 1 and Fk,1 = k.

If the number k and the sequence Fk,n in Definition 2.1 are replaced by the variable x
and Fn(x), respectively, then we can define the Fibonacci polynomials as follows.
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Definition 2.2. Let n be any nonnegative integer. The Fibonacci polynomials are defined
by the following recursive formula

Fn(x) =


1, if n = 0,

x, if n = 1,

xFn−1(x) + Fn−2(x), if n > 1.

(2.2)

From the recursion formula, the Fibonacci polynomials can be written as

F0(x) = 1,

F1(x) = x,

F2(x) = x2 + 1,

F3(x) = x3 + 2x,

...

Fn(x) =

bn2 c∑
i=0

(
n− i
i

)
xn−2i, n ≥ 0,

where the notation bzc represents the largest integer less than or equal to z.

It is worth noticing that the Fibonacci polynomials satisfy the following property.

Proposition 2.1. If Fn(x), n = 0, 1, ... are the Fibonacci polynomials, then we obtain∫ 1

0

Fn(x)Fm(x)dx =

bn2 c∑
i=0

bm2 c∑
j=0

(
n− i
i

)(
m− j
j

)
1

n+m− 2i− 2j + 1
. (2.3)

The next proposition indicates the relationship between the Fibonacci polynomials and
its derivatives.

Proposition 2.2. The following equality

Fn(x) =
1

n+ 1

[
F ′n+1(x) + F ′n−1(x)

]
(2.4)

holds for n ∈ N. Then, integrating this equation, we obtain the following integral equation∫ x

0

Fn(s)ds =
1

n+ 1
[Fn+1(x) + Fn−1(x)− Fn+1(0)− Fn−1(0)] . (2.5)

If n is odd, then we have Fn+1(0) = Fn−1(0) = 1, and, if n is even, we have Fn+1(0) =
Fn−1(0) = 0.

Next, we can approximately expand a function f ∈ L2[0, 1) using the Fibonacci poly-
nomials.
Function approximation

Suppose that a continuous function f(x) can be written in terms of the Fibonacci
polynomials Fn(x) as [18]

f(x) =

∞∑
n=0

anFn(x), (2.6)
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where an is the Fibonacci coefficient of the series for f(x). Then, the function f(x) in
(2.6) can be approximated using the truncated expansion of N Fibonacci polynomials as

f(x) ≈
N∑

n=0

anFn(x). (2.7)

3. Fibonacci Galerkin Method for Solving BVP

In this section, the main steps of the Fibonacci-Galerkin method (FGM) are proposed
as follows. Consider the boundary value problem consisting of a general linear second-
order differential equation

p(x)u′′(x) + q(x)u′(x) + r(x)u(x) = F (x), (3.1)

and the boundary conditions

u(a) = ua, u(b) = ub, (3.2)

where p(x), q(x), r(x) and F (x) are continuous functions. Suppose that a solution u(x)
of the BVP (3.1)-(3.2) can be approximated by uFGM(x), which is obtained by using the
FGM. The approximate solution uFGM(x) is written as

uFGM(x) =

N∑
i=0

ciφi(x), (3.3)

where ci, i = 0, 1, ..., N are the constant coefficients for some positive integer N . The
values of the coefficients can be determined later. The function φi(x), i = 0, 1, ..., N are
the Fibonacci basis functions, which are recursively obtained by

φ0(x) = 1,

φ1(x) = x,

...

φi+1(x) = xφi(x) + φi−1(x), i = 1, 2, 3, 4, ....

(3.4)

Define the residual function of Eq. (3.1) as

R(x) = p(x)u′′FGM(x) + q(x)u′FGM(x) + r(x)uFGM(x)− F (x),

=

N∑
i=0

ci (p(x)φ′′i (x) + q(x)φ′i(x) + r(x)φi(x))− F (x). (3.5)

It is required that the function uFGM(x) in (3.3) is the approximate solution of the
above BVP if the following integral holds∫ b

a

Wj(x)R(x)dx = 0, (3.6)

where Wj(x) is a weight function. In particular, we select the weight function Wj(x) to
be the Fibonacci basis function φj(x), i.e.,

Wj(x) = φj(x), j = 0, 1, 2, 3, ..., N − 2, (3.7)
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where φj(x) is defined in (3.4). From (3.5) and (3.6), for j = 0, 1, 2, 3, ..., N − 2, we have∫ b

a

φj(x)

