On (f, g)-Semi-Derivations of Hyperrings

Utsanee Leerawat* and Jirat Sanguansat
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand e-mail : fsciutl@ku.ac.th (U. Leerawat); jirat.sang@ku.th (J. Sanguansat)

Abstract

In this paper, we introduce a generalization of semi-derivation on the Krasner hyperrings R. Specifically, we propose a new type of semi-derivation called (f, g)-semi-derivation, where f and g are mappings from R into itself. Our aim is to explore the properties of this new type of semi-derivation. Additionally, we conduct investigations some results on (f, g)-semi-derivations either on 2-torsion free prime hyperrings or on prime hyperrings.

MSC: 20N20; 16Y99
Keywords: derivation; semi-derivation; hyperring; Krasner hyperring; prime hyperring

Submission date: 02.06.2023 / Acceptance date: 31.08.2023

1. Introduction

Hyperstructures represent a natural extension of classical algebraic structures and the concept of hyperstructure was first introduced in 1934 by Marty [10]. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Krasner [9] introduced the notion of hyperrings. A well-known type of hyperring is called the Krasner hyperring. Krasner hyperring is an essential ring with approximately modified axioms in which addition is a hyperoperation and multiplication is a binary operation. Asokkumar [1] studied the idempotent elements of Krasner hyperrings.

Derivations is an interesting research area in the theory of algebraic structure in mathematics. Posner [11] initiated the study about derivations in rings and proved that in a prime ring of characteristic different from 2, if the iterate of two derivations is a derivation, then one of them must be zero. Based on this concept, Bell and Kappea [3] studied that rings in which derivations satisfy certain algebraic conditions. Moreover, several researchers have further studied this notion in rings and near rings. Xin et al.[14] studied the notion of a derivation, previously studied for rings, near rings and C^{*} - algebras, for lattices and discussed some related properties. In [2], Asokkumar initiated the study of

[^0]derivations on Krasner hyperrings. Then several authors investigated the relationships between derivations and the structure of hyperrings (see [7], [8], [10], [12], and [13]).

The concept of a semi-derivation on ring was introduced by Bergen [4]. Let f be a mapping of a ring R into R. An additive mapping D of a ring R into R is called a semiderivation of R if $D(x y)=D(x) f(y)+x D(y)=D(x) y+f(x) D(y)$ and $D(f(x))=$ $f(D(x))$ for all $x, y \in R$. In [5], Bresar obtained the structure of semi-derivations of prime rings. Recently, Yilmaz and Yazarli [15] introduced a special type of derivation on hyperring, called semi-derivation and proved that the semi-derivation of prime Krasner hyperring is derivations.

In this paper, we introduce a generalization of the semi-derivation on a Krasner hyperring R, namely, the (f, g)-semi-derivation, where f and g are mappings from R into itself, and investigate some results involving these derivations. Moreover, we extend some results of Yilmaz and Yazarli [15] for the (f, g)-semi-derivation.

2. PRELIMINARIES

Let us recall some definitions and concepts of hyperstructures which are used in the sequel. For details, we refer to Davvaz and Leoreanu-Fotea [6] and Asokummar [2]. For a set H, let $P(H)$ denote the power set of H, and $P^{*}(H)=P(H)-\{\phi\}$.

Definition 2.1. [6] A hyperoperation on a nonempty set H is a mapping $\circ: H \times H \rightarrow$ $P^{*}(H)$. An algebraic system (H, \circ) is called a hypergroupoid.

Let (H, \circ) be a hypergroupoid. For nonempty subsets A and B of H, and $x \in H$, we define

$$
A \circ B=\bigcup_{a \in A, b \in B} a \circ b
$$

and $A \circ x=A \circ\{x\}, x \circ B=\{x\} \circ B$.
A hypergroupoid (H, \circ) is said to be commutative if $a \circ b=b \circ a$ for all $a, b \in H$.
A semihypergroupoid is a hypergroupoid (H, \circ) such that $a \circ(b \circ c)=(a \circ b) \circ c$ for all $a, b, c \in H$, which means that

$$
\bigcup_{u \in b \circ c} a \circ u=\bigcup_{v \in a \circ b} v \circ c .
$$

A hypergroup is a semihypergroupoid (H, \circ) such that $a \circ H=H=H \circ a$ for all $a \in H$.
Definition 2.2. [6] A hypergroup (H, \circ) is called a canonical hypergroup if
(i) (H, \circ) is commutative,
(ii) (H, \circ) has a scalar identity, which means that there is an element $e \in H$ such that $e \circ x=\{x\}$ for all $x \in H$,
(iii) every element x of H has a unique inverse, which means that for all $x \in H$, there exists a unique x^{-1} in H such that $e \in x \circ x^{-1}$,
(iv) if $x \in y \circ z$, then there exist the inverse y^{-1} of y and z^{-1} of z, such that $y \in x \circ z^{-1}$ and $z \in y^{-1} \circ x$
Note that a scalar identity is unique since if e and e^{\prime} are scalar identities of a hypergroupoid (H, \circ), then $\{e\}=e \circ e^{\prime}=\left\{e^{\prime}\right\}$, so that $e=e^{\prime}$.

