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Abstract Leibniz algebras are generalizations of Lie algebras. By using the classification results of

low-dimensional non-Lie nilpotent and non-nilpotent solvable Leibniz algebras obtained earlier, we define

a basis of the derivation algebra Der(A) of each Leibniz algebra A and study their properties. It is

known that for a Leibniz algebra A if the Lie algebra A/Leib(A) is complete, then A is a complete

Leibniz algebra. We show that the converse holds when A is a complete solvable Leibniz algebra with

dim(A) ≤ 3. It is also known that for the derivation algebra of a complete Lie algebra is complete.

However, our results show that this is not true for Leibniz algebras.
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1. Introduction

A Leibniz algebra, named after Gottfried Wilhelm Leibniz, was first studied by Bloh
[1] and later popularized by Loday [2] as a generalization of Lie algebras. Several studies
of Leibniz algebras have been associated to various areas such as differential geometry,
noncommutative geometry, algebraic K-theory, algebraic topology and quantum physics.

Given any Leibniz algebra A, we denote Leib(A) = span{[x, x] | x ∈ A}. A linear map
d : A→ A is called a derivation of a Leibniz algebra A if d[x, y] = [d(x), y]+[x, d(y)] for all
x, y ∈ A. The vector space of derivations Der(A) is a Lie algebra under the commutator
bracket. As in case of Lie algebras, derivations play a crucial role in understanding
the structure of Leibniz algebras and their representations. The aim of this paper is to
discuss properties of derivations and the completeness of low-dimensional non-Lie Leibniz
algebras. We use a generalization to Leibniz algebras for the concept of completeness.
Precisely, a Leibniz algebra A is called complete [3] if Z(A/Leib(A)) = {0} and for each
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d ∈ Der(A), there exists x ∈ A such that im(d − Lx) ⊆ Leib(A) where Lx is the left
multiplication operator defined by Lx(y) = [x, y] for all y ∈ A.

This paper is organized as follows. In Section 2, we review important notions and
properties of Lie algebras and Leibniz algebras. In Section 3, we revisit the classifications
of two and three-dimensional non-Lie Leibniz algebras given in [4]. We define a basis
for Der(A),Leib(A) and A/Leib(A) of each algebra and study their properties. We
also determine which of these Leibniz algebras are complete and which are not complete.
Boyle, Misra and Stitzinger [3] proved that for a Leibniz algebra A if the Lie algebra
A/Leib(A) is complete, then A is a complete Leibniz algebra. We show that the converse
holds for every complete solvable Leibniz algebra of dimension 3. In [5], Meng proved
that for a complete Lie algebra L, Der(L) is complete. However, we prove that this
is not true for Leibniz algebras. In particular, we show that there exists a complete
solvable Leibniz algebra A for which Der(A) is not complete. We also show that for
a complete solvable Leibniz algebra A with dim(A) ≤ 3, Der(A)/I is complete where
I = {d ∈ Der(A) | im(d) ⊆ Leib(A)}.

Throughout the paper, all algebras are assumed to be finite-dimensional over an alge-
braically closed field F with characteristic zero.

2. Preliminaries

In this section, we recall the basic definitions for Lie algebras from [5] and [6]. For
Leibniz algebras, we closely follow the notations in [3] and [4].

Definition 2.1. A Lie algebra L over a field F is a vector space equipped with a bilinear
map, called bracket, [ , ] : L × L → L such that [x, x] = 0 for all x ∈ L and satisfying
the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ L.

Let I be a subspace of a Lie algebra L. Then I is a subalgebra if [I, I] ⊆ I, an ideal if
[L, I] ⊆ I. For a Lie algebra L, L is called abelian if [x, y] = 0 for all x, y ∈ L, and the
set Z(L) = {x ∈ L | [x, y] = 0 for all y ∈ L} is called the center of L. Clearly, Z(L) is an
abelian ideal of L.

Definition 2.2. For a given Lie algebra (L, [ , ]), the series of ideals

L(0) ⊇ L(1) ⊇ L(2) ⊇ . . . where L(0) = L and L(i+1) = [L(i),L(i)],

L0 ⊇ L1 ⊇ L2 ⊇ . . . where L0 = L and Li+1 = [L,Li]

are called the derived series and the lower central series of L, respectively. The Lie
algebra is said to be solvable (resp. nilpotent) if L(m) = 0 (resp. Lm = 0) for some
non-negative integer m.

It is clear that if L is nilpotent, then L is solvable. It is not true that if a Lie algebra
is solvable, then it is nilpotent.

Definition 2.3. A linear map d : L → L of a Lie algebra (L, [ , ]) is said to be a
derivation if

d([x, y]) = [d(x), y] + [x, d(y)]

for all x, y ∈ L. The set of all derivations of L is denoted by Der(L).
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It is known that Der(L) is a Lie algebra under the commutator bracket [d1, d2] = d1d2−
d2d1 for all d1, d2 ∈ Der(L). For x ∈ L, define the map adx : L → L by adx(y) = [x, y]
for all y ∈ L. Then we have that adx ∈ Der(L) for all x ∈ L.

Definition 2.4. A derivation d ∈ Der(L) is called an inner derivation if there exists
x ∈ L such that d = adx. An outer derivation is any derivation which is not inner.

