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Abstract The metric on R2 defined by d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2| is known as the `1 or

the taxicab metric. Delp and Filipski define and provide explicit formulas for sine and cosine functions

for the taxicab space. Their version agrees with the right-triangle definition of the standard trigonometric

functions. In particular, the sine (cosine) of an acute angle in a right triangle is equal to the ratio of

the length of its opposite (adjacent) side and the length of the hypotenuse. These functions must have

two parameters because a general rotation is not an isometry in the taxicab metric. We derive new

identities for the taxicab sine and cosine functions. Specifically, we derive the Pythagorean, angle sum,

double-angle, half-angle, and negative-angle identities. Additionally, we derive derivative identities for

the taxicab tangent, secant, cotangent, and cosecant functions. We find that the derivatives of these

functions behave similarly to their Euclidean counterparts.
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1. Introduction

The metric on R2 defined by dT ((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| is known as
the `1 or the taxicab metric, and (R2, dT ) is known as the taxicab space. It is also the
metric generated by the `1 norm, ‖(x1, x2)‖ = |x1|+ |x2|, on R2 as a normed vector space.

In the taxicab space, if Γ is the graph of a monotone increasing or decreasing function
f over an interval [a, b], then the length of Γ is equal to (b−a)+ |f(b)−f(a)| [6, Theorem
2.1]. In other words, the length of path from (a, f(a)) to (b, f(b)) is independent of the
function f under the above conditions. It follows that in the taxicab space, shortest paths
are not unique. In fact, there are infinitely many shortest paths between any two points
unless they have the same x- or y-coordinates. Therefore, in this article, we shall define
lines using vector space properties of R2 instead. We define a line as a 1-dimensional
affine subspace of R2, i.e., a line is the set {t~v + ~w : t ∈ R} for fixed vectors ~v and ~w.
Related geometric terms such as rays, angles, line segments, and triangles are defined
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using this definition of “lines.” The length of a line segment is equal to the distance
between the endpoints.

We can measure an angle in the taxicab space in terms of a subtended arc of a circle
of radius r centered at the origin, which is given by the equation |x| + |y| = r. We call
this angle measure t-radians. This notion has been defined and used in previous works
including [2] and [5].

Definition 1.1. Let A and B be points on the unit circle of radius r centered at the
origin. Let s be the length of the subtended arc of the unit circle from A to B. The
t-radian measure, θ, of the taxicab angle ∠AOB is given by

θ =
s

r
.

It follows from the above definition that a taxicab circle has 8 t-radians, and a semicircle
has 4 t-radians. Thompson and Dray [5, Lemma 2.5] show that an angle has taxicab
measure of 2 t-radians if, and only if, it has Euclidean measure of π

2 . In other words,
two lines are perpendicular in the taxicab space whenever they are perpendicular in the
Euclidean space.

Angles of other measure do not behave as nicely. For example, in Figure 1, angles θ
and γ have the same taxicab measure of 1

2 t-radians, but they have different Euclidean
measure. This is because a general rotation is not an isometry on the taxicab space. The
only isometric rotations are 0◦, 90◦, 180◦, and 270◦ rotations. The full group of isometries,
the semidirect product D4 o R2, is generated by translations and the symmetries of a
square [3, 4].

θ
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Figure 1. Angles θ and γ have the same taxicab measure of 1
2 t-radians,

but they have different Euclidean measure.

Delp and Filipski [2] define sine and cosine functions for the taxicab space as analogous
to the right-triangle definitions of the standard sine and cosine functions. In particular,
the (absolute value of) sine of an acute angle in a right triangle is defined as the ratio of
the length of its opposite side and the length of the hypotenuse, and the (absolute value
of) cosine is the ratio of the length of the adjacent side and the length of the hypotenuse.
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However, as seen in Figure 1, the side ratios of the two right triangles are different even
though angles θ and γ have the same taxicab measure. In the θ-triangle, the ratio of
the length of the adjacent side to the length of the hypotenuse is less than 1, but in the
γ-triangle, the side ratio is equal to 1. Delp and Filipski [2] show that such functions,
therefore, must have two parameters. They also provide the explicit formulas and basic
properties for the sine and cosine functions. Aka and Kaya [1] and Thompson and Dray
[5] define and derive some identities for similar sine and cosine functions on the taxicab
space. However, they have one parameter and only cover triangles where the bases are
parallel to the x-axis.

In this article, we derive trigonometric identities for the two-parameter taxicab sine and
cosine functions. Specifically, we derive the Pythagorean identity, angle sum identities,
double-angle identities, half-angle identities, and negative-angle identities. Additionally,
we derive derivative identities for the taxicab tangent, secant, cotangent, and cosecant
functions. We find that the derivatives of these functions behave similarly to their Eu-
clidean counterparts.

2. Two-parameter Taxicab Sine and Cosine Functions

In this section, we review the definition and basic facts of the taxicab sine and cosine
functions from [2].

2.1. Definition and Explicit Formulas

Let O denote the origin and let 4PRO be a right triangle where ∠R is the right angle.
We need two angle parameters to define sine and cosine in 4PRO. The first parameter,
θ, measures ∠POR. The second parameter, φ, measures the angle from the x-axis to the
base OR. We shall call φ the reference angle. Figure 2 illustrates this construction.