Definition 2.3. [6] A Krasner hyperring is an algebraic structure $(R,+, \cdot)$ which satisfies the following axioms:
(1) $(R,+)$ is a canonical hypergroup, that is,
(i) $(x+y)+z=x+(y+z)$ for every $x, y, z \in R$,
(ii) $x+y=y+x$ for every $x, y \in R$,
(iii) there exists $0 \in R$ such that $0+x=x$, for every $x \in R$,
(iv) for every $x \in R$, there exists a unique element, denoted by $-x \in R$ such that $0 \in x+(-x)$,
(v) $z \in x+y$ implies $y \in-x+z$ and $x \in z-y$, for every $x, y, z \in R$.
(2) (R, \cdot) is a semigroup having zero as a bilaterally absorbing element, that is,
(i) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ for every $x, y, z \in R$,
(ii) $x \cdot 0=0 \cdot x=0$ for every $x \in R$.
(3) The multiplication is distributive with respect to the hyperoperation + , that is, $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(x+y) \cdot z=x \cdot z+y \cdot z$ for every $x, y, z \in R$.
Let $(R,+, \cdot)$ be a Krasner hyperring. For nonempty subset A of R , let $-A=\{-a \mid a \in A\}$. The following elementary facts follow easily from the axioms:
(i) $-(-x)=x$ for all $x \in R$,
(ii) $-(x+y)=-x-y$ for all $x, y \in R$,
(iii) $-(x \cdot y)=(-x) \cdot y=x \cdot(-y)$ for all $x, y \in R$,
(iv) $(a+b) \cdot(c+d)=a \cdot c+b \cdot c+a \cdot d+b \cdot d$ for all $a, b, c, d \in R$.

In Definition 2.3, for simplicity of notations we write sometimes $x y$ instead of $x \cdot y$ and in (1 , iii), $0+x=x$ instead of $0+x=\{x\}$.

Throughout this paper, by a hyperring we mean a Krasner hyperring.
Let A and B be nonempty subsets of a hyperring R and $a, b \in R$. Let

$$
\begin{aligned}
& A+B=\{x-x=a+b \text { for some } a \in A, b \in B\} \\
& A B=\left\{x-x=\sum_{i=1}^{n} a_{i} b_{i} \text { for some } a_{i} \in A, b_{i} \in B \text { and } n \in \mathbb{Z}^{+}\right\}
\end{aligned}
$$

and
$a R b=\{x-x=a r y$, for all $r \in R\}$.
Definition 2.4. [15] A hyperring R is called a prime hyperring if for any $a, b \in R$, $a R b=\{0\}$ implies $a=0$ or $b=0$.
A hyperring R is said to be 2-torsion free if for any $x \in R, 0 \in x+x$ implies $x=0$.
The center of a hyperring R is the set $Z(R)=\{z \in R-z x=x z$ for all $x \in R\}$.
Lemma 2.5. [15] Let R be a hyperring. For any $r, s \in R$, the symbol $[r, s]$ represents for the commutator $r s-s r$ and the symbol (r, s) represents for the skew commutator $r s+s r$. The following conditions hold: for all $r, s, t \in R$,
(i) $[r+s, t]=[r, t]+[s, t]$,
(ii) $[r s, t] \subseteq[r, t] s+r[s, t]=r[s, t]+[r, t] s$,
(iii) $(r+s, t)=(r, t)+(s, t)$,
(iv) $(r s, t) \subseteq(r, t) s+r[s, t]=r(s, t)-r, t s$.

Definition 2.6. [15] Let R be a hyperring. A mapping $D: R \rightarrow R$ is said to be a semi-derivation of R associated with a function $f: R \rightarrow R$ if for all $x, y \in R$,
(i) $D(x+y) \subseteq D(x)+D(y)$,
(ii) $D(x y) \in D(x) f(y)+x D(y)=D(x) y+f(x) D(y)$,
(iii) $D(f(x)) \subseteq f(D(x))$.