Definition 2.5. [5] A Lie algebra L is said to be complete if

(1) the center Z(L) = {0}, and
(2) every derivation of L is inner.

It is known that a nonzero nilpotent Lie algebra is never complete since it has a
nontrivial center and it also has outer derivations. The following result from [5] will be
useful in the next section.

Theorem 2.6. [5] The non-abelian Lie algebra of dimension 2 is a complete Lie algebra.

Definition 2.7. A (left) Leibniz algebra A over a field F is a vector space equipped with
a bilinear map, called bracket, [ , ] : A×A→ A satisfying the Leibniz identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

for all x, y, z ∈ A.

For a Leibniz algebra A and x ∈ A, we define the left multiplication operator Lx : A→
A and the right multiplication operator Rx : A→ A by Lx(y) = [x, y] and Rx(y) = [y, x]
respectively for all y ∈ A. Then the vector space of left multiplication operators L(A) =
{Lx|x ∈ A} is a Lie algebra under the commutator bracket. A right Leibniz algebra is a
vector space equipped with a bilinear map satisfying [[x, y], z] = [x, [y, z]]+[[x, z], y] for all
x, y, z ∈ A. Throughout this work Leibniz algebra always refers to (left) Leibniz algebra.
As the following example shows a (left) Leibniz algebra is not necessarily a (right) Leibniz
algebra.

Example 2.8. [4] Let A be a 2-dimensional algebra with the following brackets:

[x, x] = 0, [x, y] = 0, [y, x] = x, [y, y] = x.

Then A is a (left) Leibniz algebra, but it is not a (right) Leibniz algebra, since [[y, y], y] 6=
[y, [y, y]] + [[y, y], y].

Any Lie algebra is clearly a Leibniz algebra. A Leibniz algebra A satisfying the
condition that [x, x] = x2 = 0 for all x ∈ A, is a Lie algebra since in this case the
Leibniz identity becomes the Jacobi identity. Given any Leibniz algebra A, we denote
Leib(A) = span{[x, x] | x ∈ A}. The Leibniz algebra A is said to be abelian if [A,A] = 0.
The left center of A is denoted by Zl(A) = {x ∈ A | [x, y] = 0 for all y ∈ A} and the
right center of A is denoted by Zr(A) = {x ∈ A | [y, x] = 0 for all y ∈ A}. The center
of A is Z(A) = Zl(A) ∩ Zr(A).

Let I be a subspace of a Leibniz algebra A. Then I is a subalgebra if [I, I] ⊆ I, a
left (resp. right) ideal if [A, I] ⊆ I (resp. [I,A] ⊆ I). I is an ideal of A if it is both
a left ideal and a right ideal. In particular, Leib(A) is an abelian ideal of A. For any
ideal I of A we define the quotient Leibniz algebra in the usual way. In fact, Leib(A)
is the minimal ideal such that A/Leib(A) is a Lie algebra with respect to the bracket
[ , ] : A/Leib(A) ×A/Leib(A) → A/Leib(A) defined by [x + Leib(A), y + Leib(A)] =
[x, y] + Leib(A) for all x, y ∈ A.
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Definition 2.9. For a given Leibniz algebra (A, [ , ]), the series of ideals

A(0) ⊇ A(1) ⊇ A(2) ⊇ . . . where A(0) = A and A(i+1) = [A(i),A(i)],

A0 ⊇ A1 ⊇ A2 ⊇ . . . where A0 = A and Ai+1 = [A,Ai]

are called the derived series and the lower central series of A, respectively. The Leibniz
algebra is said to be solvable (resp. nilpotent) if A(m) = 0 (resp. Am = 0) for some
non-negative integer m.

Definition 2.10. A linear map d : A→ A of a Leibniz algebra (A, [ , ]) is said to be a
derivation if

d([x, y]) = [d(x), y] + [x, d(y)]

for all x, y ∈ A. The set of all derivations of A is denoted by Der(A). An ideal I of A is
said to be a characteristic ideal of A if d(I) ⊆ I for all d ∈ Der(A).

As in case of Lie algebras, Der(A) is a Lie algebra under the commutator bracket. The
following result from [3] will also be useful in the next section.

Proposition 2.11. [3] For a finite dimensional Leibniz algebra A over field C, Leib(A)
is a characteristic ideal.

Definition 2.12. A derivation d ∈ Der(A) is called an inner derivation if there exists
x ∈ A such that im(d − Lx) ⊆ Leib(A). An outer derivation is any derivation which is
not inner.

Definition 2.13. [3] A Leibniz algebra A is said to be complete if

(1) the center Z(A/Leib(A)) = {0}, and
(2) every derivation of A is inner.

Thus, if a Lie algebra A is complete as a Leibniz algebra, then it is also complete as
a Lie algebra since Leib(A) = {0} in this case. Note that another notion of complete
Leibniz algebras was also defined in [7]. In [3], it is shown that by Definition 2.13, the
signature results from Lie theory would carry over to Leibniz algebras. In particular, a
semisimple Leibniz algebra over a field of characteristic zero would not be complete in
the sense of [7], but will be complete by Definition 2.13. With this in mind, we use the
definition of inner derivations and completeness of Leibniz algebras as in [3].

