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Abstract Let G and U be subsets of a semigroup S. The rank of a semigroup S is the minimal size of a

generating set of S. By the definition of rank, it gives a new idea of definition of rank which is called the

relative rank of S modulo U which is the minimal size of a subset G such that G∪U is a generating set of

S. A set G is called a generating set of S modulo U . Let X be a finite chain and let Y be a subchain of X.

The semigroup T (X,Y ) is so-called the full transformation semigroup on X with restricted range Y which

is a subsemigroup of the semigroup T (X). In this work, we determine the relative rank of the semigroup

OPR(X,Y ) of all orientation-preserving or orientation-reversing transformations with restricted range

modulo the semigroup OD(X,Y ) of all order-preserving or order-reversing transformations with restricted

range.
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1. Introduction and Preliminaries

Let S be a semigroup and let G and U be subsets of the semigroup S. Then a gen-
erating set G of S is denoted by 〈G〉 = S. The rank of S is defined to be the minimal
size of a generating set G, i.e. rank(S) := min{|G| : G ⊆ S, 〈G〉 = S}. The relative
rank of S modulo U is the minimal size of a subset G of S such that G ∪ U gener-
ates S, i.e. rank(S : U) := min{|G| : G ⊆ S, 〈G ∪ U〉 = S}. By the definition of the
relative rank, we obtain immediately that rank(S : ∅) = rank(S), rank(S : S) = 0,
rank(S : A) = rank(S : 〈A〉) and rank(S : A) = 0 if and only if 〈A〉 = S. In addition,
a set G with 〈G ∪ U〉 = S is called a generating set of S modulo U . The relative rank
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generalizes the rank of a semigroup which was introduced by Howie, Ruškuc and Higgins
[9].

Let X = {1 < 2 < · · · < n} be a finite chain with |X| = n. Denote T (X) by
the semigroup of all full transformations on X under the usual composition of func-
tions. Next, we will introduce some notations in the full transformation semigroup.
Let α ∈ T (X). The image of a transformation α which is denoted by im(α), i.e.
im(α) := {xα : x ∈ X} and the rank of a transformation α is the cardinality of im(α)
which is denoted by rank(α), i.e. rank(α) := |im(α)|. The kernel of a transformation α
is the set ker(α) := {(x, y) ∈ X × X : xα = yα}. It is easy to verify that ker(α) is an
equivalence relation on X and it is called ker(α)-classes or ker(α)-blocks. Let B1, B2 be
subsets of X. Define B1 < B2 if and only if x1 < x2 for all x1 ∈ B1 and for all x2 ∈ B2.

A transformation α ∈ T (X) is called orientation-preserving (orientation-reversing, re-
spectively) if there is a decomposition X = X1∪X2 with X1 < X2, y1α ≥ y2α (y1α ≤ y2α,
respectively) for all y1 ∈ X1 and y2 ∈ X2, and xα ≤ yα (xα ≥ yα, respectively) for all
x ≤ y ∈ X1 or x ≤ y ∈ X2. If X2 = ∅ with xα ≤ yα for all x ≤ y ∈ X1 then α is called
order-preserving. Moreover, if X1 = ∅ with xα ≥ yα for all x ≤ y ∈ X2 then α is called
order-reversing. We obtain that the product of two orientation-preserving transforma-
tions is an orientation-preserving and the product of two orientation-reversing transfor-
mations is also an orientation-preserving. We denote by O(X), OD(X), OP(X), OR(X)
and OPR(X) the semigroup of all order-preserving transformations, the semigroup of
all order-preserving or order-reversing transformations, the semigroup of all orientation-
preserving transformations, the set of all orientation-reversing transformations and the
semigroup of all orientation-preserving or orientation-reversing transformations, respec-
tively. It is easy to verify that O(X), OD(X), OP(X) and OPR(X) are subsemigroup
of T (X) under the usual composition of functions but OR(X) is not a subsemigroup
of T (X). It is also clear that O(X) is a proper subsemigroup of OD(X), OP(X) and
OPR(X). In addition, we also know that OD(X) is a proper subsemigroup of OPR(X).
The semigroup OP(X) has been widely studied (see in [1], [2], [3], [5] and [12]). The
rank of OP(X), O(X) and T (X) are equal 2, n and 3, respectively (see in [3] and [9]).
Moreover, we obtain that rank(OP(X) : O(X)) = 1, rank(T (X) : O(X)) = 2, and
rank(T (X) : OP(X)) = 1 ( see in [1] and [9]).