[
N∑
i=0

ci (p(x)φ′′i (x) + q(x)φ′i(x) + r(x)φi(x))

]
dx =

∫ b

a

φj(x)F (x)dx,

N∑
i=0

ci

[ ∫ b

a

(p(x)φj(x)φ′′i (x) + q(x)φj(x)φ′i(x) + r(x)φj(x)φi(x)) dx

]

=

∫ b

a

φj(x)F (x)dx. (3.8)

Using the boundary conditions (3.2) and equation (3.8) for j = 0, 1, 2, 3, ..., N − 2, we
obtain a system of linear equations in variables ci, i = 0, 1, ..., N as follows:

x = a :

N∑
i=0

ciφi(a) = ua,

x = b :

N∑
i=0

ciφi(b) = ub,

φ0(x) :

N∑
i=0

ci

[ ∫ b

a
p(x)φ0(x)φ′′i (x)dx+

∫ b

a
q(x)φ0(x)φ′i(x)dx+

∫ b

a
r(x)φ0(x)φi(x)dx

]

=

∫ b

a
φ0(x)F (x)dx,

φ1(x) :

N∑
i=0

ci

[ ∫ b

a
p(x)φ1(x)φ′′i (x)dx+

∫ b

a
q(x)φ1(x)φ′i(x)dx+

∫ b

a
r(x)φ1(x)φi(x)dx

]

=

∫ b

a
φ1(x)F (x)dx,

φ2(x) :

N∑
i=0

ci

[ ∫ b

a
p(x)φ2(x)φ′′i (x)dx+

∫ b

a
q(x)φ2(x)φ′i(x)dx+

∫ b

a
r(x)φ2(x)φi(x)dx

]

=

∫ b

a
φ2(x)F (x)dx,

φ3(x) :

N∑
i=0

ci

[ ∫ b

a
p(x)φ3(x)φ′′i (x)dx+

∫ b

a
q(x)φ3(x)φ′i(x)dx+

∫ b

a
r(x)φ3(x)φi(x)dx

]

=

∫ b

a
φ3(x)F (x)dx,

..

.

φN−2(x) :

N∑
i=0

ci

[ ∫ b

a
p(x)φN−2(x)φ′′i (x)dx+

∫ b

a
q(x)φN−2(x)φ′i(x)dx+

∫ b

a
r(x)φN−2(x)φi(x)dx

]

=

∫ b

a
φN−2(x)F (x)dx.

(3.9)

After solving the above system for ci, i = 0, 1, ..., N , then the approximate solution of
the BVP (3.1)-(3.2) obtained via the FGM can be expressed in (3.3) with the known
coefficients.

In the following section, we will show the performance of the proposed method to
numerically solve certain BVPs. All of the computational steps have been implemented
using MATLAB R R2020b.
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4. FGM Solutions for Some Boundary Value Problems

In this section, we illustrate applications of our proposed method to some interesting
BVPs including a singular two-point boundary value problem, a nonlinear multi-point
boundary value problem and a nonsingular two-point boundary value problem. By con-
structing the solutions to the problem via the FGM, we can clarify the accuracy, efficiency,
and reliability of the obtained solutions compared with the given exact solutions.

Example 4.1. Use of the Fibonacci Galerkin method to find the solution of the following
singular two-point boundary value problem:

xu′′(x) + 2u′(x) + x = 0, 0 < x < 1, (4.1)

with the boundary conditions

u′(0) = 0 and u(1) =
1

6
. (4.2)

Solution: It is easy to check that the exact solution of the above problem is u(x) = 1
3−

x2

6 .
By the FGM, we assume that the solution to the above problem can be approximated as

u(x) ≈ uFGM(x) :=

3∑
i=0

ciφi(x), (4.3)

where ci is the constant coefficient, which will be calculated at the next step, and φi(x)
is the Fibonacci basis function expressed for i = 0, 1, 2, 3 as

φ0(x) = 1,

φ1(x) = x,

φ2(x) = x2 + 1,

φ3(x) = x3 + 2x.

(4.4)

Now, the solution form and its derivatives are

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x),

u′FGM(x) = c1 + 2c2x+ c3(3x2 + 2),

u′′FGM(x) = 2c2 + 6c3x.

(4.5)

Using the first two equations of (4.5) and the conditions in (4.2), we have

c1 + 2c3 = 0,

c0 + c1 + 2c2 + 3c3 =
1

6
.