3. Main Results

We introduce a generalization of the semi-derivation on a hyperring as follows:
Definition 3.1. Let R be a hyperring and let $f, g: R \rightarrow R$ be mappings. A mapping $D: R \rightarrow R$ is said to be an (f, g)-semi-derivation of R if for all $x, y \in R$,
(i) $D(x+y) \subseteq D(x)+D(y)$,
(ii) $D(x y) \in D(x) f(y)+g(x) D(y)=D(x) g(y)+f(x) D(y)$,
(iii) $D(f(x)) \subseteq f(D(x))$ and $D(g(x)) \subseteq g(D(x))$.

Obviously, every semi-derivation is a (f, g)-semi-derivation, where $g: R \rightarrow R$ is the identity mapping.

Example 3.2. Let $R=\{0, u, v\}$ with the hyperoperation $(+)$ and the multiplication (\cdot) given in the following tables:

+	0	u	v
0	0	u	v
u	u	$\{u, v\}$	R
v	v	R	$\{u, v\}$

\cdot	0	u	v
0	0	0	0
u	0	v	u
v	0	u	v

Then, R is a hyperring.
Define a mapping $D: R \rightarrow R$ by

$$
D(x)=\left\{\begin{array}{lll}
0 & ; & x=0 \\
u & ; & x=v \\
v & ; & x=u
\end{array}\right.
$$

Let $f, g: R \rightarrow R$ be mappings such that $f=g=D$.
Then it can be easily verified that D is an (f, g)-semi-derivation of the hyperring R.
From now on, let R denote a hyperring and $f, g: R \rightarrow R$ be mappings.
Lemma 3.3. Let R be a hyperring and D be an (f, g)-semi-derivation of R.
If $f(0)=g(0)=0$ then the following conditions hold:
(i) $D(0)=0$,
(ii) $D(-x)=-D(x)$ for all $x \in R$.

Proof. Let $f(0)=g(0)=0$,
(i) $D(0)=D(0 \cdot 0) \in D(0) f(0)+g(0) D(0)=0+0=0$. Then $D(0)=0$.
(ii) Let $x \in R$. Then there exists $-x \in R$ such that $0 \in x+(-x)$.

Hence $0=D(0) \in D(x+(-x)) \subseteq D(x)+D(-x)$. But $0 \in D(x)-D(x)$.
Since the inverse of an element is unique in a canonical hypergroup, $-D(x)=D(-x)$.

Lemma 3.4. Let R be a prime hyperring and let D be an (f, g)-semi-derivation of R. Suppose that g is surjective and $r \in R$. If $r D(x)=0($ or $D(x) r=0)$ for all $x \in R$ then $r=0$ or $D(x)=0$ for all $x \in R$.
Proof. Let $r D(x)=0$ for all $x \in R$ and let $s, t \in R$. Then

$$
\begin{aligned}
0=r D(s t) & \in r(D(s) f(t)+g(s) D(t)) \\
& =r D(s) f(t)+r g(s) D(t) \\
& =r g(s) D(t) .
\end{aligned}
$$

Since g is surjective, $r R D(t)=\{0\}$ for all $t \in R$. By the primeness of R, we have $r=0$ or $D(t)=0$ for all $t \in R$. When $D(x) r=0$ for all $x \in R$, the proof is similar.

Theorem 3.5. Let R be a 2-torsion free prime hyperring. Suppose that $f, g: R \rightarrow R$ are surjective mappings and D is an (f, g)-semi-derivation of R. If $D^{2}(x)=0$ for all $x \in R$, then $D(x)=0$ for all $x \in R$.
Proof. Let $D^{2}(x)=0$ for all $x \in R$. Suppose that $D(x) \neq 0$ for some $x \in R$. Then there exists an element $a \in R$ such that $D(a) \neq 0$. Since g is surjective, there exists $r \in R$ such that $g(r)=a$.
Then for any $y \in R$,

$$
\begin{aligned}
0 & =D^{2}(r y)=D(D(r y)) \\
& \in D(D(r) f(y)+g(r) D(y)) \\
& \subseteq D(D(r) f(y))+D(g(r) D(y)) \\
& \in 0+D(g(r)) D(f(y))+D(g(r)) D(f(y))+0 \\
& =D(a) D(f(y))+D(a) D(f(y)) .
\end{aligned}
$$

