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Abstract In this research, we study a (341)-dimensional chiral nonlinear Schrédinger equation (CNLSE)
and find its exact traveling wave solutions via the extended simplest equation method (ESEM) and the
improved generalized tanh-coth method (IGTCM). The exact solutions of the CNSLE are complex-valued
functions that can be expressed in terms of exponential, hyperbolic, trigonometric, and rational func-
tions. The magnitudes of some representative solutions are plotted as 3D and contour plots to illustrate
the physical interpretations of the solutions. The findings establish that the used methods are simple,
powerful, and reliable tools for obtaining new exact traveling wave solutions for complex nonlinear partial

differential equations.
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1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) have been used as models for com-
plex phenomena occurring in many real-world problems in science and engineering. For
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example, Bera and Siti [1] used NLPDEs as models for some quantum mechanical prob-
lems. One of the NLPDEs which has become an important model in quantum physics is
the chiral nonlinear Schrédinger equation (CNLSE) which has applications to the quan-
tum Hall effect.

In 1998, Nishino et al. [2] proposed the 1D-CNLSE and showed that it had dark and
bright soliton solutions. The 1D-CNLSE can be written in the form

i®; + bo®yy + iby (PO — &*B,)P = 0, (1.1)

where ® = ®(z,t) is a complex-valued function of x and t, by is the coefficient of dispersion
along the z-axis, and b; is the coefficient of the nonlinear coupling terms. The superscript
* denotes the complex conjugate and i = /—1. Many different methods have now been
proposed for solving 1D-CNLSEs. For example, equation (1.1) has been solved using
the extended Fan sub-equation method [3], the sine-Gordon expansion method [4] and
the Riccati-Bernoulli sub-ODE method [5]. In [6], equation (1.1) with time-dependent
coefficients was solved by the soliton ansatz method for deriving its soliton solution.
Moreover, equation (1.1) was solved by utilizing three finite difference schemes for its
numerical solutions [7].

The 1D-CNLSE in (1.1) has also been generalized to a (2 4+ 1)-dimensional CNLSE
which can be written as [3, 9]

iy + bo(Pry + Byy) + 0 {01 (BDL — D*D,) + o (D] — *P,)} @ =0, (1.2)

where ® = ®(x,y,t) is a complex-valued function of z,y and ¢, by is the coefficient of
dispersion along the spatial directions, and b1, by are the coefficients of the nonlinear
coupling terms. The superscript * again denotes the complex conjugate and i = /—1.
Because equation (1.2) fails the Painleve test of integrability, then it is not integrable
by the method of Inverse Scattering Transform [9]. However, equation (1.2) has been
solved to find its exact traveling wave solutions using many different methods such as
the trial solution technique [3], the extended trial equation method [10], the generalized
auxiliary equation method [11], the modified Jacobi elliptic expansion method [12], the
enhanced modified extended tanh expansion method [13] and the modern extended direct
algebraic approach [14]. In addition, the (1 + 1)-dimensional and (2 + 1)-dimensional
CNLSEs have been generalized to different forms such as the stochastic form [15-17], the
non-autonomous form [18, 19] and the conformable derivative form [20, 21].

In the present work, we introduce the (3+1)-dimensional CNLSE which can be written
as:

iy + bo(Prg + By + ©.) 4 {1y (PDL — B* D) + by (DD — ©* D)

1.3
by (PP — &*D,)} & =0, (1.3)

where ® = ®(z,y, 2,t) is a complex-valued function of x,y, z and ¢, by is the coefficient of
dispersion along the spatial directions, and by, bs, b3 are the coefficients of the nonlinear
coupling terms. Again, the superscript * represents complex conjugate and i = v/—1.

The main purpose of this research is to derive exact traveling solutions of (1.3) using
two techniques, namely, the extended simplest equation method (ESEM) and the im-
proved generalized tanh-coth method (IGTCM). The paper is arranged as follows. In
section 2, we describe the main steps of the ESEM and IGTCM. In section 3, we first
apply the two methods to derive exact solutions of (1.3) and then show some graphs of
the exact solutions. Finally, we present conclusions in section 4.
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2. ALGORITHMS

In this section, we describe the algorithms of the extended simplest equation method
(ESEM) and the improved generalized tanh-coth method (IGTCM) for solving NLPDEs.
Consider a general nonlinear PDE of the form:

P(uauxauyaumut;umrauyy;“zu Uit ) = Oa (21)

where P is a polynomial of u = u(z,y, z,t) and its various partial derivatives which
consists of both linear and nonlinear terms. As the first step in the two methods, Eq. (2.1)
is converted into an ordinary differential equation (ODE) using the following traveling
wave transformation

u(z,y, z,t) = u(¢), where ¢ =ax+ By+ vz + et, (2.2)

and where «, 3,7 and ¢ are nonzero constants which will be determined at a later step.
Then, after inserting the transformation (2.2) into equation (2.1) using the chain rule, we
integrate the resulting equation with respect to ¢ and obtain an ODE in u = u(¢) which
can be written in the form

Qu,u' v’ u'  u' u” u u” u L) =0, (2.3)

where the prime denotes the derivative with respect to (.