3. Main Results

We first observe that if A is a non-Lie Leibniz algebra, then Leib(A) 6= {0} and
Leib(A) 6= A. Thus, there is no one-dimensional non-Lie Leibniz algebra. It is known
that if A is a non-Lie nilpotent Leibniz algebra and dim(A) ≤ 3, then A is solvable (see
[4]). In this section, we assume F = C and revisit the classifications of two and three-
dimensional non-Lie Leibniz algebras given in [4]. We define a basis for Der(A), Leib(A),
and A/Leib(A) of each algebra and study their properties.

3.1. Two-Dimensional Leibniz Algebras

Let A be a non-Lie Leibniz algebra and dim(A) ≤ 2. By [4], A is isomorphic to a
cyclic Leibniz algebra generated by x with Leib(A) = span{x2} and either [x, x2] = 0
(hence A is nilpotent) or [x, x2] = x2 (hence A is solvable). Let B denote the ordered
basis for A given by B = {x, x2}. To find a basis for Der(A), let d ∈ Der(A) and define
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the action of d on the basis vectors as follows: d(x) = α1x+α2x
2 and d(x2) = β1x+β2x

2

where α1, α2, β1, β2 ∈ F.

Case 1: A = span{x, x2} with [x, x2] = 0. By the derivation property, we have that

d([x, x]) = 2α1x
2, d([x, x2]) = β1x

2, d([x2, x]) = β1x
2, d([x2, x2]) = 0.

By the linear independence of the basis vectors, we obtain that β1 = 0 and β2 = 2α1.
This implies that

[d]B =
(
α1 0
α2 2α1

)
= α1

(
1 0
0 2

)
+ α2

(
0 0
1 0

)
.

Therefore, Der(A) = span{d1, d2}, where

d1(x) = x, d1(x2) = 2x2

d2(x) = x2, d2(x2) = 0.

Since d2 = Lx, d2 is inner. Since d1(x) = x and Lw(x) 6= x for all w = αx+βx2 ∈ A, there
is no element w ∈ A such that im(d1−Lw) ⊆ Leib(A) = span{x2} which implies d1 is not
inner. We observe that [d1, d2] = d2. Thus, Der(A)(1) = Der(A)1 = [Der(A),Der(A)] =
span{d2}, Der(A)(2) = [Der(A)(1),Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1]
= span{d2} = Der(A)1. Therefore, Der(A) is solvable but not nilpotent.

Case 2: A = span{x, x2} with [x, x2] = x2. We have that

d([x, x]) = (2α1 + α2)x2, d([x, x2]) = (α1 + β1 + β2)x2,

d([x2, x]) = β1x
2, d([x2, x2]) = β1x

2.

Hence, α1 = 0, β1 = 0 and β2 = α2. This implies that

[d]B =
(

0 0
α2 α2

)
= α2

(
0 0
1 1

)
.

Hence, Der(A) = span{d}, where d(x) = x2 and d(x2) = x2. Since d = Lx, d is inner.
Clearly, Der(A) is abelian in this case.

Therefore, we obtain the following theorem.

Theorem 3.1. Let A be a non-Lie Leibniz algebra and dim(A) = 2. Then A is nilpotent
if and only if Der(A) is not nilpotent.

Remark 3.2. We observe that by suitable change of basis our derivation algebras co-
incide with results given in [8, page 2192–2193]. However, our results show that any
two-dimensional non-Lie Leibniz algebra is not complete. This result might be a coun-
terexample to Corollary 3.4 in [8].

Proposition 3.3. Let A be a non-Lie Leibniz algebra and dim(A) ≤ 2. Then A is not
complete.

Proof. Since Leib(A) = span{x2}, A/Leib(A) = span{x+Leib(A)} is a one-dimensional
Lie algebra. Thus, Z(A/Leib(A)) = A/Leib(A) which implies A is not complete.
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3.2. Three-Dimensional Nilpotent Leibniz Algebras

Let A be a non-Lie nilpotent Leibniz algebra and dim(A) = 3. By [4], A is isomorphic
to one of the following algebras spanned by the ordered basis B = {x, y, z} defined by the
given nonzero multiplications.

Case 1: [x, x] = y, [x, y] = z,
Case 2: [x, x] = z,
Case 3: [x, x] = z, [y, y] = z,
Case 4: [x, y] = z, [y, x] = −z, [y, y] = z,
Case 5: [x, y] = z, [y, x] = αz, α ∈ F \ {1,−1}.

To find a basis for Der(A), let d ∈ Der(A) and define the action of d on the basis vectors
as follows: d(x) = α1x+ α2y + α3z, d(y) = β1x+ β2y + β3z and d(z) = γ1x+ γ2y + γ3z
where αi, βi, γi ∈ F, i = 1, 2, 3.

Case 1: [x, x] = y, [x, y] = z. Then,

d([x, x]) = 2α1y + α2z, d([x, y]) = β1y + (α1 + β2)z, d([x, z]) = γ1y + γ2z,

d([y, x]) = β1y, d([y, y]) = β1z, d([y, z]) = 0,

d([z, x]) = γ1y, d([z, y]) = γ1z, d([z, z]) = 0.

This implies that

[d]B =

(
α1 0 0
α2 2α1 0
α3 α2 3α1

)
= α1

(
1 0 0
0 2 0
0 0 3

)
+ α2

(
0 0 0
1 0 0
0 1 0

)
+ α3

(
0 0 0
0 0 0
1 0 0

)
.