Since two lines are perpendicular in the taxicab space whenever they are perpendicular
in the Euclidean space, we shall use the same notion of orthogonal projection in the taxicab
space.

φ
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Figure 2. Right triangle 4PRO in the unit circle with reference angle φ
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Definition 2.1 (Definition 5 in [2]). Let L be the line through the origin O which makes
reference angle φ with the x-axis, where 0 ≤ φ < 2, and let P = (p1, p2) be a point on the
unit circle so that segment OP makes angle θ with L. Let R = (r1, r2) be the orthogonal
projection of P onto L. We define the taxicab cosine and sine of angle θ at reference
angle φ as

tcosφ θ = r1 + r2 and tsinφ θ = (r1 − p1) + (p2 − r2).

Given a right triangle 4PRO with hypotenuse OP of length 1 and θ = ∠POR, Def-
inition 2.1 implies that tcosφ θ = OR, which is the length of the side adjacent to θ, and
tsinφ θ = PR, which is the length of the side opposite to θ (see Figure 2). Since any
right triangle with hypotenuse of length 1 can be mapped with a taxicab isometry into a
right triangle of this form, we may view Definition 2.1 as an analogy to the right-triangle
definition of the Euclidean sine and cosine functions.

Let L⊥ be the line perpendicular to L passing through the origin. These two lines
divide the plane into four quadrants. Figure 3 shows the signs of tsinφ θ and tcosφ θ in
each L-L⊥ quadrant.

φ
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−1
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L⊥

tsinφ θ > 0

tcosφ θ > 0

tsinφ θ > 0

tcosφ θ < 0

tsinφ θ < 0

tcosφ θ < 0

tsinφ θ < 0

tcosφ θ > 0

Figure 3. The signs of tsinφ θ and tcosφ θ in each L-L⊥ quadrant

We remark that the parameter θ in tsinφ θ and tcosφ θ is measured from the line L
which makes a fixed angle φ to the x-axis (see Figure 2). Hence θ = 0 corresponds to
the positive direction of line L. Since a right angle has taxicab measure of 2 t-radians,
θ = −φ, 2−φ, 4−φ, and 6−φ correspond to the positive x-axis, positive y-axis, negative
x-axis, and negative y-axis, respectively. As a point P travels one round on the unit circle
from (1, 0) counterclockwise, the parameter θ increases from −φ to 8− φ.

The following theorem gives explicit formulas of tsinφ θ and tcosφ θ for −φ ≤ θ < 8−φ.
The explicit formulas are piecewise functions with breakpoints at θ = −φ, 2−φ, 4−φ, 6−φ,
and 8−φ, which correspond to the corners of the unit circle. Figure 4 shows examples of
the graphs of tsinφ θ and tcosφ θ.
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Theorem 2.2 (Theorem 9 in [2]). Let φ be a taxicab reference angle such that 0 ≤ φ < 2
and let θ be a taxicab angle measured relative to φ. Let

α =
1

φ2 − 2φ+ 2
,

which is well defined for all φ since φ2−2φ+ 2 > 0. The taxicab sine and cosine of θ with
reference angle φ are given by

tsinφ θ =


αθ ;−φ ≤ θ < 2− φ,
1 + α(θ − 2)(φ− 1) ; 2− φ ≤ θ < 4− φ,
α(4− θ) ; 4− φ ≤ θ < 6− φ,
−1 + α(6− θ)(φ− 1) ; 6− φ ≤ θ < 8− φ,

and

tcosφ θ =


1 + αθ(φ− 1) ;−φ ≤ θ < 2− φ,
α(2− θ) ; 2− φ ≤ θ < 4− φ,
−1 + α(4− θ)(φ− 1) ; 4− φ ≤ θ < 6− φ,
α(θ − 6) ; 6− φ ≤ θ < 8− φ.

Remark 2.3. From now on in this article, given a taxicab reference angle φ, we shall let

α denote
1

φ2 − 2φ+ 2
as defined in Theorem 2.2.

Figure 4. The graphs of tsinφ θ and tcosφ θ for some values of φ
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2.2. Basic Properties

From Theorem 2.2, tsinφ θ and tcosφ θ are continuous on [−φ, 8 − φ). They can be
continuously extended to all real values of θ and φ.

Proposition 2.4 (Section 4.1 in [2]). The extensions

tsinφ(θ + 8k) = tsinφ θ,

tcosφ(θ + 8k) = tcosφ θ,

tsinφ+2k θ = tsinφ θ,

tcosφ+2k θ = tcosφ θ,

for k ∈ Z, continuously extend tsinφ θ and tcosφ θ to all real values of θ and φ.

Proposition 2.5 (Proposition 8 and 11 in [2]). The following identities hold.

(1) Half-periodic identities:

tsinφ (θ − 4) = − tsinφ θ,

tcosφ (θ − 4) = − tcosφ θ.

(2) Cofunction identity:

tsinφ(θ + 2) = tcosφ θ.

3. Taxicab Trigonometric Identities

In this section, we derive new identities for the taxicab sine and cosine functions. From
now on, we will assume that φ is a taxicab reference angle such that 0 ≤ φ < 2, and θ
and γ are taxicab angles measured relative to φ. We also recall that α denotes 1

φ2−2φ+2 .