Let Y = {l1 < l2 < · · · < lm} be a subchain of X with |Y | = m and 1 < m < n. Then
we consider the following sets:

T (X,Y ) := {α ∈ T (X) : Xα ⊆ Y },
O(X,Y ) := {α ∈ O(X) : Xα ⊆ Y },
OD(X,Y ) := {α ∈ OD(X) : Xα ⊆ Y },
OP(X,Y ) := {α ∈ OP(X) : Xα ⊆ Y },
OPR(X,Y ) := {α ∈ OPR(X) : Xα ⊆ Y }.

It is easy to see that all of them form to be subsemigroups of T (X) under the usual com-
position of functions. The semigroup T (X,Y ) is defined by Symons and it is called the full
transformation semigroup with restricted range (see in [11]). The other semigroups are
introduced by Fernandes et al. in [4] and [5]. Moreover, the transformation semigroups
with restricted range have been widely investigated (see in [4], [6] and [10]). The rank
of T (X,Y ) is equal to S(n,m) is the stirling number of second kind [8]. In [4] and [5],
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the authors proved that rank(O(X,Y )) =

(
n− 1

m− 1

)
+
∣∣Y ]
∣∣ where Y ] is the set of captive

elements and rank(OP(X,Y )) = rank(OPR(X,Y )) =

(
n

m

)
. In addition, the number

of distinct kernels of the semigroup OP(X,Y ) and the semigroup OPR(X,Y ) with rank
m are coincided (see in [1] and [5]). In [12], we obtained that rank(T (X,Y ) : O(X,Y ))

is equal to S(n,m) −
(
n− 1

m− 1

)
or S(n,m) −

(
n− 1

m− 1

)
+ 1 depends on set Y . In [13],

the author determined the relative rank of the semigroup T (X,Y ) modulo the semigroup
OD(X,Y ) and modulo the semigroup OPR(X,Y ), respectively.

In this paper, we determine the relative rank of some subsemigroups of T (X,Y ). In
section 2.1, we describe the relative rank OP(X,Y ) modulo O(X,Y ). Finally, we deter-
mine the relative rank OPR(X,Y ) modulo OD(X,Y ) in section 2.2.

2. Main Results

In this section, we study the semigoup OPR(X,Y ) and the subsemigroup OD(X,Y )
in order to determine the relative rank of the semigoup OPR(X,Y ) modulo the subsemi-
group OD(X,Y ).

2.1. Reletive Rank of OP(X,Y ) Modulo O(X,Y )

In this section, we study and describe the relative rank ofOP(X,Y ) moduloO(X,Y )
[2]. Define the set P by

P := {ker(α) : α ∈ OP(X,Y ), rank(α) = m} \ {ker(α) : α ∈ O(X,Y ), rank(α) = m}.
Therefore, P is the set of all partitions of X into m− 1 intervals and one block, which is
the union of two intervals B1 and Bn such that 1 ∈ B1 and n ∈ Bn. For each P ∈ P, we
fix an αP ∈ OP(X,Y )\O(X,Y ) with ker(αP ) = P . Then we can compute the cardinality
of P as the following lemma.

Lemma 2.1. [2] |P| =
(
n− 1

m

)
.

Next, we define a transformation η∗ : X → Y by

xη∗ :=

{
li+1 if li ≤ x < li+1, 1 ≤ i < m
l1 if lm ≤ x or x < l1.

It is easy to see that η∗ ∈ OP(X,Y ). Then we can state the main result as the following
theorem.

Theorem 2.2. [2] OP(X,Y ) = 〈O(X,Y ), {αP : P ∈ P}, η∗〉.

Therefore, we get the relative rank of OP(X,Y ) modulo O(X,Y ) as follows:

Proposition 2.3. [2] If 1 /∈ Y or n /∈ Y , then rank(OP(X,Y ) : O(X,Y )) =

(
n− 1

m

)
.

