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Abstract In this paper, we introduce a generalization of semi-derivation on the Krasner hyperrings R.

Specifically, we propose a new type of semi-derivation called (f, g)-semi-derivation, where f and g are

mappings from R into itself. Our aim is to explore the properties of this new type of semi-derivation.

Additionally, we conduct investigations some results on (f, g)-semi-derivations either on 2-torsion free

prime hyperrings or on prime hyperrings.
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1. Introduction

Hyperstructures represent a natural extension of classical algebraic structures and the
concept of hyperstructure was first introduced in 1934 by Marty [10]. In a classical
algebraic structure, the composition of two elements is an element, while in an algebraic
hyperstructure, the composition of two elements is a set. Krasner [9] introduced the notion
of hyperrings. A well-known type of hyperring is called the Krasner hyperring. Krasner
hyperring is an essential ring with approximately modified axioms in which addition is
a hyperoperation and multiplication is a binary operation. Asokkumar [1] studied the
idempotent elements of Krasner hyperrings.

Derivations is an interesting research area in the theory of algebraic structure in math-
ematics. Posner [11] initiated the study about derivations in rings and proved that in a
prime ring of characteristic different from 2, if the iterate of two derivations is a deriva-
tion, then one of them must be zero. Based on this concept, Bell and Kappea [3] studied
that rings in which derivations satisfy certain algebraic conditions. Moreover, several
researchers have further studied this notion in rings and near rings. Xin et al.[14] studied
the notion of a derivation, previously studied for rings, near rings and C*- algebras, for
lattices and discussed some related properties. In [2], Asokkumar initiated the study of
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derivations on Krasner hyperrings. Then several authors investigated the relationships
between derivations and the structure of hyperrings (see [7], [8], [10], [12], and [13]).

The concept of a semi-derivation on ring was introduced by Bergen [4]. Let f be a
mapping of a ring R into R. An additive mapping D of a ring R into R is called a semi-
derivation of R if D (xy) = D (x) f (y) + xD (y) = D (x) y + f (x)D (y) and D (f (x)) =
f (D (x)) for all x, y ∈ R. In [5], Bresar obtained the structure of semi-derivations of
prime rings. Recently, Yilmaz and Yazarli [15] introduced a special type of derivation on
hyperring, called semi-derivation and proved that the semi-derivation of prime Krasner
hyperring is derivations.

In this paper, we introduce a generalization of the semi-derivation on a Krasner hy-
perring R, namely, the (f, g)-semi-derivation, where f and g are mappings from R into
itself, and investigate some results involving these derivations. Moreover, we extend some
results of Yilmaz and Yazarli [15] for the (f, g)-semi-derivation.

2. Preliminaries

Let us recall some definitions and concepts of hyperstructures which are used in the
sequel. For details, we refer to Davvaz and Leoreanu-Fotea [6] and Asokummar [2]. For
a set H, let P (H) denote the power set of H, and P ∗ (H) = P (H)− {φ}.

Definition 2.1. [6] A hyperoperation on a nonempty set H is a mapping ◦ : H × H →
P ∗ (H). An algebraic system (H, ◦) is called a hypergroupoid.

Let (H, ◦) be a hypergroupoid. For nonempty subsets A and B of H, and x ∈ H,
we define

A ◦B =
⋃

a∈A,b∈B

a ◦ b

and A ◦ x = A ◦ {x}, x ◦B = {x} ◦B.
A hypergroupoid (H, ◦) is said to be commutative if a ◦ b = b ◦ a for all a, b ∈ H.
A semihypergroupoid is a hypergroupoid (H, ◦) such that a ◦ (b ◦ c) = (a ◦ b) ◦ c for all
a, b, c ∈ H, which means that⋃

u∈b◦c

a ◦ u =
⋃

v∈a◦b

v ◦ c .

A hypergroup is a semihypergroupoid (H, ◦) such that a ◦H = H = H ◦ a for all a ∈ H.