Therefore, Der(A) = span{d1, d2, d3} where

d1(x) = x, d1(y) = 2y, d1(z) = 3z,

d2(x) = y, d2(y) = z, d2(z) = 0,

d3(x) = z, d3(y) = 0, d3(z) = 0.

Since im(d2−Lx) ⊆ Leib(A) and im(d3−Lx) ⊆ Leib(A), d2 and d3 are inner. If im(d1−
Lw) ⊆ Leib(A) for some w ∈ A, then x ∈ im(d1−Lw) ⊆ Leib(A) = span{y, z} which is a
contradiction. Hence, there is no element w ∈ A such that im(d1−Lw) ⊆ Leib(A) which
implies d1 is not inner. We observe that [d1, d2] = d2, [d1, d3] = 2d3 and [d2, d3] = 0. Thus,
Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d2, d3}, Der(A)(2) = [Der(A)(1),
Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1] = span{d2, d3} = Der(A)1. There-
fore, Der(A) is solvable but not nilpotent. Also, we see that in this case, Leib(A) =
span{y, z}, A/Leib(A) = span{x + Leib(A)} and Z(A/Leib(A)) 6= {0} because x +
Leib(A) ∈ Z(A/Leib(A)).

Case 2: [x, x] = z. Then, Der(A) = span{d1, d2, d3, d4, d5} where

d1(x) = x, d1(y) = 0, d1(z) = 2z,

d2(x) = y, d2(y) = 0, d2(z) = 0,

d3(x) = z, d3(y) = 0, d3(z) = 0,

d4(x) = 0, d4(y) = y, d4(z) = 0,

d5(x) = 0, d5(y) = z, d5(z) = 0.

Since im(d3 − Lx) ⊆ Leib(A) and im(d5 − Lx) ⊆ Leib(A), d3 and d5 are inner. If
im(d1−Lw) ⊆ Leib(A) for some w ∈ A, then x ∈ im(d1−Lw) ⊆ Leib(A) = span{z} which
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is a contradiction. Hence, there is no element w ∈ A such that im(d1 − Lw) ⊆ Leib(A)
which implies d1 is not inner. Similarly, d2 and d4 are not inner. We observe that

[d1, d2] = −d2, [d1, d3] = d3, [d1, d4] = 0, [d1, d5] = 2d5, [d2, d3] = 0,

[d2, d4] = −d2, [d2, d5] = −d3, [d3, d4] = 0, [d3, d5] = 0, [d4, d5] = −d5.

Thus, Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d2, d3, d5}, Der(A)(2)

= [Der(A)(1),Der(A)(1)] = span{d3}, Der(A)(3) = [Der(A)(2),Der(A)(2)] = {0} and
Der(A)2 = [Der(A),Der(A)1] = span{d2, d3, d5} = Der(A)1. Therefore, Der(A) is solv-
able but not nilpotent. Also, we see that in this case, Leib(A) = span{z}, A/Leib(A) =
span{x + Leib(A), y + Leib(A)} and Z(A/Leib(A)) 6= {0} because x + Leib(A) ∈
Z(A/Leib(A)).

Case 3: [x, x] = z, [y, y] = z. Then, Der(A) = span{d1, d2, d3, d4} where

d1(x) = x, d1(y) = y, d1(z) = 2z,

d2(x) = y, d2(y) = −x, d2(z) = 0,

d3(x) = z, d3(y) = 0, d3(z) = 0,

d4(x) = 0, d4(y) = z, d4(z) = 0.

Since im(d3 − Lx) ⊆ Leib(A) and im(d4 − Lx) ⊆ Leib(A), d3 and d4 are inner. There
is no element w ∈ A such that im(d1 − Lw) ⊆ Leib(A) which implies d1 is not inner.
Likewise, d2 is not inner. We observe that

[d1, d2] = 0, [d1, d3] = d3, [d1, d4] = d4,

[d2, d3] = d4, [d2, d4] = −d3, [d3, d4] = 0.

Thus, Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d3, d4}, Der(A)(2) = [Der(A)(1),
Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1] = span{d3, d4} = Der(A)1. There-
fore, Der(A) is solvable but not nilpotent. Also, we see that in this case, Leib(A) =
span{z}, A/Leib(A) = span{x + Leib(A), y + Leib(A)} and Z(A/Leib(A)) 6= {0} be-
cause x+ Leib(A) ∈ Z(A/Leib(A)).

Case 4: [x, y] = z, [y, x] = −z, [y, y] = z. Then, Der(A) = span{d1, d2, d3, d4} where

d1(x) = x, d1(y) = y, d1(z) = 2z,

d2(x) = z, d2(y) = 0, d2(z) = 0,

d3(x) = 0, d3(y) = x, d3(z) = 0,

d4(x) = 0, d4(y) = z, d4(z) = 0.

Since im(d2 − Lx) ⊆ Leib(A) and im(d4 − Lx) ⊆ Leib(A), d2 and d4 are inner. There
is no element w ∈ A such that im(d1 − Lw) ⊆ Leib(A) which implies d1 is not inner.
Similarly, d3 is not inner. We observe that

[d1, d2] = d2, [d1, d3] = 0, [d1, d4] = d4,

[d2, d3] = d4, [d2, d4] = 0, [d3, d4] = 0.