(4.6)

Defining the residual function of Eq.(4.1) and substituting the terms in (4.5) into the
resulting equation, we have

R(x) = xu′′FGM(x) + 2u′FGM(x) + x,

= x(2c2 + 6c3x) + 2(c1 + 2c2x+ c3(3x2 + 2)) + x,

= 12c3x
2 + (6c2 + 1)x+ 2(c1 + 2c3).

(4.7)

Using the residual condition (3.6) over the interval [0, 1], we have∫ 1

0

Wj(x)
(
12c3x

2 + (6c2 + 1)x+ 2(c1 + 2c3)
)
dx = 0. (4.8)
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Choosing the weight function Wj(x) in (4.8) to be φj(x) in (4.4) for j = 0, 1, we obtain
two more linear equations in c0, c1, c2 and c3 as:∫ 1

0

1 ·
(
12c3x

2 + (6c2 + 1)x+ 2(c1 + 2c3)
)
dx = 2c1 + 3c2 + 8c3 +

1

2
= 0,∫ 1

0

x ·
(
12c3x

2 + (6c2 + 1)x+ 2(c1 + 2c3)
)
dx = c1 + 2c2 + 5c3 +

1

3
= 0,

(4.9)

respectively. From (4.6) and (4.9), we obtain the system of four linear equations in
ci, i = 0, 1, 2, 3 as follows

c1 + 2c3 = 0,

c0 + c1 + 2c2 + 3c3 =
1

6
,

2c1 + 3c2 + 8c3 = −1

2
,

c1 + 2c2 + 5c3 = −1

3
.

(4.10)

Solving system (4.10), we get the coefficients c0 = 1
2 , c1 = 0, c2 = − 1

6 , c3 = 0 and hence
the solution obtained via the FGM is

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x),

=
1

3
− x2

6
.

(4.11)

It can be noticed that the solution uFGM(x) in (4.11) is the exact solution of the problem.
The exact solution and the FGM solution are shown in Figure 1. �
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u
(x
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Figure 1. Graphical solutions of the BVP (4.1) and (4.2). The solid
line represents the exact solution and ∗ represents the FGM solution.
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Example 4.2. Use of the Fibonacci Galerkin method to find the solution of the following
nonlinear multi-point boundary value problem:

(u′′(x))2 − 3u′(x) = 0, −1 < x < 2, (4.12)

with the boundary conditions

u(−1) = −1

4
, u(1) =

7

4
and u(2) = 2. (4.13)

Solution: It is not difficult to verify that u(x) = 1
4x

3− 3
4x

2+ 3
4x+ 3

2 is the exact solution of
the above BVP. As observed in the exact solution that the highest degree of the solution
is 3, so we at least choose N = 3 for the approximate solution of the Fibonacci-Galerkin
method. Therefore, the solution of the problem, which is solved by the FGM, can be
approximated by

u(x) ≈ uFGM(x) :=

3∑
i=0

ciφi(x), (4.14)

where ci is the constant coefficient, which will be calculated at the next step, and φi(x)
is the Fibonacci basis function for i = 0, 1, 2, 3 as shown in (4.4). Then, the solution form
and its derivatives are

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x),

u′FGM(x) = c1 + 2c2x+ c3(3x2 + 2),

u′′FGM(x) = 2c2 + 6c3x.

(4.15)

Using the first equation of (4.15) and the conditions in (4.13), we have

c0 − c1 + 2c2 − 3c3 = −1

4
,

c0 + c1 + 2c2 + 3c3 =
7

4
,

c0 + 2c1 + 5c2 + 12c3 = 2.

(4.16)

Defining the residual function of Eq.(4.12) and substituting the terms in (4.15) into
the resulting equation, we have

R(x) = (u′′FGM(x))
2 − 3u′FGM(x),

= (2c2 + 6c3x)2 − 3(c1 + 2c2x+ c3(3x2 + 2)),

= (36c23 − 9c3)x2 + (24c2c3 − 6c2)x+ (4c22 − 3c1 − 6c3).