Definition 2.2. [6] A hypergroup (H, ◦) is called a canonical hypergroup if

(i) (H, ◦) is commutative,
(ii) (H, ◦) has a scalar identity, which means that there is an element e ∈ H such

that e ◦ x = {x} for all x ∈ H,
(iii) every element x of H has a unique inverse, which means that for all x ∈ H,

there exists a unique x−1 in H such that e ∈ x ◦ x−1,
(iv) if x ∈ y ◦ z, then there exist the inverse y−1 of y and z−1 of z, such that
y ∈ x ◦ z−1 and z ∈ y−1 ◦ x

Note that a scalar identity is unique since if e and e′ are scalar identities of a hypergroupoid
(H, ◦), then {e} = e ◦ e′ = {e′}, so that e = e′.
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Definition 2.3. [6] A Krasner hyperring is an algebraic structure (R,+, ·) which satisfies
the following axioms:

(1) (R,+) is a canonical hypergroup, that is,
(i) (x+ y) + z = x+ (y + z) for every x, y, z ∈ R,

(ii) x+ y = y + x for every x, y ∈ R,
(iii) there exists 0 ∈ R such that 0 + x = x, for every x ∈ R,
(iv) for every x ∈ R, there exists a unique element, denoted by −x ∈ R such

that 0 ∈ x+ (−x),
(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y, for every x, y, z ∈ R.

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, that is,
(i) (x · y) · z = x · (y · z) for every x, y, z ∈ R,

(ii) x · 0 = 0 · x = 0 for every x ∈ R.
(3) The multiplication is distributive with respect to the hyperoperation +,

that is, x · (y + z) = x · y+ x · z and (x+ y) · z = x · z+ y · z for every x, y, z ∈ R.

Let (R,+, ·) be a Krasner hyperring. For nonempty subset A of R, let −A = {−a| a ∈ A}.
The following elementary facts follow easily from the axioms:

(i) − (−x) = x for all x ∈ R,
(ii) − (x+ y) = −x− y for all x, y ∈ R,
(iii) − (x · y) = (−x) · y = x · (−y) for all x, y ∈ R,
(iv) (a+ b) · (c+ d) = a · c+ b · c+ a · d+ b · d for all a, b, c, d ∈ R.

In Definition 2.3, for simplicity of notations we write sometimes xy instead of x · y
and in (1, iii), 0 + x = x instead of 0 + x = {x}.

Throughout this paper, by a hyperring we mean a Krasner hyperring.
Let A and B be nonempty subsets of a hyperring R and a, b ∈ R. Let

A+B = {x — x = a+ b for some a ∈ A, b ∈ B},

AB = {x — x =

n∑
i=1

aibi for some ai ∈ A, bi ∈ B and n ∈ Z+},

and

aRb = {x — x = ary, for all r ∈ R}.

Definition 2.4. [15] A hyperring R is called a prime hyperring if for any a, b ∈ R,
aRb = {0} implies a = 0 or b = 0.
A hyperring R is said to be 2-torsion free if for any x ∈ R, 0 ∈ x+ x implies x = 0.
The center of a hyperring R is the set Z (R) = {z ∈ R — zx = xz for all x ∈ R}.

Lemma 2.5. [15] Let R be a hyperring. For any r, s ∈ R, the symbol [r, s] represents for
the commutator rs− sr and the symbol (r, s) represents for the skew commutator rs+ sr.
The following conditions hold: for all r, s, t ∈ R,

(i) [r + s, t] = [r, t] + [s, t],
(ii) [rs, t] ⊆ [r, t] s+ r [s, t] = r [s, t] + [r, t] s,
(iii) (r + s, t) = (r, t) + (s, t),
(iv) (rs, t) ⊆ (r, t) s+ r [s, t] = r (s, t)− r, ts.

Definition 2.6. [15] Let R be a hyperring. A mapping D : R → R is said to be a
semi-derivation of R associated with a function f : R→ R if for all x, y ∈ R,
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(i) D (x+ y) ⊆ D (x) +D (y),
(ii) D (xy) ∈ D (x) f (y) + xD (y) = D (x) y + f (x)D (y),
(iii) D (f (x)) ⊆ f (D (x)).

3. Main Results

We introduce a generalization of the semi-derivation on a hyperring as follows:

Definition 3.1. Let R be a hyperring and let f, g : R → R be mappings. A mapping
D : R→ R is said to be an (f, g)-semi-derivation of R if for all x, y ∈ R,

(i) D (x+ y) ⊆ D (x) +D (y),
(ii) D (xy) ∈ D (x) f (y) + g (x)D (y) = D (x) g (y) + f (x)D (y),
(iii) D (f (x)) ⊆ f (D (x)) and D (g (x)) ⊆ g (D (x)).

Obviously, every semi-derivation is a (f, g)-semi-derivation, where g : R → R is the
identity mapping.