Proposition 2.4. [2] If {1, n} ⊆ Y , then rank(OP(X,Y ) : O(X,Y )) = 1 +

(
n− 1

m

)
.
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2.2. Reletive Rank of OPR(X,Y ) Modulo OD(X,Y )

In this section, we calculate the relative rank of OPR(X,Y ) modulo OD(X,Y ). Since
we know that O(X,Y ) is a proper subsemigroup of OD(X,Y ), we obtain immediately
that rank(OPR(X,Y ) : OD(X,Y )) ≤ rank(OPR(X,Y ) : O(X,Y )).

For Y is a subchain of X with |Y | = 2, we found that OPR(X,Y ) = OP(X,Y ) and
notice that {ker(α) : α ∈ O(X,Y ), rank(α) = 2} = {ker(α) : α ∈ OD(X,Y ), rank(α) =
2}. Then we obtain the following result.

Theorem 2.5. OPR(X,Y ) = 〈OD(X,Y ), {αP : P ∈ P}, η∗〉.

Proof. Since |Y | = 2 and O(X,Y ) ⊆ OD(X,Y ), we get that OPR(X,Y ) = OP(X,Y ) =
〈O(X,Y ), {αP : P ∈ P}, η∗〉 ⊆ 〈OD(X,Y ), {αP : P ∈ P}, η∗〉. Then OPR(X,Y ) ⊆
〈OD(X,Y ), {αP : P ∈ P}, η∗〉. It is clear that 〈OD(X,Y ), {αP : P ∈ P}, η∗〉 ⊆
OPR(X,Y ). Altogether, we get that OPR(X,Y ) = 〈OD(X,Y ), {αP : P ∈ P}, η∗〉

Remark 2.6. If Y = {1, n}, it is easy to see that η∗ ∈ OD(X,Y ).

By Proposition 2.3, Proposition 2.4, Theorem 2.5 and Remark 2.6, we obtain the
following theorem.

Theorem 2.7. If Y is a subchain of X with |Y | = 2, then rank(OPR(X,Y ) : OD(X,Y ))

=

(
n− 1

2

)
.

Proof. Suppose that Y is a subchain of X with |Y | = 2. If 1 /∈ Y or n /∈ Y , then

rank(OPR(X,Y ) : OD(X,Y )) = rank(OP(X,Y ) : O(X,Y )) =

(
n− 1

2

)
by Proposition

2.3 and Theorem 2.5. If Y = {1, n}, we obtain that η∗ ∈ OD(X,Y ) and OPR(X,Y ) =
〈OD(X,Y ), {αP : P ∈ P}, η∗〉 = 〈OD(X,Y ), {αP : P ∈ P}〉 by Remark 2.6 and Theorem
2.5, respectively. By Proposition 2.4, rank(OPR(X,Y ) : OD(X,Y )) = rank(OP(X,Y ) :

O(X,Y ))−1 =

(
n− 1

2

)
. Altogether, we conclude that rank(OPR(X,Y ) : OD(X,Y )) =(

n− 1

2

)
.

The rest of this work will consider the case that Y is a subchain of X with |Y | ≥ 3.
Notice that {ker(α) : α ∈ O(X,Y ), rank(α) = m} = {ker(α) : α ∈ OD(X,Y ), rank(α) =
m} and {ker(α) : α ∈ OP(X,Y ), rank(α) = m} = {ker(α) : α ∈ OPR(X,Y ), rank(α) =
m}. Then we define the set K as the following

K := {ker(α) : α ∈ OPR(X,Y ), rank(α) = m} \ {ker(α) : α ∈ OD(X,Y ), rank(α) = m}.
For each K ∈ K, we fix an αK ∈ OPR(X,Y )\OP(X,Y ) with ker(αK) = K. Then we

obtain that |K| = |P|, i.e. |K| =
(
n− 1

m

)
. Next, we define a transformation β∗1 : X → Y

and a transformation β∗ : X → Y by

xβ∗1 :=

 l1 if l1 ≤ x < l2
lm−i+1 if li+1 ≤ x < li+2 and 1 ≤ i < m− 1
l2 if lm ≤ x or x < l1



On the Relative Rank of Orientation-preserving ... 107

and

xβ∗ :=

 lm if x < l1
lm−i+1 if li ≤ x < li+1 and 1 ≤ i < m
l1 if x ≥ lm .