3.1. Pythagorean Identity

For the Euclidean space, the Pythagorean identity states that sin2 θ + cos2 θ = 1 as
(cos θ, sin θ) is a point on the unit circle, which is given by x2 + y2 = 1. If φ = 0, we
also have that (tcos0 θ, tsin0 θ) is a point on the taxicab unit circle, which is given by
|x|+ |y| = 1. Hence we have the identity

| tsin0 θ|+ | tcos0 θ| = 1. (3.1)

However, this does not hold for other values of φ because (tcosφ θ, tsinφ θ) is not a point
on the taxicab unit circle. We construct a step function which will be useful for deriving
an analogous identity.

Definition 3.1. We define a step function fφ on the interval [−φ, 8− φ) as follows.

fφ(θ) =


−(φ− 1) ;−φ ≤ θ < 2− φ,
1 ; 2− φ ≤ θ < 4− φ,
φ− 1 ; 4− φ ≤ θ < 6− φ,
−1 ; 6− φ ≤ θ < 8− φ.

We extend fφ to R by fφ(θ + 8k) = fφ(θ) for k ∈ Z.

Theorem 3.2.

fφ(θ) tsinφ θ + fφ(θ + 2) tcosφ θ = 1. (3.2)
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We note that when φ = 0, the above identity becomes identity (3.1). It can be verified
by direct substitution using the explicit formulas in Theorem 2.2. Here, we provide a
geometric proof instead. Our proof makes use of taxicab circles and orthogonality. This is
necessary because, in general, similar triangles theorems and familiar congruent triangles
conditions such as ASA (angle-side-angle) and SAS do not hold in the taxicab space. In
fact, the only congruent triangles condition for taxicab triangles is SASAS [5, Section 4].

Proof. We will give the proof for the case −φ ≤ θ < 2−φ. The proofs for other cases are
similar. We also assume that 0 ≤ φ < 1 and 0 < θ < 2 − φ. The statement in the case
φ > 1 or −φ < θ < 0 follows from the same argument. Identity (3.2) clearly holds when
φ = 1 or when θ = 0 or −φ.

Let L be the line through the origin O which makes reference angle φ with the x-axis,
where 0 ≤ φ < 1, and intersects the unit circle at a point Q. Let P be a point on the unit
circle so that segment OP makes angle 0 < θ < 2−φ with L, and let R be the orthogonal
projection of P onto L. From the definition of taxicab sine and cosine (Definition 2.1),
OR = tcosφ θ and PR = tsinφ θ.

Then, we construct a point H on the unit circle so that segment OH is perpendicular
to the unit circle in the first quadrant. It follows that OH makes angle of taxicab measure
1 with the x-axis, and angle ∠QOH has taxicab measure 1− φ. Let G be the orthogonal
projection of point R onto the unit circle in the first quadrant. Figure 5 (left) illustrates
this construction.

φ
1

1

P

O
R

Q

G

P ′

R′

G′
H

Figure 5. Construction in the proof of Theorem 3.2

Next, we consider triangles 4OHQ and 4PRQ. Angles ∠OQH and ∠PQR are the
same, and both ∠OHQ and ∠PRQ have taxicab measure of 2 t-radians. Since the angle
sum of a taxicab triangle is 4 t-radians [5, Theorem 4.2], we have that angles ∠HOQ and
∠RPQ have the same taxicab measure of 1−φ t-radians. Because point G is on segment
PQ, angle ∠RPG also has taxicab measure of 1− φ t-radians.

We recall that a translation is a taxicab isometry. We translate triangle 4PRG to
the triangle 4P ′R′G′ where the point P ′ is at the origin. As a result, points G′ and R′

are on a taxicab circle where both P ′G′ and P ′R′ are radii (see Figure 5 (right)). Since
∠RPG = ∠R′P ′G′ = 1− φ, we have that

RG

PR
=
R′G′

P ′R′
= 1− φ.
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Hence

RG = (1− φ)PR = (1− φ) tsinφ θ.

As segment RG is perpendicular to the unit circle, there exists a taxicab circle centered
at point R where both RG and RQ are radii. In particular,

RQ = RG = (1− φ) tsinφ θ.

Because segment OQ is a radius of the unit circle and R ∈ OQ, we have that

1 = OQ = OR+RQ = tcosφ θ + (1− φ) tsinφ θ,

which is equivalent to (3.2).

Other taxicab trigonometric functions can be defined in the usual ways. We also get
the Pythagorean identities for these functions directly from Theorem 3.2.

Definition 3.3. The taxicab tangent, cotangent, secant, and cosecant functions are de-
fined as follows:

ttanφ θ =
tsinφ θ

tcosφ θ
, tcotφ θ =

tcosφ θ

tsinφ θ
, tsecφ θ =

1

tcosφ θ
, tcscφ θ =

1

tsinφ θ
.

Corollary 3.4.

fφ(θ) ttanφ θ + fφ(θ + 2) = tsecφ θ;

fφ(θ) + fφ(θ + 2) tcotφ θ = tcscφ θ.