Example 3.2. Let R = {0, u, v} with the hyperoperation (+) and the multiplication (·)
given in the following tables:

+ 0 u v · 0 u v
0 0 u v 0 0 0 0
u u {u, v} R u 0 v u
v v R {u, v} v 0 u v

Then, R is a hyperring.
Define a mapping D : R→ R by

D (x) =

 0 ; x = 0
u ; x = v
v ; x = u

Let f, g : R→ R be mappings such that f = g = D.
Then it can be easily verified that D is an (f, g)-semi-derivation of the hyperring R.

From now on, let R denote a hyperring and f, g : R→ R be mappings.

Lemma 3.3. Let R be a hyperring and D be an (f, g)-semi-derivation of R.
If f (0) = g (0) = 0 then the following conditions hold:

(i) D (0) = 0,
(ii) D (−x) = −D (x) for all x ∈ R.

Proof. Let f (0) = g (0) = 0,

(i) D (0) = D (0 · 0) ∈ D (0) f (0) + g (0)D (0) = 0 + 0 = 0. Then D (0) = 0.
(ii) Let x ∈ R. Then there exists −x ∈ R such that 0 ∈ x+ (−x).

Hence 0 = D (0) ∈ D (x+ (−x)) ⊆ D (x) +D (−x). But 0 ∈ D (x)−D (x).
Since the inverse of an element is unique in a canonical hypergroup,
−D (x) = D (−x).
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Lemma 3.4. Let R be a prime hyperring and let D be an (f, g)-semi-derivation of R.
Suppose that g is surjective and r ∈ R. If rD (x) = 0 (or D (x) r = 0) for all x ∈ R then
r = 0 or D (x) = 0 for all x ∈ R.

Proof. Let rD (x) = 0 for all x ∈ R and let s, t ∈ R. Then

0 = rD (st) ∈ r (D (s) f (t) + g (s)D (t))
= rD (s) f (t) + rg (s)D (t)
= rg (s)D (t) .

Since g is surjective, rRD (t) = {0} for all t ∈ R. By the primeness of R, we have r = 0
or D (t) = 0 for all t ∈ R. When D (x) r = 0 for all x ∈ R, the proof is similar.

Theorem 3.5. Let R be a 2-torsion free prime hyperring. Suppose that f, g : R→ R are
surjective mappings and D is an (f, g)-semi-derivation of R. If D2 (x) = 0 for all x ∈ R,
then D (x) = 0 for all x ∈ R.

Proof. Let D2 (x) = 0 for all x ∈ R. Suppose that D (x) 6= 0 for some x ∈ R. Then there
exists an element a ∈ R such that D (a) 6= 0. Since g is surjective, there exists r ∈ R such
that g (r) = a.
Then for any y ∈ R,

0 = D2 (ry) = D (D (ry))
∈ D (D (r) f (y) + g (r)D (y))
⊆ D (D (r) f (y)) +D (g (r)D (y))
∈ 0 +D (g (r))D (f (y)) +D (g (r))D (f (y)) + 0
= D (a)D (f (y)) +D (a)D (f (y)) .

Since R is 2-torsion free, D (a)D (f (y)) = 0 for all y ∈ R.
Since f is surjective, D (a)D (x) = 0 for all x ∈ R.
Since D (a) 6= 0 and by Lemma 3.4, D (x) = 0 for all x ∈ R. This completes the proof.

Theorem 3.6. Let R be a 2-torsion free prime hyperring. For i = 1, 2, let fi, gi : R→ R
be surjective mappings and g1 be an injective mapping such that g1 (0) = 0. Suppose that
Di : R → R is an (fi, gi)-semi-derivation of R, for i = 1, 2. If D1 (D2 (x)) = 0 for all
x ∈ R then D1 (x) = 0 for all x ∈ R or D2 (x) = 0 for all x ∈ R.

Proof. Let D1 (D2 (x)) = 0 for all x ∈ R and let x, y ∈ R. Then

0 = D1 (D2 (xy))
∈ D1 (D2 (x) f2 (y) + g2 (x)D2 (y))
⊆ D1 (D2 (x) f2 (y)) +D1 (g2 (x)D2 (y))
⊆ g1 (D2 (x))D1 (f2 (y)) +D1 (g2 (x)) f1 (D2 (y)) .

Therefore,

0 ∈ g1 (D2 (x))D1 (f2 (y)) +D1 (g2 (x)) f1 (D2 (y)) for all x, y ∈ R.
Replacing x by D2 (x), we get 0 ∈ g1

(
D2

2 (x)
)
D1 (f2 (y)) for all x, y ∈ R.