Thus, Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d2, d4}, Der(A)(2) = [Der(A)(1),
Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1] = span{d2, d4} = Der(A)1. There-
fore, Der(A) is solvable but not nilpotent. Also, we see that in this case, Leib(A) =
span{z}, A/Leib(A) = span{x + Leib(A), y + Leib(A)} and Z(A/Leib(A)) 6= {0} be-
cause x+ Leib(A) ∈ Z(A/Leib(A)).
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Case 5: [x, y] = z, [y, x] = αz, α ∈ F\{1,−1}. Then, Der(A) = span{d1, d2, d3, d4} where

d1(x) = x, d1(y) = 0, d1(z) = z,

d2(x) = z, d2(y) = 0, d2(z) = 0,

d3(x) = 0, d3(y) = y, d3(z) = z,

d4(x) = 0, d4(y) = z, d4(z) = 0.

Since im(d2 − Lx) ⊆ Leib(A) and im(d4 − Lx) ⊆ Leib(A), d2 and d4 are inner. There
is no element w ∈ A such that im(d1 − Lw) ⊆ Leib(A) which implies d1 is not inner.
Similarly, d3 is not inner. We observe that

[d1, d2] = 0, [d1, d3] = 0, [d1, d4] = d4,

[d2, d3] = −d2, [d2, d4] = 0, [d3, d4] = 0.

Thus, Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d2, d4}, Der(A)(2) = [Der(A)(1),
Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1] = span{d2, d4} = Der(A)1. There-
fore, Der(A) is solvable but not nilpotent. Also, we see that in this case, Leib(A) =
span{z}, A/Leib(A) = span{x + Leib(A), y + Leib(A)} and Z(A/Leib(A)) 6= {0} be-
cause x+ Leib(A) ∈ Z(A/Leib(A)).

By straightforward computations above, we obtain the following theorems.

Theorem 3.4. Let A be a non-Lie nilpotent Leibniz algebra and dim(A) = 3. Then
Der(A) is solvable but not nilpotent.

Theorem 3.5. Let A be a non-Lie nilpotent Leibniz algebra and dim(A) = 3. Then A
admits an outer derivation.

The following is immediate from the above theorem. Note that we rely on the second
condition of Definition 2.13 to obtain this result. It is shown in [3] that nilpotent Leibniz
algebras are not complete relying on the first condition of 2.13.

Corollary 3.6. Let A be a non-Lie nilpotent Leibniz algebra and dim(A) = 3. Then A
is not complete.

3.3. Three-Dimensional Solvable Leibniz Algebras

Let A be a non-Lie non-nilpotent solvable Leibniz algebra and dim(A) = 3. By [4], A
is isomorphic to one of the following algebras spanned by the ordered basis B = {x, y, z}
defined by the given nonzero multiplications.

Case 1: [x, z] = z,
Case 2: [x, z] = αz, α ∈ F \ {0}, [x, y] = y, [y, x] = −y,
Case 3: [x, y] = y, [y, x] = −y, [x, x] = z,
Case 4: [x, z] = 2z, [y, y] = z, [x, y] = y, [y, x] = −y, [x, x] = z,
Case 5: [x, y] = y, [x, z] = αz, α ∈ F \ {0},
Case 6: [x, z] = z + y, [x, y] = y,
Case 7: [x, z] = y, [x, y] = y, [x, x] = z.

To find a basis for Der(A), let d ∈ Der(A) and define the action of d on the basis vectors
as follows: d(x) = α1x+ α2y + α3z, d(y) = β1x+ β2y + β3z and d(z) = γ1x+ γ2y + γ3z
where αi, βi, γi ∈ F, i = 1, 2, 3.
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Case 1: [x, z] = z. Then, Der(A) = span{d1, d2, d3} where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = 0, d2(y) = y, d2(z) = 0,

d3(x) = 0, d3(y) = 0, d3(z) = z.

We have that d1 and d2 are not inner but d3 is inner, since im(d3 − Lx) ⊆ Leib(A).
Since [d1, d2] = −d1, [d1, d3] = 0 and [d2, d3] = 0, we have that Der(A)(1) = Der(A)1 =
[Der(A),Der(A)] = span{d1}, Der(A)(2) = [Der(A)(1),Der(A)(1)] = {0} and Der(A)2 =
[Der(A),Der(A)1] = span{d1} = Der(A)1. Hence, Der(A) is solvable but not nilpotent.
Also, we see that Leib(A) = span{z}, A/Leib(A) = span{x+ Leib(A), y+ Leib(A)} and
Z(A/Leib(A)) 6= {0} because x+ Leib(A) ∈ Z(A/Leib(A)).

Case 2: [x, z] = αz, α ∈ F \ {0}, [x, y] = y, [y, x] = −y. Then, Der(A) = span{d1, d2, d3}
where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = 0, d2(y) = y, d2(z) = 0,

d3(x) = 0, d3(y) = 0, d3(z) = z.