2.1. THE EXTENDED SIMPLEST EQUATION METHOD

In this subsection, we discuss the key steps of the extended simplest equation method
(ESEM) [22-24].
Step 1: We assume that the solution of Eq. (2.3) has the form

W) = 3 an (1/’> n Zm(”) (w) (2.4)

N=0

whereay (N =0,1,2,3,.... M), 8;(J =0,1,2,3, ..., M—1) are constants with ap; Bpr—1 #
0 and ( is defined in (2.2). Further, we assume that the function ¢» = ¥ (¢) is the solution
of the ESEM auxiliary equation

Y+ = p, (2.5)

where 1 and 7 are constants. Following [22-24], the function v, satisfying Eq. (2.5), can
be defined depending on the values of the parameter 7 as follows:

o1 cosh \/—n( + o9 sinh /— C—i— , n<0,
P(() = o1 cos /NG + o2sin/N¢ + £, n >0, (2.6)
5¢2+ 010+ 02, n=0,

and we have

5 2

2 (770?—7703—%) (i)Q—UﬂL%‘, n <0,

(%) =3 (o rumg—22) (2 = n 2. w0 27)
(07 = 2u09) 3 + 2, n=0,

where o1 and o9 are arbitrary constants.
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Step 2: Using the homogeneous balance principle [25], we find the positive value M
in Eq. (2.4) by balancing between the highest-order derivative term and the highest-order
nonlinear terms in (2.3).

Step 3: Substituting Eq. (2.4) into Eq. (2.3) along with Egs. (2.5), (2.6), (2.7) and

setting the sums of all terms with the same power of - and (%) (w—) ,(1=1,2,3,..)

P »
to zero, we obtain a set of nonlinear algebraic equations for ay, (N = 0,1,2,3,..., M),
By, (J=0,1,2,3,... M = 1), o, B,y &, v and 1.

Step 4: Then, if the constants an, (N =0,1,2,3,...,M), 84, (J =0,1,2,3,..., M—1),
a, 3,7 €, p and 1 in Step 3 can be evaluated using a symbolic software package such as
Maple, we substitute the obtained values and 1 in (2.6) into (2.4) and obtain the exact
solutions of (2.1) via the transformation (2.2).

2.2. THE IMPROVED GENERALIZED TANH-COTH METHOD

In this subsection, we describe the steps in the improved generalized tanh-coth method
(IGTCM) [26-28].
Step 1: Let the solution of Eq. (2.3) be of the form:

M oM
u(@) =Y and(QV+ D ane(@QM N, (2.8)
N=0 N=M+1

where the coefficients ay are constants such that ap; # 0, agps # 0 and M is a positive
integer which will be determined later using the homogeneous balance principle [25]. Also,
let the function ¢({) be a solution of the generalized Riccati equation

¢'(¢) = p+1(C) + 9¢*(C), (2.9)
where p, 7, o are arbitrary constants. Following [26—28], we define the solutions for the

function ¢(¢) of (2.9), which depend upon the values of p, 7 and o, as follows.
Case 1: If p =0, then

-
P(¢) = r———s (2.10)
Case 2: If 7 =0, then
‘/Tp?tan(\/ﬁ(:) p>0,0>0,
B @tanh(ﬁ() p>0,0<0,
Y= L fann(— 550 p< 0,050, 211)
@tan(—\//TaC) p<0,0<0.
Case 3: If 0 = 0, then
#(¢) = M' (2.12)
Case 4: If p =71 =0, then
1
o(¢) = ol (2.13)
Case 5: if 72 = 4po # 0, then
2 2
o(C) = J2(ret2) (2.14)
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Case 6: If 72 < 4po and o # 0, then

4po — T2tan (%\/4pa - 72C> -7

o(¢) = 5 (2.15)
Case 7: If 2 > 4po and o # 0, then
\/72 — 4potanh (%\/72 - 4p(f§> -7
P(C) = : (2.16)

20

Step 2: After obtaining the value of M from the homogeneous balance principle [25],
we substitute Eq. (2.8) into Eq. (2.3) along with Eq.(2.9) and obtain a polynomial in
(), (j = ...,—2,-1,0,1,2,...). Setting all coefficients of ¢’(¢) to zero, we obtain a
system of algebraic equations which can be solved by a symbolic software package such
as Maple to obtain values for ay(N =0,...,2M), a, B, 7, €, p, T and 0.

Step 3: The exact solutions of Eq. (2.1) can then be obtained by inserting the val-
ues of an(N =0,....2M), «, 8,7, €, p, 7 and o into the solution (2.8) along with the
appropriate case for the solution of ¢(¢) in Egs. (2.10)-(2.16) and for ¢ in (2.2).