Since R is 2-torsion free, $D(a) D(f(y))=0$ for all $y \in R$.
Since f is surjective, $D(a) D(x)=0$ for all $x \in R$.
Since $D(a) \neq 0$ and by Lemma 3.4, $D(x)=0$ for all $x \in R$. This completes the proof.
Theorem 3.6. Let R be a 2-torsion free prime hyperring. For $i=1,2$, let $f_{i}, g_{i}: R \rightarrow R$ be surjective mappings and g_{1} be an injective mapping such that $g_{1}(0)=0$. Suppose that $D_{i}: R \rightarrow R$ is an $\left(f_{i}, g_{i}\right)$-semi-derivation of R, for $i=1$, 2 . If $D_{1}\left(D_{2}(x)\right)=0$ for all $x \in R$ then $D_{1}(x)=0$ for all $x \in R$ or $D_{2}(x)=0$ for all $x \in R$.
Proof. Let $D_{1}\left(D_{2}(x)\right)=0$ for all $x \in R$ and let $x, y \in R$. Then

$$
\begin{aligned}
0 & =D_{1}\left(D_{2}(x y)\right) \\
& \in D_{1}\left(D_{2}(x) f_{2}(y)+g_{2}(x) D_{2}(y)\right) \\
& \subseteq D_{1}\left(D_{2}(x) f_{2}(y)\right)+D_{1}\left(g_{2}(x) D_{2}(y)\right) \\
& \subseteq g_{1}\left(D_{2}(x)\right) D_{1}\left(f_{2}(y)\right)+D_{1}\left(g_{2}(x)\right) f_{1}\left(D_{2}(y)\right) .
\end{aligned}
$$

Therefore,

$$
0 \in g_{1}\left(D_{2}(x)\right) D_{1}\left(f_{2}(y)\right)+D_{1}\left(g_{2}(x)\right) f_{1}\left(D_{2}(y)\right) \text { for all } x, y \in R
$$

Replacing x by $D_{2}(x)$, we get $0 \in g_{1}\left(D_{2}^{2}(x)\right) D_{1}\left(f_{2}(y)\right)$ for all $x, y \in R$.
Hence $g_{1}\left(D_{2}^{2}(x)\right) D_{1}\left(f_{2}(y)\right)=0$ for all $x, y \in R$.
Since f_{2} is surjective, $g_{1}\left(D_{2}^{2}(x)\right) D_{1}(y)=0$ for all $x, y \in R$.
By Lemma 3.4, we get $g_{1}\left(D_{2}^{2}(x)\right)=0$ for all $x \in R$ or $D_{1}(y)=0$ for all $y \in R$.
If $g_{1}\left(D_{2}^{2}(x)\right)=0$ for all $x \in R$, then, by g_{1} is injective, we get $D_{2}^{2}(x)=0$ for all $x \in R$.
By Theorem 3.5, we have $D_{2}(x)=0$ for all $x \in R$. This completes the proof.

Corollary 3.7. Let R be a 2-torsion free prime hyperring. Suppose that $f, g: R \rightarrow R$ are surjective mappings and g is an injective mapping such that $g_{1}(0)=0$. If D_{1}, D_{2} are (f, g)-semi-derivations of R such that $D_{1}\left(D_{2}(x)\right)=0$ for all $x \in R$ then $D_{1}(x)=0$ for all $x \in R$ or $D_{2}(x)=0$ for all $x \in R$.

Theorem 3.8. Let R be a 2-torsion free prime hyperring. Let f and g be surjective mappings and $D: R \rightarrow R$ be an (f, g)-semi-derivation of R. Suppose that $r \in R-Z(R)$ and $[D(x), r]=\{0\}$ for all $x \in R$. Then $D(x)=0$ for all $x \in R$.

Proof. Let $r \in R-Z(R)$ be such that $[D(x), r]=\{0\}$ for all $x \in R$. Then, for $x, y \in R$, we have

$$
\begin{aligned}
\{0\} & =[D(y D(x)), r] \subseteq\left[D(y) f(D(x))+g(y) D^{2}(x), r\right] \\
& =[D(y) f(D(x)), r]+\left[g(y) D^{2}(x), r\right] \\
& \subseteq[g(y), r] D^{2}(x) .
\end{aligned}
$$

Since g is surjective, $0 \in[z, r] D^{2}(x)$ for all $x, z \in R$. This implies $0=s D^{2}(x)$ for some $s \in[r, z]$. By Lemma 3.4, we have $s=0$ or $D^{2}(x)=0$ for all $x \in R$. If $s=0$, then $0 \in[r, z]$ for all $z \in R$. This implies $r \in Z(R)$, a contradiction. Therefore, $D^{2}(x)=0$ for all $x \in R$. By Lemma 3.5, we obtain $D(x)=0$ for all $x \in R$.