(4.17)

Using the residual condition (3.6) over the interval [−1, 2], we have∫ 2

−1
Wj(x)

(
(36c23 − 9c3)x2 + (24c2c3 − 6c2)x+ (4c22 − 3c1 − 6c3)

)
dx = 0. (4.18)

Choosing the weight function Wj(x) in (4.18) to be φj(x) in (4.4) for j = 0, we obtain
one more linear equation in c0, c1, c2 and c3 as:∫ 2

−1
1 ·
(
(36c23 − 9c3)x2 + (24c2c3 − 6c2)x+ (4c22 − 3c1 − 6c3)

)
dx

= 4c22 + 12c2c3 + 36c23 − 3c1 − 3c2 − 15c3 = 0. (4.19)
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From (4.16) and (4.19), we obtain the system of nonlinear equations in the variables
ci, i = 0, 1, 2, 3 as follows

c0 − c1 + 2c2 − 3c3 = −1

4
,

c0 + c1 + 2c2 + 3c3 =
7

4
,

c0 + 2c1 + 5c2 + 12c3 = 2,

4c22 + 12c2c3 + 36c23 − 3c1 − 3c2 − 15c3 = 0.

(4.20)

Applying the Newton-Raphson scheme to numerically solve nonlinear system (4.20), we
obtain the coefficients c0 = 9

4 , c1 = 1
4 , c2 = − 3

4 , c3 = 1
4 and therefore the solution of the

problem obtained via the FGM is

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x),

=
9

4
+

1

4
x− 3

4
(x2 + 1) +

1

4
(x3 + 2x)

=
x3

4
− 3x2

4
+

3x

4
+

3

2
.

(4.21)

It can be observed that the obtained solution uFGM(x) in (4.21) is the exact solution of
the problem. The solution graphs of the problem including the exact solution and the
FGM solution are shown in Figure 2. �

-1 -0.5 0 0.5 1 1.5 2
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2

u
(x

)

Exact solution

FGM solution

Figure 2. Graphical solutions of the BVP (4.12) and (4.13). The sold
line represents the exact solution and ∗ represents the FGM solution.

In addition, if we increase the number of solution components, i.e., the value of N ,
in the solution form in Example 4.2 to be N = 4, 5, 6, 7, then we find that the amount
of work required in the process for finding the solutions is much more than for N = 3.
This is because the number of residual conditions is greater and each condition is more
complicated. The other conditions for the boundary conditions are also more complex
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since the approximate solution form has more terms. The last difficult work is to solve
the system of nonlinear algebraic equations obtained from all conditions expressed in
terms of the coefficients of the solution. However, by solving such a nonlinear system
using appropriate software packages, we can eventually get a common set of solution
coefficients from which the solution of the BVP is obtained. Therefore, using N = 3 in
the approximate solution form is sufficient to get the solution of Example 4.2, which is
the same as the exact solution.

Next, we want to investigate the effect of increasing the number of terms in an assumed
solution for the FGM. In particular, we study the effect of increasing the integer number
N in (3.3) on the accuracy of the approximate solution in the following example.

Example 4.3. Use of the Fibonacci Galerkin method (FGM) to construct the analytical
solution of the nonsingular two-point boundary value problem:

u′′(x) = − 2

x
u′(x) +

2

x2
u(x) +

sin(lnx)

x2
, 1 < x < 2, (4.22)

with the boundary conditions

u(1) = 1 and u(2) = 2. (4.23)

It can be found in [19] that the exact solution of the above BVP is

u(x) = k1x+
k2
x2
− 3

10
sin(lnx)− 1

10
cos(lnx), (4.24)

where

k2 =
1

70
(8− 12 sin(ln 2)− 4 cos(ln 2)) ≈ −0.03921,

k1 =
11

10
− k2 ≈ 1.13921.

Solution: By the FGM, the approximate analytical solution to the above BVP can be
written as

uFGM(x) :=

N∑
i=0

ciφi(x), (4.25)

where ci is the constant coefficient which will be determined at the next step, and φi(x)
is the Fibonacci basis function expressed for i = 0, 1, 2, ..., N as

φ0(x) = 1,

φ1(x) = x,

φ2(x) = x2 + 1,

φ3(x) = x3 + 2x,

...

φN (x) =

bN2 c∑
i=0

(
N − i
i

)
xN−2i, N ≥ 0.

(4.26)
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Now, the solution form and its derivatives are

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x) + ...+ cN

bN2 c∑
i=0

(
N − i
i

)
xN−2i,

u′FGM(x) = c1 + 2c2x+ c3(3x2 + 2) + ...+ cN

bN2 c∑
i=0

(N − 2i)

(
N − i
i

)
xN−2i−1,

u′′FGM(x) = 2c2 + 6c3x+ ...+ cN

bN2 c∑
i=0

(N − 2i)(N − 2i− 1)

(
N − i
i

)
xN−2(i+1).