3. ExAcT TRAVELING WAVE SOLUTIONS OF (1.3) UsING THE ESEM AND
IGTCM

In this section, we use the ESEM and IGTCM to obtain exact symbolic solutions of the
(34 1)-dimensional CNLSE in Eq. (1.3). Firstly, we assume that the solution of Eq. (1.3)
can be written in the form:

O(x,y,2,t) = u(()e'®, (3.1)
where ( and © are wave transformations defined by
(=cx+ky+mz—uvt and O =pr +qy +rt + wt, (3.2)

where ¢, k, m, v, p, ¢, r and w are real constants. Then, substituting the assumed so-
lution (3.1) into Eq. (1.3) and separating the real and imaginary parts of the resulting
equation, we obtain the following equations:

Re: by (02 + k2 + m2) u” + 2 (pby + qba + rbz) u® — (bo (p2 +¢%+ 7“2) + w) u = 0,(3.3)

Im: (2bo(cp + kq+ mr) —v)u = 0. (3.4)
Since v’ in Eq. (3.4) is not zero, we have the relationship

v =2by (ecp+ kq +mr). (3.5)

Secondly, we balance the highest order derivative v and the nonlinear term u3 in Eq. (3.3)
using the homogeneous balance principle to obtain the value of M as M = 1. The
remainder of the work to obtain an exact solution is then to solve Eq. (3.3) for u(¢), ¢
and © using either the ESEM or IGTCM.
3.1. APPLICATION OF THE ESEM

Inserting M = 1 into the solution form (2.4), we obtain

u(C) = oo + (ﬁ) T (jp) , (3.6)
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where «g, a; and [y are constants which will be determined at a later step and where the
function 1 = ¥(¢) is a solution of Eq. (2.5). Substituting Eq. (3.6) into the ODE (3.3),
and then using Eqgs. (2.6) and (2.7) with the appropriate value of 7, Eq.(3.3) becomes

ﬁ and (ﬁ) (%) Then, setting each coefficient of this

polynomial to zero, we have the following three systems of algebraic equations.

a polynomial of the terms

Result 1: For n < 0, we obtain the following set of algebraic equations:

1
@ D= 6npa0a%b1 — Gnqaoa%bg — 6777"04004%193 + 2b1pa8 + 2b2qa8 + 2b3rag
— b0p2a0 — b0q2a0 —borlag —wap = 0,
1
ot : —6npaibiBy — 61qaibyfo — 6nraibsfy + 12 ppagaiby —w Bo
+12 pragaibs — *nboBy — nk*boBo — nm>boSo + 6 paghi Bo — r°boBo
+ 6 ragbsBo — p°boBo — ¢°boBo + 12 L gapaibs + 6 gagbeBo = 0,
1
02 12 upatby Bo + 12 11 qatbafo + 12 praibsfo + 6 pagbi 55 + 3m>1bofo
+3k%uboBo + 6 qaobgﬂg + 67’aobgﬂg + 61 oipagaiby + 61 02qagaiby
+ 6na%ro¢0a%b3 — 6na§pa0a%b1 — 6na§qa0a%b2 — 6770§ra0a%b3
2 2b 2 2b 2 2b
76H paoary01 76/1 o102 76/1 Tapay 03 3 ubofy = 0,
n n
1 ) ) )
i 2pb1 B + 2 qbaB3 + 27b335 + 210 03c?bofo + 21 0k bo o
2 2b
— 2102cboflo — 2102k3boBy — 21 rZmboy — 2 V00
(3.7)
2 2b 2 2b 2 2b
_ oM m7bofo 61 02rabyf — 6 ML 1P _ o qoé; 250
+ 61 07pathi By + 61 01°qaibaBo + 6no1’raibsfy — 6102 paibifo
2 Qb 2k.2b
Gy o2galbyfo — 6 P10 o WKTbB0 o 02y s
1 !/
E (Z) L= anai’bl — 2nqa‘§b2 — 2777"0/%1)3 + 6pa(2)a1b1 + 6q04(2)041b2

— p2041b0 — q2()é1bo — r2a1b0 —waoy + 67’0&30[163 = 07

=

</~
/N

) : 4upai’bl + 4uqa?b2 + 4/u°a?b3 + cQﬂ a1bg + k2u a1bo + m2u a1bg

+ 12 pagoi b1 Bo + 12 qaga b2 By + 12 ragaribsBp = 0,

<[

Sl
/~

) : 6b1p0z1ﬁg + 6b2qalﬁg + 6b3ralﬁ§ - 2na§k2a1b0 —2n02°m2aqbg

9 urpasby _q u2qashby g purraibs _q 12ctaqbg g 1w2k%an by
U] Ui n n n
1w2m2an by

-2 +2n0ipaiby +2n0iqaiby +2n0iraibs
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+ 2002k a1by 4+ 2 02marby — 21 oapaiihy — 21 02qalhy

— 2770§7°a?b3 — 2770%02041190 + QnU%CQalbo =0.