Theorem 3.9. Let R be a prime hyperring and D be an (f, g)-semi-derivation of R. Let $f, g: R \rightarrow R$ be surjective mappings and $f(0)=0$. Suppose there exists $r \in R$ such that $r \notin Z(R)$ and $(D(x), r)=\{0\}$ for all $x \in R$. Then $D((x, r))=\{0\}$ for all $x \in R$.

Proof. Suppose there exists $r \in R$ such that $r \notin Z(R)$ and $(D(x), r)=\{0\}$ for all $x \in R$. Since f is surjective, there exists $q \in R$ such that $f(q)=r$. Then, for all $x \in R$,

$$
\begin{aligned}
\{0\} & =(D(x q), r) \\
& \subseteq(D(x) f(q)+g(x) D(q), r) \\
& =(D(x) f(q), r)+(g(x) D(q), r) \\
& \subseteq(D(x), r) f(q)+D(x)[f(q), r]+g(x)(D(q), r)-[g(x), r] D(q) .
\end{aligned}
$$

Thus, $0 \in[g(x), r] D(q)$ for all $x \in R$.
Since g is surjective, $0 \in[t, r] D(q)$ for all $t \in R$. For each $y \in R$, replacing t by $t y$ and we get $0 \in[t y, r] D(q) \subseteq[t, r] y D(q)+t[y, r] D(q)$.
Thus, $0 \in[t, r] y D(q)$ for all $t, y \in R$.
This implies that, for any $t \in R, 0=s R D(q)$ for some $s \in[t, r]$.
The primeness of R implies that $s=0$ or $D(q)=0$. If $s=0$, then $r \in Z(R)$ which is a contradiction. Hence $D(q)=0$. Then, we have $D(r)=D(f(q))=f(D(q))=f(0)=0$. Thus, for all $x \in R$,

$$
\begin{aligned}
D((x, r))=D(x r+r x) & \subseteq D(x r)+D(r x) \\
& \in D(x) f(r)+g(x) D(r)+D(r) g(x)+f(r) D(x) \\
& =D(x) f(r)+f(r) D(x) \\
& =(D(x), f(r)) \\
& =\{0\} .
\end{aligned}
$$

Therefore, $D((x, r))=\{0\}$ for all $x \in R$.

Acknowledgements

The authors also thank the reviewers for their helpful comments. This work was supported by the Development and Promotion of Science and Technology Talents Project (DPST) Scholarship.

References

[1] A. Asokkumar, Hyperlattice formed by the idempotents of a hyperring, Tamkang Journal of Mathematics 38 (3) (2007) 209-215.
[2] A. Asokummar, Derivations in hyperrings and prime hyperrings, Iranian Journal of Mathematical Sciences and Informatics 8 (2013) 1-13.
[3] H.E. Bell ,L.C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (3-4) (1989) 339-346.
[4] J. Bergen, Derivations in prime rings, Canad. Math. Bull. 26 (1983) 267-270.
[5] M. Bresar, Semiderivations of prime rings, Proc. Amer. Math. Soc. 108 (1990) 859-860.
[6] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, U.S.A., 2007.
[7] L.K. Ardekani, B. Davvaz, Some notes on differential hyperrings, Iran. J. Sci. Technol. Trans. A Sci. 39 (1) (2015) 101-111.
[8] Z. Kou, S. Kosari, M.S. Monemrad, M. Akhoundi, S. Omidi, A note on the connection between ordered semihyperrings, Symmetry 13 (11) (2021) 2035.
[9] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math and Math. Sci. 2 (1983) 307-312.
[10] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm (1934) 45-49.
[11] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100.
[12] Y. Rao, S. Kosari, A. Khan, N. Abbasizadeh, A study on special kinds of derivations in ordered hyperrings, Symmetry 14 (2022) 2205.
[13] Y. Rao, S. Kosari, Z. Shao, S. Omidi, Some properties of derivations and m - k-hyper-ideals in ordered semihyperrings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 83 (2021) 87-96.
[14] X.L. Xin, T.Y. Liu, J.H. Lu, On derivations of lattices, Informat. Sci. 178 (2008) 307-316.
[15] D. Yilmaz, H. Yazarli, Semi-derivations on hyperrings, Bull. Int. Math. Virtual Inst. 12 (2022) 309-319.

[^0]: *Corresponding author.