We have that d1, d2 and d3 are inner, since im(d1−Ly) ⊆ Leib(A), im(d2−Lx) ⊆ Leib(A)
and im(d3 − Lz) ⊆ Leib(A). Since [d1, d2] = −d1, [d1, d3] = 0 and [d2, d3] = 0, we have
that Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d1}, Der(A)(2) = [Der(A)(1),
Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1] = span{d1} = Der(A)1. Hence,
Der(A) is solvable but not nilpotent. Also, we see that Leib(A) = span{z}, A/Leib(A) =
span{x+ Leib(A), y + Leib(A)} and Z(A/Leib(A)) = {0}.
Case 3: [x, y] = y, [y, x] = −y, [x, x] = z. Then, Der(A) = span{d1, d2, d3} where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = z, d2(y) = 0, d2(z) = 0,

d3(x) = 0, d3(y) = y, d3(z) = 0.

We have that d1, d2 and d3 are inner, since im(d1 − Ly) ⊆ Leib(A), im(d2 − Lz) ⊆
Leib(A) and im(d3 − Lx) ⊆ Leib(A). Since [d1, d2] = 0, [d1, d3] = −d1 and [d2, d3] =
0, we have that Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d1}, Der(A)(2) =
[Der(A)(1),Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1] = span{d1} = Der(A)1.
Hence, Der(A) is solvable but not nilpotent. Also, we see that Leib(A) = span{z},
A/Leib(A) = span{x+ Leib(A), y + Leib(A)} and Z(A/Leib(A)) = {0}.
Case 4: [x, z] = 2z, [y, y] = z, [x, y] = y, [y, x] = −y, [x, x] = z. Then, Der(A) =
span{d1, d2} where

d1(x) = y, d1(y) = −z, d1(z) = 0,

d2(x) = z, d2(y) = y, d2(z) = 2z.

We have that d1 and d2 are inner, since im(d1 − Ly) ⊆ Leib(A) and im(d2 − Lx) ⊆
Leib(A). Since [d1, d2] = −d1, we have that Der(A)(1) = Der(A)1 = [Der(A),Der(A)] =
span{d1}, Der(A)(2) = [Der(A)(1),Der(A)(1)] = {0} and Der(A)2 = [Der(A),Der(A)1]
= span{d1} = Der(A)1. Hence, Der(A) is solvable but not nilpotent. Also, we see that
Leib(A) = span{z}, A/Leib(A) = span{x+ Leib(A), y+ Leib(A)} and Z(A/Leib(A)) =
{0}.
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Case 5: [x, y] = y, [x, z] = αz, α ∈ F \ {0}.
Case 5.1: α = 1. We have that Der(A) = span{d1, d2, d3, d4} where

d1(x) = 0, d1(y) = y, d1(z) = 0,

d2(x) = 0, d2(y) = z, d2(z) = 0,

d3(x) = 0, d3(y) = 0, d3(z) = y,

d4(x) = 0, d4(y) = 0, d4(z) = z.

Since im(d1 − Lx) ⊆ Leib(A), im(d2 − Lx) ⊆ Leib(A), im(d3 − Lx) ⊆ Leib(A) and
im(d4 − Lx) ⊆ Leib(A), d1, d2,d3 and d4 are inner. We observe that

[d1, d2] = −d2, [d1, d3] = d3, [d1, d4] = 0,

[d2, d3] = −d1 + d4, [d2, d4] = −d2, [d3, d4] = d3.

Thus, Der(A)(1) = Der(A)1 = [Der(A),Der(A)] = span{d1, d2, d3, d4} which implies that
Der(A) is neither solvable nor nilpotent.

Case 5.2: α 6= 1. We have that Der(A) = span{d1, d2} where

d1(x) = 0, d1(y) = y, d1(z) = 0,

d2(x) = 0, d2(y) = 0, d2(z) = z.

Since im(d1 − Lx) ⊆ Leib(A) and im(d2 − Lx) ⊆ Leib(A), d1 and d2 are inner. Since
[d1, d2] = 0, we have that Der(A) is abelian.

For both Case 5.1 and 5.2, we see that Leib(A) = span{y, z}, A/Leib(A) = span{x+
Leib(A)} and Z(A/Leib(A)) 6= {0} because x+ Leib(A) ∈ Z(A/Leib(A)).

Case 6: [x, z] = z + y, [x, y] = y. Then, Der(A) = span{d1, d2} where

d1(x) = 0, d1(y) = y, d1(z) = z,

d2(x) = 0, d2(y) = 0, d2(z) = y,

Since im(d1 − Lx) ⊆ Leib(A) and im(d2 − Lx) ⊆ Leib(A), d1 and d2 are inner. Since
[d1, d2] = 0, we have that Der(A) is abelian. Also, we see that Leib(A) = span{y, z},
A/Leib(A) = span{x + Leib(A)} and Z(A/Leib(A)) 6= {0} because x + Leib(A) ∈
Z(A/Leib(A)).

Case 7: [x, z] = y, [x, y] = y, [x, x] = z. Then, Der(A) = span{d1, d2} where

d1(x) = y, d1(y) = y, d1(z) = y,

d2(x) = z, d2(y) = y, d2(z) = y.

Since im(d1 − Lx) ⊆ Leib(A) and im(d2 − Lx) ⊆ Leib(A), d1 and d2 are inner. Since
[d1, d2] = 0, we have that Der(A) is abelian. Also, we see that Leib(A) = span{y, z},
A/Leib(A) = span{x + Leib(A)} and Z(A/Leib(A)) 6= {0} because x + Leib(A) ∈
Z(A/Leib(A)).

By straightforward computations above, we obtain the following theorems.