It is easy to see that β∗1 ∈ OPR(X,Y ) \ OP(X,Y ) with ker(β∗1) = ker(η∗) and β∗ ∈
OD(X,Y ). We can compute that (β∗1β

∗)m−1 = η∗. Then the next proposition will show
that OD(X,Y ) ∪ {αK : K ∈ K} ∪ {β∗1} is a generating set for OPR(X,Y ).

Theorem 2.8. OPR(X,Y ) = 〈OD(X,Y ), {αK : K ∈ K}, β∗1〉.

Proof. Let β ∈ OPR(X,Y ). Then we will consider two cases.
Case 1. β ∈ OP(X,Y ). For each K ∈ K, we put θK := αKβ

∗
1 , where αK ∈

OPR(X,Y ) \ OP(X,Y ). Therefore, θK ∈ OP(X,Y ) \ O(X,Y ) with rank(θK) = m and
ker(θK) = ker(αK). By the previous argument, let us put {αP : P ∈ P} = {θK : K ∈ K}.
By Theorem 2.2, we obtain that OP(X,Y ) = 〈O(X,Y ), {αP : P ∈ P}, η∗〉. So, β ∈
OP(X,Y ) = 〈O(X,Y ), {αP : P ∈ P}, η∗〉 ⊆ 〈OD(X,Y ), {θK : K ∈ K}, (β∗1β∗)m−1〉 ⊆
〈OD(X,Y ), {αK : K ∈ K}, β∗1〉.

Case 2. β ∈ OPR(X,Y ) \ OP(X,Y ). We put θ := ββ∗1 and we observe that θ ∈
OP(X,Y ) as the product of two orientation-reversing transformations. From Case 1,
we have θ ∈ OP(X,Y ) ⊆ 〈OD(X,Y ), {αK : K ∈ K}, β∗1〉. Let x ∈ X. Then xθβ∗1 =
x(ββ∗1)β∗1 = xβ(β∗1β

∗
1) = xβ(id|Y ) = xβ, i.e. β = θβ∗1 . Hence, β ∈ 〈OD(X,Y ), {αK :

K ∈ K}, β∗1〉.
Altogerther, we obtain that OPR(X,Y ) = 〈OD(X,Y ), {αK : K ∈ K}, β∗1〉.

Lemma 2.9. Let A ⊆ OPR(X,Y )\OD(X,Y ) such that 〈OD(X,Y ), A〉 = OPR(X,Y ).
Then there is a set A′ ⊆ A with {kerα : α ∈ A′} = K.

Proof. Assume that there is K ∈ K with K /∈ {kerα : α ∈ A}. Since αK ∈ OPR(X,Y ) =
〈OD(X,Y ), A〉, there are θ1 ∈ OD(X,Y )∪A and θ2 ∈ OPR(X,Y ) sucht that αK = θ1θ2.
Since rank(αK) = m, we obtain that ker(αK) = ker(θ1), i.e. ker(θ1) = K. Hence, θ1 /∈ A
by the assmption and θ1 /∈ OD(X,Y ) because K /∈ {ker(α) : α ∈ OD(X,Y )} that is a
contradiction. Therefore, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = K.

Then we contribute the main result of this section that consider two possibilities.

Firstly, we consider the case that |X\Y | = 1, i.e. |X| = m+1. So, |K| =
(
m+ 1− 1

m

)
= 1

that means K = {K}. Then we obtain the following results.

Theorem 2.10. If |X \ Y | = 1 and 1 /∈ Y or n /∈ Y , then we have rank(OPR(X,Y ) :
OD(X,Y )) = 1.

Proof. Since 1 /∈ Y or n /∈ Y and |K| = 1, we can assume without loss of gener-
altity that β∗1 = αK . Moreover, we know that β∗ ∈ OD(X,Y ). By Theorem 2.8,
we have OPR(X,Y ) = 〈OD(X,Y ), αK〉, i.e. rank(OPR(X,Y ) : OD(X,Y )) ≤ 1.
Since OD(X,Y ) is a proper subsemigroup of OPR(X,Y ), we get immediately that
rank(OPR(X,Y ) : OD(X,Y )) ≥ 1. Altogether, rank(OP(X,Y ) : OD(X,Y )) = 1.