Solving system (3.7) using the Maple package program, we obtain

1\/_b0 (2 + k2 +m?)

a0 u pbi + qba +rbs

2
5m:m¢—wwuﬁ—a@w> (3.8)

n )

b
w:EO(( 24 m?) - 20° + ¢ + 1),

where n(< 0), u, o1, 09, ¢, k, m, p, q, 7, by, b1, ba, and b3 are arbitrary constants such
that aq, By € R.

Substituting Eq. (3.8) into Eq. (3.6) along with Eq. (2.6), we obtain the exact solution of
Eq. (1.3) by inserting the resulting equation, Eq. (3.2) and the relation (3.5) into Eq. (3.1)
as follows:

2 4 1.2 2
@(m,y,z,t):l{i\/_bo(c + k2 +m?)

2 pb1 + gba + b3

o1 cosh (v/=n¢) + o sinh (v/=1¢) + &

i¢%mﬁ—ﬁmuw%w+W+m% (39)

) (01 sinh (v/=77C) /=7 + o2 cosh (v/=71¢) v/ =7 )

n (pby + by + rb3)

1
x <01 cosh (/=) + o2 sinh (v/=n¢) + Z) }

x exp (i (pxr + qy + rz + wt)),

where ¢ = cx + ky + mz — 2bg (cp + kq + mr) t.

Result 2: For n > 0, we obtain the following system:

1
@ T - 677pozoafb1 — 6r]qa0a§b2 — 6771"(1004%1)3 +2 blpag +2 bgqag
— bop? g — boq?ag — borlag — wag + 2 bgrag =0,
1
o : —6mpaibifo — 6nqatbafo — 6nraibsf + 12 ppagaibs — w By

+ 12 piragaibs — boc®n Bo — bon k*Bo — bomm? By + 6 pagbi Bo — bor*Bo
+67adbsBo — ap®Bo — bog® Bo + 12 1 qapai by + 6 gagbe By = 0,
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R 1 paiib Bo + 12 1 qaiba Bo + 12 praibsBo + 3bom? By + 3boc? 1 Bo

2qapa’b 2ragab
+6p040b1ﬁ§+6q@ob2ﬁg+67‘aobsﬁg—6Mq;; 122 _6H 7(7) 1
+ 6770%]304004%1)1 + 6na%qa0a§b2 + Gnafrocoafbg + 6n0§paoa%b1

+ 61 03qapaiby + 61 0iragaibs —

2 2b
6 £ Bbok g =0,

¢3 : 2pb1Bg + 2qb258 + 27"b358 + 2770'%b002ﬂ0 + 2770%b(]k2ﬂ0

2p 2 2pn k2
+ 20 03boc Bo + 21 03bok? Bo + 21 03bom? B — 2 2 B gt
n n
2b m2
o MOT% +6901%padhyBo + 6702gatbsfy + 61 0Fradbsy

2pa2b
+ 61 05paibify + 61 02qacba By + 61 0araibsBy — 6 %1150

_6 12qaibafo 6 2raibs B

+2n07bom? B = 0, (3.10)
n

=[S

< ) © = 2npaidby — 2nqaiby — 2nraibs + 6 pagarby + 6 qadagbs

<~

+ 67“04(2)0416)3 — b0p2a1 — b0q2a1 —borlag —wag = 0,

</
VR
<lg
N——

S A ppadby 4 4 pqadhy + 4 prashs + bocpag + bok oy 4+ bom?p oy

+ 12 pagar by Bo + 12 gagan be fo + 12 rapa b3 B = 0,

-
7N
<<
N———

2 2n0iparby + 21 02qadby 4+ 2n oiradbs + 2n oiboc oy

+ 2na%ak2a1 + 2 na%bomQal + 2 na%poq?’bl + 2na§qa‘;’b2
+ 2n05raibs + 2n02boctay 4+ 21 03bok? oy + 21 oabgm2ay

a3h adh
+ 6 parby B2 + 6 garbeB2 + 6raybsf — 2 & pnl 1 _ g #2a0iby

n
_q wrraibs _q 12boctan _9 w2bok2an 9 12bom2a _o.

n n Ui n

Solving system (3.10) using the Maple package program, we have the following results

1 b2 + k2 2
Oé():0,0tl::t* 70(0 + +m),
2 pb1 + gbz + b3

. wgﬂ—(o%o%)nz) (3.11)
0= (1 )

n
o= P+ ) =207+ +1%),
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where n(> 0), u, o1, 02, ¢, k, m, p, q, r, by, b1, ba, and b3 are arbitrary constants such
that a1, By € R.

Substituting Eq. (3.11) into Eq. (3.6) along with Eq. (2.6), we obtain the exact solu-
tion of Eq. (1.3) by inserting the resulting equation, Eq. (3.2) and the relation (3.5) into
Eq. (3.1) as follows:

1 bo(c? + k2 + m?)
@ s Yy 7t =3 E4/ -

" (—01 sin (\/EC) \/M + o2 cos (\/77() ﬁ)
01 COS (\/ﬁg) 4 09 sin (\/ﬁg) + %

12
L (@R m?) (of o)+ 42) (312)
1 (pb1 + gbz + rb3)

1
% <01 cos (/7€) + o2 sin (/7€) + ’;) }

x exp (i (pxr + qy + rz + wt)),

where ( = cx + ky + mz — 2bg (ep + kq + mr) t.