Theorem 3.7. Let A be a non-Lie non-nilpotent solvable Leibniz algebra and dim(A) =
3. Then every derivation of A is inner if and only if A is not isomorphic to a Leibniz
algebra spanned by {x, y, z} with the nonzero product given by [x, z] = z.
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Theorem 3.8. Let A be a non-Lie non-nilpotent solvable Leibniz algebra and dim(A) =
3. Then A is complete if and only if A is isomorphic to a Leibniz algebra spanned by
{x, y, z} with the nonzero products given by one of the following:

(1) [x, z] = αz, α ∈ F \ {0}, [x, y] = y, [y, x] = −y,
(2) [x, y] = y, [y, x] = −y, [x, x] = z,
(3) [x, z] = 2z, [y, y] = z, [x, y] = y, [y, x] = −y, [x, x] = z.

Remark 3.9. (1) Note that some of our results may look similar to those in [9].
However, by comparing our classification of derivation algebras to the classifica-
tion given in [9], one Leibniz algebra isomorphism class was missed in their list,
i.e., our Case 2 in Section 3.2. This implies that the dimension of the derivation
algebra of three-dimensional Leibniz algebras can be up to five and hence their
conclusion [9, page 81] may not cover all cases.

(2) For a given Leibniz algebra A = span{x, y, z}, we observe that Der(A) ⊆
DerLie(A) in [10] as the derivations defined in our work are also Lie-derivations,
except the case in [10, Proposition 3.4]. They use the Leibniz algebra class [x, y] =
z and [y, z] = z in [10, Proposition 3.4] whereas we use [x, x] = z and [y, y] = z in
Case 3 in Section 3.2 which corresponds to [4, Theorem 6.4 (3)]. Also, throughout
their work, each Leib(A) is spanned by [x, x], [y, y] and [z, z] instead of [a, a] for
any a ∈ A so all inner and outer derivations for each case defined in [10] are
different from ours.

Observe that if a Leibniz algebra A is isomorphic to a Leibniz algebra in Theorem
3.8 (3), then A is also complete by Definition in [7]. However, if a Leibniz algebra A is
isomorphic to a Leibniz algebra in Theorem 3.8 (1) or (2), then A will not be complete
as it admits outer derivations in the sense of [7]. (Note that in [7], the completeness
definition is defined for right Leibniz algebras.)

It is known that for a Leibniz algebra A if the Lie algebra A/Leib(A) is complete,
then A is a complete Leibniz algebra [3]. As shown below the converse holds for complete
solvable Leibniz algebras of dimension 3.

Theorem 3.10. Let A be a complete solvable Leibniz algebra of dimension 3. Then the
Lie algebra A/Leib(A) is complete. Furthermore, Der(A/Leib(A)) is a complete Lie
algebra.

Proof. Suppose A is a complete solvable Leibniz algebra of dimension 3. By Theorem
3.8, Leib(A) = span{z} and hence A/Leib(A) = span{x + Leib(A), y + Leib(A)} with
[x+ Leib(A), y+ Leib(A)] = y+ Leib(A). Thus, A/Leib(A) is a non-abelian Lie algebra
of dimension 2. By Theorem 2.6, we have that A/Leib(A) is complete. To find a basis
for Der(A/Leib(A)), let d ∈ Der(A/Leib(A)) and define

d(x+ Leib(A)) = α1(x+ Leib(A)) + α2(y + Leib(A))

d(y + Leib(A)) = β1(x+ Leib(A)) + β2(y + Leib(A))

where α1, α2, β1, β2 ∈ F. Then
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d([x+ Leib(A), y + Leib(A)])

= [d(x+ Leib(A)), y + Leib(A)] + [x+ Leib(A), d(y + Leib(A))]

= [α1(x+ Leib(A)) + α2(y + Leib(A)), y + Leib(A)]

+ [x+ Leib(A), β1(x+ Leib(A)) + β2(y + Leib(A))]

= α1[x+ Leib(A), y + Leib(A)] + α2[y + Leib(A), y + Leib(A)]

+ β1[x+ Leib(A), x+ Leib(A)] + β2[x+ Leib(A), y + Leib(A)]

= (α1 + β2)[x+ Leib(A), y + Leib(A)]

= (α1 + β2)([x, y] + Leib(A))

= (α1 + β2)(y + Leib(A))

and

d([x+ Leib(A), y + Leib(A)]) = d([x, y] + Leib(A))

= d(y + Leib(A))

= β1(x+ Leib(A)) + β2(y + Leib(A)).

Thus, by the linear independence of the basis vectors, α1 = β1 = 0. This implies that

[d]{x+Leib(A),y+Leib(A)} =
(

0 0
α2 β2

)
= α2

(
0 0
1 0

)
+ β2

(
0 0
0 1

)
.

Therefore, Der(A/Leib(A)) = span{d1, d2}, where

d1(x+ Leib(A)) = y + Leib(A), d1(y + Leib(A)) = Leib(A),

d2(x+ Leib(A)) = Leib(A), d2(y + Leib(A)) = y + Leib(A).

Since [d1, d2] = −d1, we have that Der(A/Leib(A)) is a non-abelian Lie algebra of di-
mension 2. By Theorem 2.6, this proves that Der(A/Leib(A)) is complete.