3.2. Angle Sum Identities

We want to derive identities that express tsinφ(θ+γ) and tcosφ(θ+γ) in terms of sine
and cosine of θ and γ. We shall first derive angle sum identities for −φ ≤ θ < 2− φ and
−φ ≤ γ < 2−φ. For other values of θ and γ, angle sum formulas can be calculated by using
the derived identities together with periodic, half-periodic, and cofunction properties of
taxicab sine and cosine. We define primitive regions for the angle sum identities as follows.
Figure 6 shows these regions in the (θ, γ)-parameter plane.

Figure 6. Primitive regions for the angle sum identities in the param-
eter plane
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D1 = {(θ, γ) ∈ R2 : θ ≥ −φ, γ ≥ −φ and θ + γ < −φ};
D2 = {(θ, γ) ∈ R2 : −φ ≤ θ < 2− φ,−φ ≤ γ < 2− φ, and − φ ≤ θ + γ < 2− φ};
D3 = {(θ, γ) ∈ R2 : θ < 2− φ, γ < 2− φ, and θ + γ ≥ 2− φ}.

Theorem 3.5. Let θ and γ be taxicab angles measured relative to φ. If −φ ≤ θ < 2− φ
and −φ ≤ γ < 2− φ, then the following identities hold whenever they are well defined.

tsinφ(θ + γ) =


−(φ− 1)(tsinφ θ + tsinφ γ + 2α)− 1 if (θ, γ) ∈ D1;

tsinφ θ + tsinφ γ if (θ, γ) ∈ D2;

(φ− 1)(tsinφ θ + tsinφ γ − 2α) + 1 if (θ, γ) ∈ D3;

=


− tcosφ θ − tcosφ γ − 2α(φ− 1) + 1 if (θ, γ) ∈ D1;
tcosφ θ + tcosφ γ − 2

φ− 1
if (θ, γ) ∈ D2;

tcosφ θ + tcosφ γ − 2α(φ− 1)− 1 if (θ, γ) ∈ D3;

and

tcosφ(θ + γ) =


tsinφ θ + tsinφ γ + 2α if (θ, γ) ∈ D1;

(φ− 1)(tsinφ θ + tsinφ γ) + 1 if (θ, γ) ∈ D2;

− tsinφ θ − tsinφ γ + 2α if (θ, γ) ∈ D3;

=


tcosφ θ + tcosφ γ − 2

φ− 1
+ 2α if (θ, γ) ∈ D1;

tcosφ θ + tcosφ γ − 1 if (θ, γ) ∈ D2;
− tcosφ θ − tcosφ γ + 2

φ− 1
+ 2α if (θ, γ) ∈ D3.

Proof. The proof is by direct calculation using explicit formulas in Theorem 2.2. Here,
we present the proof for tsinφ(θ + γ). The proof for tcosφ(θ + γ) is similar.

Case 1 : (θ, γ) ∈ D1. In this case, −2φ ≤ θ + γ < −φ. From the periodic property,
tsin(θ+ γ) = tsin(θ+ γ+ 8). We also have that 6−φ < 8− 2φ ≤ θ+ γ+ 8 < 8−φ. From
Theorem 2.2, tsinφ x = αx, for x ∈ [−φ, 2− φ), and tsinφ x = −1 + α(6− x)(φ− 1), for
x ∈ [6− φ, 8− φ). Thus,

tsinφ(θ + γ) = tsinφ(θ + γ + 8) = −1 + α(6− (θ + γ + 8))(φ− 1)

= −(φ− 1)αθ − (φ− 1)αγ − 2α(φ− 1)− 1

= −(φ− 1)(tsinφ θ + tsinφ γ + 2α)− 1.

From the Pythagorean identity (Theorem 3.2), for x ∈ [−φ, 2− φ),

−(φ− 1) tsinφ x = 1− tcosφ x. (3.3)

Therefore, we also have that

tsinφ(θ + γ) = − tcosφ θ − tcosφ γ − 2α(φ− 1) + 1.
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Case 2 : (θ, γ) ∈ D2. In this case, −φ ≤ θ+ γ < 2−φ. From Theorem 2.2, tsinφ x = αx
for all x ∈ [−φ, 2− φ). This is a linear function, so

tsinφ(θ + γ) = tsinφ θ + tsinφ γ.

Using equation (3.3), if φ 6= 1, we also get that

tsinφ(θ + γ) =
tcosφ θ + tcosφ γ − 2

φ− 1
.

Case 3 : (θ, γ) ∈ D3. In this case, 2− φ ≤ θ + γ < 4− φ. From Theorem 2.2, tsinφ x =
1 + α(x− 2)(φ− 1) for all x ∈ [2− φ, 4− φ). Therefore,

tsinφ(θ + γ) = 1 + α((θ + γ)− 2)(φ− 1)

= (φ− 1)αθ + (φ− 1)αγ − 2α(φ− 1) + 1

= (φ− 1)(tsinφ θ + tsinφ γ − 2α) + 1.

Using equation (3.3), we also get that

tsinφ(θ + γ) = tcosφ θ + tcosφ γ − 2α(φ− 1)− 1.