(4.27)

Using the first equation of (4.27) and the conditions in (4.23), we have the following two
equations

c0 + c1 + 2c2 + ...+ cN

bN2 c∑
i=0

(
N − i
i

)
= 1,

c0 + 2c1 + 5c2 + ...+ cN

bN2 c∑
i=0

(
N − i
i

)
2N−2i = 2.

(4.28)

Defining the residual function of Eq.(4.22) and substituting the terms in (4.27) into
the resulting equation, we have

R(x) = x2u′′FGM(x) + 2xu′FGM(x)− 2uFGM(x)− sin(lnx),

= x2
(

2c2 + 6c3x+ ...+ cN

bN2 c∑
i=0

(N − 2i)(N − 2i− 1)

(
N − i
i

)
xN−2(i+1)

)

+ 2x

(
c1 + 2c2x+ c3(3x2 + 2) + ...+ cN

bN2 c∑
i=0

(N − 2i)

(
N − i
i

)
xN−2i−1

)

− 2

(
c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x) + ...+ cN

bN2 c∑
i=0

(
N − i
i

)
xN−2i

)
− sin(lnx),

= −2c0 + (4x2 − 2)c2 + 10x3c3 + ...+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i

·
(
(N − 2i)x4 + 2

))
cN − sin(lnx).

(4.29)

Using the residual condition (3.6) over the interval [1, 2], we have∫ 2

1

Wj(x)

[
− 2c0 + (4x2 − 2)c2 + 10x3c3 + ...

+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i ·

(
(N − 2i)x4 + 2

))
cN − sin(lnx)

]
dx = 0.

(4.30)
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Selecting the weight function Wj(x) in (4.30) to be φj(x) in (4.26) for j = 0, 1, ..., N − 2,
we obtain∫ 2

1

1 ·

[
− 2c0 + (4x2 − 2)c2 + 10x3c3 + ...

+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i

(
(N − 2i)x4 + 2

))
cN − sin(lnx)

]
dx = 0,

∫ 2

1

x ·

[
− 2c0 + (4x2 − 2)c2 + 10x3c3 + ...

+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i

(
(N − 2i)x4 + 2

))
cN − sin(lnx)

]
dx = 0,

∫ 2

1

(x2 + 1) ·

[
− 2c0 + (4x2 − 2)c2 + 10x3c3 + ...

+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i

(
(N − 2i)x4 + 2

))
cN − sin(lnx)

]
dx = 0,

∫ 2

1

(x3 + 2x) ·

[
− 2c0 + (4x2 − 2)c2 + 10x3c3 + ...

+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i

(
(N − 2i)x4 + 2

))
cN − sin(lnx)

]
dx = 0,

...∫ 2

1

bN−2
2 c∑

i=0

(
N − 2− i

i

)
xN−2−2i

 · [− 2c0 + (4x2 − 2)c2 + 10x3c3 + ...

+

( bN2 c∑
i=0

(
N − i
i

)
(N − 2i− 1)xN−2i

(
(N − 2i)x4 + 2

))
cN − sin(lnx)

]
dx = 0,

(4.31)

respectively.

For N = 3 : From (4.28) and the first two equations of (4.31), we obtain the system
of four linear equations in the variables ci, i = 0, 1, 2, 3 as follows

c0 + c1 + 2c2 + 3c3 = 1,

c0 + 2c1 + 5c2 + 12c3 = 2,

−12c0 + 44c2 + 225c3 = 3− 6 cos (ln 2) + 6 sin (ln 2) ,

−15c0 + 60c2 + 310c3 = 5− 8 cos2
(

ln
√

2
)

+ 16 sin
(

ln
√

2
)

cos
(

ln
√

2
)
.

(4.32)
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Solving system (4.32) using the MATLAB R program, we get the set of coefficients as
follows

{c0 = 0.04798669084, c1 = 0.6984798944, c2 = 0.1530267129, c3 = −0.01750667035} .