Result 3: For n = 0, we have

(%)
O\ ¢

1

o1

(%)

: 2bipag’ + 2 bgqag + 2b37"ag — bop?ag — bog?ay — bor?ag —wag =0,

112 upaoa%bl + 12 qaoa%bg + 12 TOéoOé%bg + 6pagb150
+ 6 gagba By + 67 b3 B — bop®Bo — bog®Bo — bor? o — w By = 0,

: —12 ,upogaoa%bl — 12uq02a0a§b2 — 12uragaoa%b3 + 6pa%a0a%b1
+ 6qa%a0a12b2 + 67“0%0(00@1)3 + 12 upa%blﬁo + 12”(]0[%[)260

+ 12 pratbs Bo + 3boc? 1 Bo + 3bok® 11 Bo + 3 bom?* 11 Bo + 6 pagbi B3

+ 6 qaob2 35 + 6 ragbs 35 = 0,
(3.13)
: =12 pupo2aibifo — 12 puqoaatbafo — 12 prosaibs By + 6 potaibi o

+ 6 qo2adby By + 6roradbs By — 4boc* oy + 2boc?o? By + 27b3 83
+ 2ak20fﬁo —4dam?poafy + 2 amQU%ﬁo + 2pblﬁg’ + 2qb2ﬁg’
— 4bok*poafo = 0,

: 6pa%albl + 6qa3a1b2 + 6ra3a1b3 — ap2a1 — bgq2a1 — borlaq —way = 0,

S A ppadby 4+ 4 pqadhy + 4 pradhs + acip oy + bok o 4+ bom oy

+ 12 pago b1 Bo + 12 qaoa b2 By + 12 ragaribsBp = 0,
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1 /
ﬁ (i) D= 4up02az{’b1 — 4uq02a‘;’b2 — 4,ur02a‘;’b3 + 2paf0a‘;’b1 + 2qofai’bg
+ 27"0%04{’1)3 — 4b002,u oo + 2 boC2O'%Oé1 —4 bokQM ooy + 2 bokQU%Oél

— 4b0m2,u oo01 + 2am20foz1 + 6palblﬂg + 6qozlbg,8§ + 6ra1b358 =0.

By solving system (3.13) using the Maple package program, we have the following results

1 bo (¢ + k2 2
ap =0, a1 = £~ —0(C+ —|—m)’
pb1 + gby + b3 (3.14)

2

Bo=a1\/o] —2poa, w=—by (P2 +q2+7“2)a

where u, o1, 09, ¢, k, m, p, q, r, by, b1, ba, and bz are arbitrary constants such that a1, 8y
eR.

Substituting (3.14) into Eq. (3.6) along with Eq. (2.6), we obtain the exact solution of
Eq. (1.3) by replacing the resulting equation, Eq. (3.2) and the relation (3.5) into Eq. (3.1)
as follows:

1 2 1.2 2
@(.’E’y,Zﬂf):* + _a(c i +m) 1 M<+Ul
2 pb1 +qbs + by \ 5uC% +01C+ 02

n a(c®+k2+m?)(2uog — o?) < 1 ) (3.15)
pb1 + gba +1b3 L+ 01+ 0o

><eXp(igc—i—qy—l—rz—bo(pZ—l—qQ—&—r‘g)t)7

where ( = cx + ky + mz — 2bg (ep + kg + mr) t.

3.2. APPLICATION OF THE IGTCM

Using M =1 and the solution form (2.8), we can write the solution of Eq. (3.3) as

u(€) = ag + a1¢(¢) + a2(6(¢)) ", (3.16)

where ag, a1 and as are constants which will be determined at a later step and where the
function ¢(({) satisfies Eq. (2.9). Next, we substitute Eqs. (3.16) and (2.9) into Eq. (3.3)
to obtain a polynomial in #(C) (j = —3,-2,-1,0,1,2,3). After setting all coefficients
of ¢7(() to zero, we obtain the following algebraic equations.

d73(C) : 2bpc®pPan + 2bok?p? g + 2bom? P 4 2paiby 4 2qaisbs + 2rasbs = 0,

#72(C) : 3boc®prag + bk pra_y + 3bom?pra_; + 6padagby + 6gasagbs

+ 67“04%0401)3 =0,
1 2 2,2 2 2,2 2 (3.17)
& 7 (C) : 2boctpoas + boc T i + 2bok” poais + bok T a1 + 2bgm*poay — wag
+ bom?r2a_ + 6pa§oz1b1 + 6pa20z%b1 + 6q0¢%o¢1b2 + 6qa2a%b2