Remark 3.6. Some identities in Theorem 3.5 have φ− 1 as a denominator. This means
that when φ = 1, an angle sum identity of that type does not exist. For example, when
φ = 1 and (θ, γ) ∈ D3, there is no formula expressing tcosφ(θ + γ) in terms of tcosφ θ
and tcosφ γ. This is because tcosφ x is constant on [−φ, 2 − φ) but not a constant on
[2−φ, 4−φ) (see Figure 4). In this case, we can only write tcosφ(θ+γ) in terms of tsinφ θ
and tsinφ γ.

For other values of θ and γ, we can use periodic, half-periodic, and cofunction properties
together with Theorem 3.5 to find angle sum identities for tsinφ(θ+ γ) and tcosφ(θ+ γ).
Example 3.7 illustrates these calculations. In Table 1, we present angle sum identities for
θ, γ ∈ [−φ, 8 − φ) such that θ + γ < 8 − φ. We choose combinations of taxicab sine and
cosine of θ and γ so that the identities are well defined for all values of φ. The domains
for θ and γ in Table 1 are given in Figure 7.

Example 3.7. If θ ∈ [−φ, 2− φ), γ ∈ [2− φ, 4− φ), and θ + γ ∈ [2− φ, 4− φ), then

tsinφ(θ + γ) = (φ− 1) tsinφ θ + tsinφ γ.

Proof. Let γ̃ = γ − 2. Then, γ̃ ∈ [−φ, 2− φ) and θ+ γ̃ ∈ [−φ, 2− φ). That is (θ, γ̃) ∈ D2

in Theorem 3.5. Hence

tcosφ(θ + γ − 2) = tcosφ(θ + γ̃) = tcosφ θ + tcosφ γ̃ − 1.

From the cofunction property (Proposition 2.5), tcosφ(θ + γ − 2) = tsinφ(θ + γ) and
tcosφ γ̃ = tcosφ(γ − 2) = tsinφ γ. We have that

tsinφ(θ + γ) = tcosφ θ + tsinφ γ − 1.

From the Pythagorean identity (Theorem 3.2), −(φ− 1) tsinφ θ+ tcosφ θ = 1. Therefore,
the above identity becomes

tsinφ(θ + γ) = (φ− 1) tsinφ θ + tsinφ γ.
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Table 1. Angle sum identities for θ, γ ∈ [−φ, 8 − φ) such that θ + γ <
8− φ. The domains Di are given in Figure 7. In this table, we say that
an angle x is in Q1 if −φ ≤ x < 2 − φ, Q2 if 2 − φ ≤ x < 4 − φ, Q3 if
4− φ ≤ x < 6− φ, and Q4 if 6− φ ≤ x < 8− φ or −2− φ ≤ x < −φ.

Domain θ γ θ + γ tsinφ(θ + γ) tcosφ(θ + γ)

D1 Q1 Q1 Q4 −(φ− 1)(tsinφ θ + tsinφ γ + 2α)− 1 tsinφ θ + tsinφ γ + 2α

D2 Q1 Q1 Q1 tsinφ θ + tsinφ γ tcosφ θ + tcosφ γ − 1

D3 Q1 Q1 Q2 (φ− 1)(tsinφ θ + tsinφ γ − 2α) + 1 − tsinφ θ − tsinφ γ + 2α

D4 Q2 Q2 Q2 tsinφ θ + tsinφ γ + 2α(φ− 1)− 1 tcosφ θ + tcosφ γ − 2α

D5 Q2 Q2 Q3 tcosφ θ + tcosφ γ (φ− 1)(tcosφ θ + tcosφ γ)− 1

D6 Q2 Q2 Q4 − tsinφ θ − tsinφ γ + 2α(φ− 1) + 1 − tcosφ θ − tcosφ γ − 2α

D7 Q3 Q3 Q4 (φ− 1)(tsinφ θ + tsinφ γ − 2α)− 1 − tsinφ θ − tsinφ γ + 2α

D8 Q1 Q2 Q1 tsinφ θ − tcosφ γ + 2α tcosφ θ − (φ− 1) tcosφ γ + 2α(φ− 1)

D9 Q1 Q2 Q2 (φ− 1) tsinφ θ + tsinφ γ − tsinφ θ + tcosφ γ

D10 Q1 Q2 Q3 − tsinφ θ + tcosφ γ + 2α − tcosφ θ + (φ− 1) tcosφ γ + 2α(φ− 1)

D11 Q2 Q3 Q3 tcosφ θ + tsinφ γ − 2α (φ− 1) tcosφ θ + tcosφ γ − 2α(φ− 1)

D12 Q2 Q3 Q4 − tsinφ θ + (φ− 1) tsinφ γ − tcosφ θ − tsinφ γ

D13 Q1 Q3 Q2 (φ− 1)(tsinφ θ − tsinφ γ + 2α) + 1 − tsinφ θ + tsinφ γ − 2α

D14 Q1 Q3 Q3 − tsinφ θ + tsinφ γ − tcosφ θ + tcosφ γ + 1

D15 Q1 Q3 Q4 (φ− 1)(− tsinφ θ + tsinφ γ + 2α)− 1 tsinφ θ − tsinφ γ + 2α

D16 Q2 Q4 Q4 − tsinφ θ + tsinφ γ − 2α(φ− 1) + 1 − tcosφ θ + tcosφ γ + 2α

D17 Q1 Q4 Q3 − tsinφ θ − tcosφ γ − 2α − tcosφ θ − (φ− 1) tcosφ γ − 2α(φ− 1)