Consequently, the solution of the BVP (4.22)-(4.23) obtained by the FGM is

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x),

= 0.2010134037 + 0.6634665537x+ 0.1530267129x2 − 0.01750667035x3.
(4.33)

For N = 4 : From (4.28) and the first three equations of (4.31), we obtain the system
of five linear equations in the variables ci, i = 0, 1, 2, 3, 4 as follows

c0 + c1 + 2c2 + 3c3 + 5c4 = 1,

c0 + 2c1 + 5c2 + 12c3 + 29c4 = 2,

−60c0 + 220c2 + 1125c3 + 4128c4 = 15− 30 cos (ln 2) + 30 sin (ln 2) ,

−15c0 + 60c2 + 310c3 + 1155c4 = 5− 8 cos2
(
ln
√
2
)
+ 16 sin

(
ln
√
2
)
cos

(
ln
√
2
)
,

−1400c0 + 5768c2 + 29925c3 + 112120c4 = 294− 210 cos (ln 2) + 210 sin (ln 2)

− 336 cos2
(
ln
√
2
)
+ 1008 sin

(
ln
√
2
)
cos

(
ln
√
2
)
.

(4.34)

Solving system (4.34) using the MATLAB R program, we obtain the set of the coefficients
as follows

{c0 = 0.08185298649, c1 = 0.7016060141, c2 = 0.1028249099,

c3 = 0.01154785298, c4 = −0.004750475856}.

Consequently, the solution of the BVP (4.22)-(4.23) obtained by the FGM is

uFGM(x) = c0 + c1x+ c2(x2 + 1) + c3(x3 + 2x) + c4(x4 + 3x2 + 1),

= 0.1799274205 + 0.7247017201x+ 0.08857348233x2

+ 0.01154785298x3 − 0.004750475856x4.

(4.35)

For N = 5 : From (4.28) and the first four equations of (4.31), we obtain the system
of six linear equations in the variables ci, i = 0, 1, 2, 3, 4, 5 as follows

c0 + c1 + 2c2 + 3c3 + 5c4 + 8c5 = 1,

c0 + 2c1 + 5c2 + 12c3 + 29c4 + 70c5 = 2,

−60c0 + 220c2 + 1125c3 + 4128c4 + 13320c5 = 11.09167125,

−15c0 + 60c2 + 310c3 + 1155c4 + 3780c5 = 3.034734605,

−1400c0 + 5768c2 + 29925c3 + 112120c4 + 368865c5 = 291.4460466,

−13.5c0 + 58.5c2 + 305.4285713c3 + 1154.25c4 + 3827.492062c5 = 2.954229089.

(4.36)

Solving system (4.36) using the MATLAB R program, we obtain the set of the coefficients
as follows

{c0 = 0.2126400029, c1 = 0.5039892453, c2 = −0.01444169476, c3 = 0.2286816532,

c4 = −0.09342913915, c5 = 0.01166935967}.
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Consequently, the solution of the BVP (4.22)-(4.23) obtained using the FGM is

uFGM(x) = c0 + c1x+ c2(x
2 + 1) + c3(x

3 + 2x) + c4(x
4 + 3x2 + 1) + c5(x

5 + 4x3 + 3x),

= 0.1047691690 + 0.9963606307x− 0.2947291122x2 + 0.2753590919x3

− 0.09342913915x4 + 0.01166935967x5.

(4.37)

A comparison of the numerical values of the exact solution (4.24) and the FGM so-
lutions as expressed in (4.33) for N = 3, (4.35) for N = 4 and (4.37) for N = 5 at
some specific points are shown in Table 1. As shown in the table, the value of the FGM
solutions for N = 3, 4, 5 are in good agreement with the value of the exact solution at
each indicated point and the values become closer to the exact value when the value of
N is higher. This can also be seen from the values of the absolute errors between the
exact solution and the FGM solutions for N = 3, 4, 5 as shown in Table 2. At the same
point indicated in Table 2, all of the absolute errors for N = 5 are the lowest values when
compared with the values for N = 3 and N = 4. Moreover, the solution graphs of the
problem including the exact solution and the FGM solutions for N = 3, 4, 5 are plotted
in Figure 3.