+ 67"0[%041193 + 67"042@3173 — bop?as — bog?as — boras = 0,
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#°(C) 1 boc?pray + boctoTag + bok?pray + bok*oTag + bym?pray + bym oTas
+ 12pasaga by + Zpagbl + 12qasaga by + 2qagb2 + 12rasapabs
+ 27"043()3 — bop2ap — ag?ay — bor?ay — wag = 0,
#'(C) = 2bocPpoay + bociTay + 2bok? poay + bok* Ty 4 2bgm? poag + bomA T3 ay
+ Gpaga%bl + 6p043a1l)1 + 6qa2a§b2 + 6qa02a1b2 + 6ra2a§b3 + 6ra8a1b3
— bop?a1 — bogaq — bor?on — way =0,
2(¢) = 3bocoTay + 3bokPoTay + 3bgmioTay + 6pagaib; + 6qagaiby + 6ragaibs = 0,
() = 2bpcPoay + 2bgk*o?ay + 2bym ooy + 2paithy + 2qaiby + 2rathy = 0.

Then, solving system (3.17) using the symbolic package Maple and the equation ¢ =
cx + ky — 2a (cp + kq + mr) t, we obtain the following two results.

Result 1:

ap == _b0(02+k2+m3)7_ a; =0 a2:2aop
4(pby + gby + rb3) ’ T (3.18)

w:2bop(02+k2+m2)a—%0((02+k2+m2)72+2(p2+q2+7“2)),

where p, 7, 0,c, k, m, p, q, r, by, b1, ba, and bs are arbitrary constants such that oy € R.
Case 1: If p =0, then the exact solutions of Eq. (1.3) are

bo (¢ + k2 +m?3) .
0] t) =4 4/— t)). 3.19
(z,y,2,t) \/ 4(pb1+qb2+’l"bg)7—exp(z (px + qy + mz + wt)) ( )

Case 2: If 7 = 0, then the exact solutions of Eq. (1.3) are

bo (¢? + k2 +m?)
P t)==x4/— v t (v

x exp (i (pr + qy + mz + wt))

where po > 0 and

—bo (¢ + k2 +m2)
(0] t) ==+ \/ — th (/—
(@3 %1) \/ pby + qbsy + b3 poco ( pJC) (3.21)

x exp (i (pz + qy +mz + wt)),

where po < 0.
Case 3: If o = 0, then the exact solutions of Eq. (1.3) are

bo (¢ 4+ k% + m?) p 1
i =d,/- 5
(2,9, 2,1) \/ Doy + abs + by | \rexp(rC) —p | 2 (3.22)

x exp (i (pr + qy + mz + wt)) .

Case 4: If p =7 =0, then we obtain a trivial solution ®(z,y, z,t) = 0.
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Case 5: When 72 = 40p # 0, then we obtain the exact solutions of Eq. (1.3) as
1 bo (¢ + k2 2
O(x,y,2,t) =+ = _bo(e A +m)7_ (A -1
2 pb1 + qba + b3 T(+2
x exp (i (pr + qy + mz + wt)) .

(3.23)

Case 6: If 72 < 4po and o # 0, then we obtain the exact solutions of Eq. (1.3) as

24 2 2
@(x,yw,t)—i\/—bo(c +k2+m?) 2p0 +I
pb1 + gbz + b3 4po — T2 tan (%WC) —r 2 (3.24)
x exp (¢ (px + qy + mz + wt)) .

Case 7: If 72 > 4po and o # 0, then the exact solutions of Eq. (1.3) are

2 2 2
@(w,y,z,t)—:t\/—bo(c + k% +m?) +

2pc T
pb1 + gba + b3 <mtmh (% /72 _ dpo 4[,0() - 2) (3.25)

x exp (i (px + qy + mz + wt)) .

Result 2:

" by (¢ 4+ k% + m2) 200
Qp = - T, ] =
0 Apby + Agbs + drbs

, Qg = 07
(3.26)

1
w= <2p(c2+k2+m2)a—2(c2+k2+m2)72—(p2+q2+7"2)> bo,

where p, 7, 0,c, k, m, p, q, r, by, b1, b2, and bz are arbitrary constants such that oy € R.
Case 1: If p = 0, then the exact solutions of Eq. (1.3) are

by (2 4+ k2+m?2) (1 o
o ) =+4/— st ——=a
(@,2,1) \/ pbr + qbs + 103 | \ 2 i (—o 4+ 1e77¢) (3:27)

x exp (¢ (pr + qy + mz + wt)) .