D18 Q1 Q4 Q4 −(φ− 1) tsinφ θ − tsinφ γ tsinφ θ + tcosφ γ

Figure 7. Domains for angle sum identities in Table 1



130 Thai J. Math. Vol. 22 (2024) /S. Boonleang et al.

3.3. Double-angle Identities

Double-angle identities express tsinφ(2θ) and tcosφ(2θ) in terms of sine and cosine of θ.
It suffices to derive double-angle identities for −φ ≤ θ < 2−φ as we can use periodic, half-
periodic, and cofunction properties to derive double-angle identities for other values of θ.
The following corollary follows directly from Theorem 3.5. Table 2 shows double-angle
identities that are well defined for all values of φ.

Corollary 3.8. Let θ be a taxicab angle measured relative to φ. If −φ ≤ θ < 2− φ, then
the following identities hold whenever they are well defined.

tsinφ(2θ) =


−2(φ− 1)(tsinφ θ + α)− 1 if − φ ≤ θ < −φ2 ;

2 tsinφ θ if − φ

2
≤ θ < 1− φ

2 ;

2(φ− 1)(tsinφ θ − α) + 1 if 1− φ
2 ≤ θ < 2− φ;

=


−2(tcosφ θ + α(φ− 1)) + 1 if − φ ≤ θ < −φ2 ;
2(tcosφ θ − 1)

φ− 1
if − φ

2 ≤ θ < 1− φ
2 ;

2(tcosφ θ − α(φ− 1))− 1 if 1− φ
2 ≤ θ < 2− φ;

and

tcosφ(2θ) =


2 tsinφ θ + 2α if − φ ≤ θ < −φ2 ;

2(φ− 1) tsinφ θ + 1 if − φ
2 ≤ θ < 1− φ

2 ;

−2 tsinφ θ + 2α if 1− φ
2 ≤ θ < 2− φ;

=


2(tcosφ θ + α(φ− 1)− 1)

φ− 1
if − φ ≤ θ < −φ2 ;

2 tcosφ θ − 1 if − φ
2 ≤ θ < 1− φ

2 ;
−2(tcosφ θ − α(φ− 1)− 1)

φ− 1
if 1− φ

2 ≤ θ < 2− φ.

Table 2. Double angle identities for θ such that −2φ ≤ 2θ < 8− φ

Domain tsinφ(2θ) tcosφ(2θ)[
−φ,−φ

2

)
−2(φ− 1)(tsinφ θ + α)− 1 2 tsinφ θ + 2α[

−φ
2 , 1−

φ
2

)
2 tsinφ θ 2 tcosφ θ − 1[

1− φ
2 , 2− φ

)
2(φ− 1)(tsinφ θ − α) + 1 −2 tsinφ θ + 2α[

2− φ, 2− φ
2

)
2 tsinφ θ + 2α(φ− 1)− 1 2 tcosφ θ − 2α[

2− φ
2 , 3−

φ
2

)
2 tcosφ θ 2(φ− 1) tcosφ θ − 1[

3− φ
2 , 4− φ

)
−2 tsinφ θ + 2α(φ− 1) + 1 −2 tcosφ θ − 2α[

4− φ, 4− φ
2

)
2(φ− 1)(tsinφ θ − α)− 1 −2 tsinφ θ + 2α

3.4. Half-angle Identities

Half-angle identities express tsinφ
(
θ
2

)
and tcosφ

(
θ
2

)
in terms of sine and cosine of θ.

We get the following corollary from Corollary 3.8 by setting θ → 2θ and θ
2 → θ. Table 3

shows half-angle identities that are well defined for all values of φ.
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Corollary 3.9. Let θ be a taxicab angle measured relative to φ. If −φ ≤ θ < 4−2φ, then
the following identities hold whenever they are well defined.

tsinφ

(
θ

2

)
=


1
2 tsinφ θ if − φ ≤ θ < 2− φ;
tsinφ θ + 2α(φ− 1)− 1

2(φ− 1)
if 2− φ ≤ θ < 4− 2φ;

=


tcosφ θ − 1

2(φ− 1)
if − φ ≤ θ < 2− φ;

− 1
2 tcosφ θ + α if 2− φ ≤ θ < 4− 2φ;

and

tcosφ

(
θ

2

)
=

{
1
2 (φ− 1) tsinφ θ + 1 if − φ ≤ θ < 2− φ;
1
2 tsinφ θ + α(φ− 1) + 1

2 if 2− φ ≤ θ < 4− 2φ;

=

{
1
2 tcosφ θ + 1

2 if − φ ≤ θ < 2− φ;

− 1
2 (φ− 1) tcosφ θ + α(φ− 1) + 1 if 2− φ ≤ θ < 4− 2φ.