Since the exact solution uexact of Example 4.3 is known, then the computational order
of convergence (COC) of the sequence {uNFGM}N≥0, which is defined by [20]

ρ̄N =
ln |eN+1/eN |
ln |eN/eN−1|

, (4.38)

where eN = uNFGM−uexact, can be calculated for some positive integer N . The term uNFGM

denotes an approximate solution obtained using the FGM with the number of solution
components N as shown in (3.3). For example, the value ρ̄7 of uFGM in Example 4.3 will
be studied at x = 1.3 and x = 1.6. First, the values of u6FGM, u

7
FGM, u

8
FGM evaluated at

those two points must be calculated using the same procedure as mentioned above, but
a harder endeavor is required. Secondly, the errors e8, e7, e6 at the specified points can
be obtained using the obtained approximate solutions. Finally, the values of the COC for
N = 7, i.e., ρ̄7, of the sequence of the FGM solutions evaluated at x = 1.3 and x = 1.6
by using (4.38) are shown in Table 3. As seen in Table 3, the values of ρ̄7 of the FGM
solutions for x = 1.3 and x = 1.6 are approximately 6.871 and 2.855, respectively. �

x uexact uFGM (N = 3) uFGM (N = 4) uFGM (N = 5)
1.1 1.0926293 1.0926876 1.0926882 1.0926506
1.2 1.1870848 1.1872802 1.1872194 1.1871150
1.3 1.2833824 1.2836729 1.2835316 1.2833943
1.4 1.3814460 1.3817606 1.3815517 1.3814336
1.5 1.4811594 1.4814383 1.4811951 1.4811357
1.6 1.5823925 1.5826010 1.5823656 1.5823754
1.7 1.6850140 1.6851435 1.6849559 1.6850130
1.8 1.7888985 1.7889608 1.7888471 1.7889090
1.9 1.8939295 1.8939480 1.8939090 1.8939373

Table 1. Comparison between the exact solution and the FGM solutions
for N = 3, 4, 5 at some specific interior points in [1, 2].
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x |uexact − uFGM| (N = 3) |uexact − uFGM| (N = 4) |uexact − uFGM| (N = 5)
1.1 5.83× 10−5 5.89× 10−5 2.13× 10−5

1.2 1.95× 10−4 1.35× 10−4 3.01× 10−5

1.3 2.91× 10−4 1.49× 10−4 1.19× 10−5

1.4 3.15× 10−4 1.06× 10−4 1.24× 10−5

1.5 2.79× 10−4 3.56× 10−5 2.37× 10−5

1.6 2.08× 10−4 2.69× 10−5 1.71× 10−5

1.7 1.30× 10−4 5.81× 10−5 9.29× 10−7

1.8 6.23× 10−5 5.15× 10−5 1.04× 10−5

1.9 1.85× 10−5 2.05× 10−5 7.79× 10−6

Table 2. Absolute errors between the exact solution and the FGM so-
lutions for N = 3, 4, 5 at some specific interior points in [1, 2].

1 1.2 1.4 1.6 1.8 2

x

1

1.2

1.4

1.6

1.8

2

u
(x

)

Exact solution

FGM solution (N=3)

FGM solution (N=4)

FGM solution (N=5)

Figure 3. Graphical solutions of the BVP (4.22)-(4.23). The solid line
represents the exact solution and the symbols ∗, o, + denote the FGM
solutions for N = 3, 4, 5, respectively.

x |e8/e7| |e7/e6| ρ̄7
1.3 0.7696060 0.9626058 6.8713629
1.6 0.6304141 0.8507705 2.8548363

Table 3. Computational order of convergence ρ̄7 of the sequence of the
FGM solutions in Example 4.3 when evaluated at x = 1.3 and x = 1.6
via (4.38).
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5. Conclusions

In this paper, we proposed a Fibonacci Galerkin method (FGM) for constructing ap-
proximate analytical solutions of certain types of boundary value problems such as the
linear singular two-point BVP shown in Example 4.1, the nonlinear multi-point BVP
shown in Example 4.2 and the regular two-point BVP shown in Example 4.3. The exact
solutions of the proposed problems were provided for comparison. The method is based
on using the Galerkin method with Fibonacci basis functions as weight functions. The
accuracy and reliability of the method can be guaranteed using the idea that the values
of weighted residual integrals on the problem’s domain are close to or equal to zero. As
a result, the accuracy of the approximate analytical solutions of the proposed BVPs can
be improved by choosing the number of the solution components N as studied in Exam-
ple 4.3. The technique does not require a translation of the original domain of the problem
and can avoid some critical issues due to singular points of the problem. Some illustrative
problems, for example, a linear singular two-point BVP, a nonlinear multi-point BVP and
a regular two-point BVP with a transcendental-function solution were given and it was
shown that the method performed well for such problems. For some examples shown, the
solutions obtained by the FGM were the same as the exact solutions. We believe that the
FGM can be an efficient method for other kinds of BVPs.
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