Case 2: If 7 = 0, then the exact solutions of Eq. (1.3) are

bo (¢ + k2 + m?)
i =44/- Jpotan (y/po

x exp (i (pr + qy + mz + wt)),
where po > 0 and

pb1 + gbs + rb3
x exp (i (px + qy + mz + wt))

O(x,y,2,t) =+ \/ bo (2 + K2 & m) v/—po tanh (v/=pa() (3.29)

where po < 0.
Case 3: If 0 = 0, then we obtain the exact solutions of Eq. (1.3) as

bo (¢ + k% + m2) )
P =4 /— wt)) . 3.30
(z,y,2,t) \/ Tpby T+ dgby 1+ drbs Texp (i (pxr + qy + mz + wt)) ( )
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Case 4: If p =1 =0, then we obtain the exact solutions of Eq. (1.3) as

bo (¢2 + k2 + m?2) (1) ‘
¢ Y 7t = - = =+ —+ 4+ wt)). 3.31
(@20 ¢\/ ) (D eplitpr b atme o). (33D

Case 5: If 72 = op # 0, then the exact solutions of Eq. (1.3) are
bo (¢ + k2 2 2
@(m,y,z,t)::lz\/— o0 (2 + k2 4+ m?) <7__TC+ )

4(pby + qba + 1b3) ¢ (3.32)
x exp (i (px + qy + mz + wt)) .
Case 6: If 72 < 4po and o # 0, then the exact solutions of Eq. (1.3) are
bo (¢ 4+ k% + m?) 1
¢ ) =%/ dpo — 12t Z/dpo — 2
(@,9,2) \/ 2phy & qba + 1by) \ V4P T T tan | 5 Vidpo =T (3.33)
x exp (i (pr + qy + mz + wt)) .
Case 7: If 72 > 4po and o # 0, then the exact solutions of Eq. (1.3) are
bo (¢ + k2 +m?) 1
) ) =4/ — V72 —4potanh | =\/72 — 4
(@,y,21) \/ L(pby & gba 4 rbg) \ VT T Apotanh { VTR dpaC ) ) g o)
x exp (i (pr + qy + mz + wt)) .
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FIGURE 1. Graphs of |® («,0,0,t)| for ® (z,y, z,t) in (3.12): (a) 3D plot.
(b) Contour plot.

Next, we demonstrate graphs of some exact solutions of Eq. (1.3) obtained using the
two methods. In particular, fixing y = 0, z = 0 and using the domain —15 < z < 15
and —10 < ¢t < 10, we obtain the graphs in Figures1 (a) and (b) which show the 3D and
contour graphs of the magnitude of ® (z,y, z,t) in (3.12), respectively, when n = 2, u =
025,01 =1,00=1,¢=0.1, k=05 m=03,p=0.1, ¢ =0.15, r = 0.5, by = 0.8, by =
0.5, by = 0.5, by = 0.5 are used for the computation. The 3D solution graph in Figures 1
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(a) displays the behavior of a singularly periodic traveling wave solution. The effects of
varying the parameter values of by, by, b2, bs on the behavior of the solutions of (3.12) for
the remaining parameter values mentioned above are shown in Figure 2. In particular, the
effect of varying the value of by on |® (0,0,0,¢)| for —10 < ¢ < 10 can be seen in Figure 2
(a) for by = 0.8, 0.5, 0.2. The most important effect of changing the values of by is that
the singular point of the solution is moved. The effects of by, ba, bg on |® (0,0,0,¢)| as
t is varied can be seen in Figures2 (b), (c¢) and (d) in which the values of by, bs, b3 are
{0.5, 0.3, 0.1}. Tt is worth noting that, unlike by, varying the values of by, ba, b3 does not
affect the position of the singular point of the solution (3.12). For example, Figure2 (b)
shows the 2D relationship between |® (0,0,0,¢)| and ¢ for by = 0.5, 0.3, 0.1. It can be
seen from the figure that for all values of by, all the curves have the same structure but
the values of |®(0,0,0,t)| at a specific time ¢ are very slightly different for each curve
whereas the position of the singular point is the same for each curve. Similar behavior can
be seen in Figures2 (c) and (d) when the parameters by and b are varied, respectively.

|€(0,0,0,8)
|©(0,0,0,8)

-

H 1h -Io -5 [ H 10
t

—05 ——b =03sxs+b=0
B =05 b =03 b, ,1|

Q | (v)

[ S . .

DU=DE——DU=DS----D=DZ| ‘

|9(0,0,0,8)

|9(0,0.0.)|

B 1h i 1h

[ S S

|—b2=05——b2=03- . -b2=E|1| ‘—»3:.35——»3:33. . .»3=n1|

(c) (d)