Hence g1
(
D2

2 (x)
)
D1 (f2 (y)) = 0 for all x, y ∈ R.

Since f2 is surjective, g1
(
D2

2 (x)
)
D1 (y) = 0 for all x, y ∈ R.

By Lemma 3.4, we get g1
(
D2

2 (x)
)

= 0 for all x ∈ R or D1 (y) = 0 for all y ∈ R.

If g1
(
D2

2 (x)
)

= 0 for all x ∈ R, then, by g1 is injective, we get D2
2 (x) = 0 for all x ∈ R.

By Theorem 3.5, we have D2 (x) = 0 for all x ∈ R. This completes the proof.
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Corollary 3.7. Let R be a 2-torsion free prime hyperring. Suppose that f, g : R → R
are surjective mappings and g is an injective mapping such that g1 (0) = 0. If D1, D2 are
(f, g)-semi-derivations of R such that D1 (D2 (x)) = 0 for all x ∈ R then D1 (x) = 0 for
all x ∈ R or D2 (x) = 0 for all x ∈ R.

Theorem 3.8. Let R be a 2-torsion free prime hyperring. Let f and g be surjective
mappings and D : R→ R be an (f, g)-semi-derivation of R. Suppose that r ∈ R− Z (R)
and [D (x) , r] = {0} for all x ∈ R. Then D (x) = 0 for all x ∈ R.

Proof. Let r ∈ R− Z (R) be such that [D (x) , r] = {0} for all x ∈ R. Then, for x, y ∈ R,
we have

{0} = [D (yD (x)) , r] ⊆
[
D (y) f (D (x)) + g (y)D2 (x) , r

]
= [D (y) f (D (x)) , r] +

[
g (y)D2 (x) , r

]
⊆ [g (y) , r]D2 (x) .

Since g is surjective, 0 ∈ [z, r]D2 (x) for all x, z ∈ R. This implies 0 = sD2 (x) for some
s ∈ [r, z]. By Lemma 3.4, we have s = 0 or D2 (x) = 0 for all x ∈ R. If s = 0, then
0 ∈ [r, z] for all z ∈ R. This implies r ∈ Z (R), a contradiction. Therefore, D2 (x) = 0 for
all x ∈ R. By Lemma 3.5, we obtain D (x) = 0 for all x ∈ R.

Theorem 3.9. Let R be a prime hyperring and D be an (f, g)-semi-derivation of R. Let
f, g : R→ R be surjective mappings and f (0) = 0. Suppose there exists r ∈ R such that
r /∈ Z (R) and (D (x) , r) = {0} for all x ∈ R. Then D ((x, r)) = {0} for all x ∈ R.

Proof. Suppose there exists r ∈ R such that r /∈ Z (R) and (D (x) , r) = {0} for all x ∈ R.
Since f is surjective, there exists q ∈ R such that f (q) = r. Then, for all x ∈ R,

{0} = (D (xq) , r)
⊆ (D (x) f (q) + g (x)D (q) , r)
= (D (x) f (q) , r) + (g (x)D (q) , r)
⊆ (D (x) , r) f (q) +D (x) [f (q) , r] + g (x) (D (q) , r)− [g (x) , r]D (q) .

Thus, 0 ∈ [g (x) , r]D (q) for all x ∈ R.
Since g is surjective, 0 ∈ [t, r]D (q) for all t ∈ R. For each y ∈ R, replacing t by ty and
we get 0 ∈ [ty, r]D (q) ⊆ [t, r] yD (q) + t [y, r]D (q).
Thus, 0 ∈ [t, r] yD (q) for all t, y ∈ R.
This implies that, for any t ∈ R, 0 = sRD (q) for some s ∈ [t, r].
The primeness of R implies that s = 0 or D (q) = 0. If s = 0, then r ∈ Z (R) which is a
contradiction. Hence D (q) = 0. Then, we have D (r) = D (f (q)) = f (D (q)) = f (0) = 0.
Thus, for all x ∈ R,

D ((x, r)) = D (xr + rx) ⊆ D (xr) +D (rx)
∈ D (x) f (r) + g (x)D (r) +D (r) g (x) + f (r)D (x)
= D (x) f (r) + f (r)D (x)
= (D (x) , f (r))
= {0}.

Therefore, D ((x, r)) = {0} for all x ∈ R.
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