Table 3. Half-angle identities for −φ ≤ θ < 8− φ

Domain tsinφ

(
θ
2

)
tcosφ

(
θ
2

)
[−φ, 2− φ) 1

2 tsinφ θ
1
2 tcosφ θ + 1

2

[2− φ, 4− 2φ) − 1
2 tcosφ θ + α − 1

2 (φ− 1) tcosφ θ + α(φ− 1) + 1

[4− 2φ, 4− φ) 1
2 tsinφ θ − α(φ− 1) + 1

2
1
2 tcosφ θ + α

[4− φ, 6− φ) − 1
2 (φ− 1) tsinφ θ + 1 1

2 tsinφ θ

[6− φ, 8− 2φ) − 1
2 tsinφ θ + α(φ− 1) + 1

2 − 1
2 tcosφ θ − α

[8− 2φ, 8− φ) − 1
2 tcosφ θ + α − 1

2 (φ− 1) tcosφ θ + α(φ− 1)− 1

3.5. Negative-angle Identities

Negative-angle identities express tsinφ(−θ) and tcosφ(−θ) in terms of tsinφ θ or tcosφ θ.
It suffices to derive the negative-angle identities for θ ∈ (0, 4]. For other values of θ, we
can use the half-periodic property to derive negative-angle identities. Unlike the previous
identities, negative-angle identities also depend on the values of φ. In the following
theorem, we choose to provide versions of negative-angle identities that are well defined
for all values of φ.

Theorem 3.10. Let 0 < θ ≤ 4 be a taxicab angle measured relative to φ. If 0 ≤ φ < 1,
then

tsinφ(−θ) =



− tsinφ θ if 0 < θ ≤ φ;

(φ− 1)(tsinφ θ − 2α)− 1 if φ < θ ≤ 2− φ;

tsinφ θ − 2 if 2− φ < θ ≤ 2 + φ;

− tcosφ θ − 2α if 2 + φ < θ ≤ 4− φ;

− tsinφ θ if 4− φ < θ ≤ 4;
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and

tcosφ(−θ) =



− tcosφ θ + 2 if 0 < θ ≤ φ;

− tsinφ θ + 2α if φ < θ ≤ 2− φ;

tcosφ θ if 2− φ < θ ≤ 2 + φ;

−(φ− 1)(tcosφ θ + 2α)− 1 if 2 + φ < θ ≤ 4− φ;

− tcosφ θ − 2 if 4− φ < θ ≤ 4.

If 1 ≤ φ < 2, then

tsinφ(−θ) =



− tsinφ θ if 0 < θ ≤ 2− φ;

tcosφ θ − 2α if 2− φ < θ ≤ φ;

tsinφ θ − 2 if φ < θ ≤ 4− φ;

−(φ− 1)(tsinφ θ − 2α)− 1 if 4− φ < θ ≤ 2 + φ;

− tsinφ θ if 2 + φ < θ ≤ 4;

and

tcosφ(−θ) =



− tcosφ θ + 2 if 0 < θ ≤ 2− φ;

(φ− 1)(tcosφ θ − 2α) + 1 if 2− φ < θ ≤ φ;

tcosφ θ if φ < θ ≤ 4− φ;

tsinφ θ − 2α if 4− φ < θ ≤ 2 + φ;

− tcosφ θ − 2 if 2 + φ < θ ≤ 4.

Proof. The proof is by direct calculation using explicit formulas in Theorem 2.2. Here,
we demonstrate the proof for one case. The proofs for other cases are similar.
Case φ < 1 and 2+φ < θ ≤ 4−φ: In this case, we have that −4+φ ≤ −θ < −2−φ. So
4−φ ≤ 4+φ ≤ 8−θ < 6−φ. From Theorem 2.2, tcosφ x = α(2−x), for 2−φ ≤ x < 4−φ,
and tcosφ x = −1 + α(4− x)(φ− 1), for 4− φ ≤ x < 6− φ. Then,

tcosφ(−θ) = tcosφ(8− θ) = −1 + α(4− (8− θ))(φ− 1)

= −1 + α(2− θ)(φ− 1)− 2α(φ− 1)

= −(φ− 1)(tcosφ θ + 2α)− 1.

4. Derivative Identities

For the Euclidean space,
d

dθ
[sin θ] = cos θ and

d

dθ
[cos θ] = − sin θ. Because the taxicab

sine and cosine are piecewise linear, their derivatives do not have similar relation. How-
ever, it turns out that the derivatives of other taxicab trigonometric functions behave
similarly to their Euclidean counterparts. For example, the derivative of taxicab tangent
is proportional to the square of taxicab secant.

The following theorem collects new derivative identities for the taxicab tangent, secant,
cotangent, and cosecant functions, which extend the results for the case φ = 0 in [7].

Theorem 4.1. The following identities hold whenever the derivatives are well defined.

d

dθ
[ttanφ θ] = α tsec2φ θ;
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d

dθ
[tsecφ θ] = αfφ(θ) tsec2φ θ

=


−α(φ− 1) tsec2φ θ if 8k − φ < θ < (8k + 2)− φ;

α tsec2φ θ if (8k + 2)− φ < θ < (8k + 4)− φ;

α(φ− 1) tsec2φ θ if (8k + 4)− φ < θ < (8k + 6)− φ;

−α tsec2φ θ if (8k + 6)− φ < θ < (8k + 8)− φ;

d

dθ
[tcotφ θ] = −α tcsc2φ θ;

d

dθ
[tcscφ θ] = −αfφ(θ + 2) tcsc2φ θ

=


−α tcsc2φ θ if 8k − φ < θ < (8k + 2)− φ;

−α(φ− 1) tcsc2φ θ if (8k + 2)− φ < θ < (8k + 4)− φ;

α tcsc2φ θ if (8k + 4)− φ < θ < (8k + 6)− φ;

α(φ− 1) tcsc2φ θ if (8k + 6)− φ < θ < (8k + 8)− φ.