FIGURE 2. Graphs of |®(0,0,0,t)| for ® (z,y,2,t) in (3.12): (a) by =
0.8,0.5,0.2. (b) by = 0.5,0.3, 0.1. (c) by = 0.5, 0.3,0.1. (d) b3 =
0.5, 0.3, 0.1.
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Figures 3 (a) and (b) show the 3D and contour graphs of the magnitude of ® (x,y, z,t)
in (3.25), respectively, when ¢ = 0,y = 0, p = 0.75, 7 = 0.85,0 = 0.1, ¢ = 0.1, k =
0.5,m = 0.5, p =025 ¢ =025 r = 0.5, 0 = 0.2, by = 0.1, b = 0.3, b3 = 0.25 are
used for the simulation on the domain —15 < z < 15 and —10 < ¢ < 10. Since solution
(3.25) can be expressed in terms of a hyperbolic cotangent function, then its magnitude
portrayed as the 3D graph in Figures3 (a) shows the behavior of a singular soliton so-
lution. The effects of varying the parameter values of by, b1, b, b3 on the behavior of
the solutions of (3.25) for the values of the remaining parameters given above are shown
in Figure 4. In particular, the effect of changing the values of by on |® (0,0,0,¢)| when
—10 < ¢ < 10 can be seen in Figure4 (a) for by = 0.2, 0.5, 0.8. The most important
effect of changing the value of by on the solutions is that the cusp point of the solution
graph is translated. Figures4 (b), (c) and (d) show the effects of varying the values of
b1, ba, by on the relationship between |® (0,0,0,t)| and t. The values of by, by and b3
used are {0.1, 0.4, 0.7}, {0.3, 0.6, 0.9} and {0.25, 0.55, 0.85} for Figures4 (b), (c¢) and
(d), respectively. It is worth noting that, unlike by, the solutions (3.25) for by, b, b3 do
not have cusp points. Figure4 (b) shows the 2D relationship between |® (0,0, 0,t)| and
t for by = 0.1, 0.4, 0.7. In this case, varying the values of b; only makes a change in the
value of |® (0,0,0,t)| at each value of ¢. Similar behavior can be seen in Figures4 (c) and
(d) when the parameters by and bz are varied, respectively.

FIGURE 3. Graphs of |® (0,0, z,t)| for ® (x,y, z,t) in (3.25): (a) 3D plot.
(b) Contour plot.
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FIGURE 4. Graphs of |®(0,0,0,t)| for ® (z,y,z,t) in (3.25): (a) by =
0.2,0.5,0.8. (b) by = 0.1,04,0.7. (c) by = 0.3,0.6,0.9. (d) by =
0.25, 0.55, 0.85.

4. CONCLUSIONS

In this article, the (3 + 1)-dimensional chiral nonlinear Schrédinger equation (1.3) has
been analytically solved to get exact traveling wave solutions using the extended simplest
equation method (ESEM) and the improved generalized tanh-coth method (IGTCM).
Because the equation has complex-valued solutions, we have expressed the exact solutions
in the form shown in (3.1) as a product of a real function u(¢) and ¢*®. Using the ESEM,
we obtained the exact solutions for (3.1) as traveling wave solutions in terms of hyperbolic,
trigonometric, and rational functions. Similarly, using the IGTCM, we obtained exact
solutions for (3.1) in terms of hyperbolic, trigonometric, and rational functions. For both
methods, the algebraic manipulations required to obtain the exact solutions were carried
out using the Maple software package. The 3D and contour plots of magnitudes of some
solutions have been plotted using the Maple package to show their physical behavior.
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In [7], the three different finite difference schemes including a nonlinear implicit scheme
and two linearly implicit finite difference schemes were used to numerically solve equa-
tion (1.1) whose exact solution ®(z,t) can be either a bright soliton solution expressed
in terms of sech((z,t))exp (iQ22(x,t)) or a dark soliton solution written in terms of
tanh (4 (z,t)) exp (1Q(z, t)), where Q4 (z,t) and Qa(z,t) are some traveling wave trans-
formations. If equation (1.3) is reduced to the 1D-CNLSE, then our results in (3.29) and
(3.34) can be reduced to the 1D solutions written as tanh(4 (x,t)) exp (iQ2(z, t)).

In [8], the author used the trial solution technique to find exact solutions of equation
(1.2). The soliton solutions expressed in terms of the hyperbolic secant and cosecant
functions and the singular periodic solutions written in terms of the secant and cosecant
functions were found. Roughly comparing our results to the obtained solutions in [8], it
can be easily done by setting bs = 0 and also ignoring the independent variable z in our
solutions. Consequently, the solutions (3.29), (3.34) and (3.21), (3.25) can be converted
into the hyperbolic secant function and the hyperbolic cosecant function, respectively.
In addition, the solutions (3.28), (3.33) and (3.20), (3.24) can be rewritten as the secant
function and the cosecant function, respectively. In [14], the authors employed the modern
extended direct algebraic method to investigate exact solutions of equation (1.2). The
solitary waves solutions of the equation were found such as semi-dark solitons, singular
dark-pitch solitons, single solitons and intermixed hyperbolically, trigonometrically and
rational solitons. When b3 = 0 and the variable z disappears in (1.2), our solutions,
namely, (3.9), (3.12), (3.20), (3.24), (3.28) and (3.33) are significantly similar to those
in |

As far as the authors know, the present paper is the first time that the (3 + 1)-
dimensional chiral nonlinear Schrodinger equation has been discussed in the literature
and exact solutions obtained for it. The authors also believe that the ESEM and the
IGTCM are powerful, straightforward and trustworthy approaches to generate solution
of nonlinear partial differential equatons.
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