In [5], Meng proved that for a Lie algebra L such that Z(L) = {0} and d(ad(L)) ⊆
ad(L) for all d ∈ Der(Der(L)), Der(L) is a complete Lie algebra. As a result, for a
complete Lie algebra L, Der(L) is complete. However, as the following examples show
there exist complete Leibniz algebras A such that Der(A) is not complete.

Example 3.11. Consider the complete Leibniz algebra A = span{x, y, z} with nonzero
multiplications [x, z] = αz, α ∈ F \ {0}, [x, y] = y, [y, x] = −y. We know that Der(A) =
span{d1, d2, d3} where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = 0, d2(y) = y, d2(z) = 0,

d3(x) = 0, d3(y) = 0, d3(z) = z.

Since [d1, d2] = −d1, [d1, d3] = 0 and [d2, d3] = 0, we have that d3 ∈ Z(Der(A)) which
implies that Z(Der(A)) 6= {0}. Therefore, Der(A) is not complete.

Example 3.12. Consider the complete Leibniz algebra A = span{x, y, z} with nonzero
multiplications [x, y] = y, [y, x] = −y, [x, x] = z.We know that Der(A) = span{d1, d2, d3}
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where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = z, d2(y) = 0, d2(z) = 0,

d3(x) = 0, d3(y) = y, d3(z) = 0.

Since [d1, d2] = 0, [d1, d3] = −d1 and [d2, d3] = 0, we have that d2 ∈ Z(Der(A)) which
implies that Z(Der(A)) 6= {0}. Therefore, Der(A) is not complete.

We observe that d3 ∈ Z(Der(A)) when im(d3) = span{z} ⊆ Leib(A) in Example 3.11
and d2 ∈ Z(Der(A)) when im(d2) = span{z} ⊆ Leib(A) in Example 3.12. As a result,
we formulate the following conjecture for complete Leibniz algebras.

Conjecture. For a complete Leibniz algebra A, Der(A)/I is a complete Lie algebra where
I = {d ∈ Der(A) | im(d) ⊆ Leib(A)}.

In the following theorem, we show that the conjecture is true for complete solvable
Leibniz algebras of dimension 3.

Theorem 3.13. If A is a complete solvable Leibniz algebra of dimension 3 and I = {d ∈
Der(A) | im(d) ⊆ Leib(A)}, then Der(A)/I is a complete Lie algebra.

Proof. Clearly, I 6= ∅ as 0 ∈ I. To show that I is a subspace of Der(A), let d1, d2 ∈
I and α, β ∈ F. Then im(d1), im(d2) ⊆ Leib(A). Let a ∈ A. Then we have that
(αd1 +βd2)(a) = αd1(a) +βd2(a) ∈ Leib(A). Thus, im(αd1 +βd2) ⊆ Leib(A) and hence
αd1 + βd2 ∈ I which implies that I is a subspace of Der(A). To show that I is an ideal
of Der(A), let d1 ∈ I, d2 ∈ Der(A). Then im(d1) ⊆ Leib(A). Let a ∈ A. Then we have
that [d1, d2](a) = d1d2(a) − d2d1(a). By Proposition 2.11, d1d2(a) − d2d1(a) ∈ Leib(A).
Thus, im([d1, d2]) ⊆ Leib(A) and hence [d1, d2] ∈ I. This proves that I is an ideal of
Der(A).

Assume A is a complete solvable Leibniz algebra of dimension 3. By Theorem 3.8, A is
isomorphic to one of the following algebras defined by the given nonzero multiplications.
We will find I and Der(A)/I of each algebra to show that Der(A)/I of 3-dimensional
complete solvable Leibniz algebras are complete.

(1) [x, z] = αz, α ∈ F\{0}, [x, y] = y, [y, x] = −y. Then, Der(A) = span{d1, d2, d3}
where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = 0, d2(y) = y, d2(z) = 0,

d3(x) = 0, d3(y) = 0, d3(z) = z,

and [d1, d2] = −d1, [d1, d3] = 0 and [d2, d3] = 0. Thus, I = span{d3} and
Der(A)/I = span{d1 + I, d2 + I} with [d1 + I, d2 + I] = −d1 + I. Therefore,
Der(A)/I is a non-abelian Lie algebra of dimension 2. By Theorem 2.6, this
proves that Der(A)/I is complete.

(2) [x, y] = y, [y, x] = −y, [x, x] = z. Then, Der(A) = span{d1, d2, d3} where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = z, d2(y) = 0, d2(z) = 0,

d3(x) = 0, d3(y) = y, d3(z) = 0,
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and [d1, d2] = 0, [d1, d3] = −d1 and [d2, d3] = 0. Thus, I = span{d2} and
Der(A)/I = span{d1 + I, d3 + I} with [d1 + I, d3 + I] = −d1 + I. Therefore,
Der(A)/I is a non-abelian Lie algebra of dimension 2. By Theorem 2.6, this
proves that Der(A)/I is complete.

(3) [x, z] = 2z, [y, y] = z, [x, y] = y, [y, x] = −y, [x, x] = z. Then Der(A) =
span{d1, d2} where

d1(x) = y, d1(y) = −z, d1(z) = 0,

d2(x) = z, d2(y) = y, d2(z) = 2z,

and [d1, d2] = −d1. Thus, I = {0} and Der(A)/I = Der(A) which is complete by
Theorem 2.6.
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