Here, k is an arbitrary integer.

Proof. The derivative identities can be proved by direct calculation using explicit formulas
in Theorem 2.2. We show the calculation for the derivative of ttanφ θ here. The proofs
for other derivatives are similar.

We note that the derivative of ttanφ θ does not exist at θ ∈ {2k − φ : k ∈ Z}, where
the graphs of taxicab sine and cosine have corners, and whenever tcosφ θ = 0.

Case 1 : −φ < θ < 2− φ. From Theorem 2.2, tsinφ θ = αθ and tcosφ θ = 1 + αθ(φ− 1).
Then,

d

dθ
[ttanφ θ] =

d

dθ

[
αθ

1 + αθ(φ− 1)

]
=

(1 + αθ(φ− 1))α− (αθ)(α(φ− 1))

(1 + αθ(φ− 1))2

=
α

(1 + αθ(φ− 1))2

=
α

tcos2φ θ

= α tsec2φ θ.

Case 2 : 2−φ < θ < 4−φ. In this case, tsinφ θ = 1+α(θ−2)(φ−1) and tcosφ θ = α(2−θ).
Then,

d

dθ
[ttanφ θ] =

d

dθ

[
1 + α(θ − 2)(φ− 1)

α(2− θ)

]
=

1

α(2− θ)2
=

α

(α(2− θ))2
= α tsec2φ θ.

Case 3 : 4− φ < θ < 6− φ. We have that tsinφ θ = α(4− θ) and tcosφ θ = −1 + α(4−
θ)(φ− 1). Then,

d

dθ
[ttanφ θ] =

d

dθ

[
α(4− θ)

−1 + α(4− θ)(φ− 1)

]
=

(−1 + α(4− θ)(φ− 1))(−α)− α(4− θ)(−α(φ− 1))

(−1 + α(4− θ)(φ− 1))2

=
α

(−1 + α(4− θ)(φ− 1))2



134 Thai J. Math. Vol. 22 (2024) /S. Boonleang et al.

= α tsec2φ θ.

Case 4 : 6 − φ < θ < 8 − φ. In this case, tsinφ θ = −1 + α(6 − θ)(φ − 1) and tcosφ θ =
α(θ − 6). Then,

d

dθ
[ttanφ θ] =

d

dθ

[
−1 + α(6− θ)(φ− 1)

α(θ − 6)

]
=
α(θ − 6)(−α(φ− 1))− (−1 + α(6− θ)(φ− 1))(α)

(α(θ − 6))2

=
α

(α(θ − 6))2

= α tsec2φ θ.

From all cases, we get that
d

dθ
[ttanφ θ] = α tsec2φ θ.

Applying the Pythagorean identities (Corollary 3.4), we get the following identities.

Corollary 4.2. The following identities hold whenever the derivatives are well defined.

d

dθ
[tsecφ θ] = αf2φ(θ) tsecφ θ ttanφ θ + αfφ(θ)fφ(θ + 2) tsecφ θ

=

{
α(φ−1)2 tsecφ θ ttanφ θ − α(φ−1) tsecφ θ if θ ∈ (8k, 8k+2) ∪ (8k+4, 8k+6);

α tsecφ θ ttanφ θ + α(φ−1) tsecφ θ if θ ∈ (8k+2, 8k+4) ∪ (8k+6, 8k+8);

d

dθ
[tcscφ θ] = −αf2φ(θ + 2) tcscφ θ tcotφ θ − αfφ(θ)fφ(θ + 2) tcscφ θ

=

{
−α tcscφ θ tcotφ θ + α(φ−1) tcscφ θ if θ ∈ (8k, 8k+2) ∪ (8k+4, 8k+6);

−α(φ−1)2 tcscφ θ tcotφ θ − α(φ−1) tcscφ θ if θ ∈ (8k+2, 8k+4) ∪ (8k+6, 8k+8),

Here, k is an arbitrary integer.

5. Conclusion

If D ⊂ R2 is a closed bounded convex region which is centrally symmetric (i.e. p ∈ D
if and only if −p ∈ D), then D defines a norm ‖ · ‖ on R2 where D is the unit disk. The
norm ‖ · ‖ then induces a metric d on R2 given by d(x, y) = ‖y − x‖. Finite dimensional
normed spaces are also known as Minkowski spaces [4]. Examples of two-dimensional
Minkowski spaces include the taxicab space, where the unit disk is the square region
D = {(x, y) : |x|+ |y| ≤ 1}, and more generally, normed linear spaces defined by regular
2n-gons.

In this article, we derive several algebraic and derivative identities for two-parameter
trigonometric functions in the taxicab space. Our result suggests that some constants
and functions that are originally constructed only as algebraic aids might have geometric
meaning related to the geometry of the unit disk. This hints at a possible unified theory
for two-parameter trigonometric functions for a larger class of Minkowski spaces such as
two-dimensional normed linear spaces defined by regular 2n-gons.
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