Theorem 2.11. If |X \ Y | = 1 and {1, n} ⊆ Y , then we have rank(OPR(X,Y ) :
OD(X,Y )) = 2.
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Proof. By Theorem 2.8, we haveOPR(X,Y )=〈OD(X,Y ), αK , β
∗
1〉, i.e. rank(OPR(X,Y )

: OD(X,Y )) ≤ 2.
Let A ⊆ OPR(X,Y )\OD(X,Y ) such that 〈OD(X,Y ), A〉 = OPR(X,Y ). By Lemma

2.9, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = K. Therefore, rank(OPR(X,Y ) :
OD(X,Y )) ≥ |A′| ≥ |K| = 1. Assume that 〈OD(X,Y ), αK〉 = OPR(X,Y ). By the
definition of η∗, we have η∗ ∈ OPR(X,Y ) \ OD(X,Y ) ⊆ OPR(X,Y ) and ker(η∗) /∈
K because (1, n) /∈ ker(η∗). Since η∗ ∈ OPR(X,Y ) \ OD(X,Y ) ⊆ OPR(X,Y ) =
〈OD(X,Y ), αK〉, there are θ1, . . . , θl ∈ OD(X,Y ) ∪ {αK} such that η∗ = θ1 · · · θl. Since
rank(η∗) = m and {1, n} ⊆ Y , we obtain that (1, n) /∈ ker(θi) for all i ∈ {2, 3, . . . , l}
that implies θ2 · · · θl ∈ OD(X,Y ). Since rank(η∗) = m, we get that ker(η∗) = ker(θ1). If
θ1 ∈ OD(X,Y ), we have θ1θ2 · · · θk ∈ OD(X,Y ) that is a contradiction. If θ1 = αK , we
have (1, n) ∈ ker(η∗) that contradicts with (1, n) /∈ ker(η∗). That is η∗ /∈ 〈OD(X,Y ), αK〉,
i.e. rank(OPR(X,Y ) : OD(X,Y )) ≥ 2.

Altogether, we obtain that rank(OPR(X,Y ) : OD(X,Y )) = 2.

From Theorem 2.10 and Theorem 2.11, we obtain immediately two corollaries as the
following.

Corollary 2.12. If |X\Y | = 1 and 1 /∈ Y or n /∈ Y , then OPR(X,Y ) = 〈OD(X,Y ), β∗1〉.

Corollary 2.13. If |X\Y | = 1 and {1, n} ⊆ Y , then OPR(X,Y ) = 〈OD(X,Y ), αK , β
∗
1〉.

Secondly, we consider |X \ Y | ≥ 2 and we can consider two cases as the case of
|X \ Y | = 1.

Theorem 2.14. If |X \ Y | ≥ 2 and 1 /∈ Y or n /∈ Y , then we have rank(OPR(X,Y ) :

OD(X,Y )) =

(
n− 1

m

)
.

Proof. Since 1 /∈ Y or n /∈ Y , we can assume without loss of generaltity that β∗1 ∈ {αK :
K ∈ K}. By Theorem 2.8, we have OPR(X,Y ) = 〈OD(X,Y ), {αK : K ∈ K}〉, i.e.

rank(OPR(X,Y ) : OD(X,Y )) ≤ |{αK : K ∈ K}| =
(
n− 1

m

)
.

Let A ⊆ OPR(X,Y )\OD(X,Y ) such that 〈OD(X,Y ), A〉 = OPR(X,Y ). By Lemma
2.9, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = K. Therefore, rank(OPR(X,Y ) :

OD(X,Y )) ≥ |A′| ≥ |K| =
(
n− 1

m

)
.

Altogether, we obtain that rank(OPR(X,Y ) : OD(X,Y )) =

(
n− 1

m

)
.

Theorem 2.15. If |X \ Y | ≥ 2 and {1, n} ⊆ Y , then we have rank(OPR(X,Y ) :

OD(X,Y )) = 1 +

(
n− 1

m

)
.

Proof. By Theorem 2.8, we have OPR(X,Y ) = 〈OD(X,Y ), {αK : K ∈ K}, β∗1〉, i.e.

rank(OPR(X,Y ) : OD(X,Y )) ≤ 1 + |{αK : K ∈ K}| = 1 +

(
n− 1

m

)
.

Let A ⊆ OPR(X,Y )\OD(X,Y ) such that 〈OD(X,Y ), A〉 = OPR(X,Y ). By Lemma
2.9, there is a set A′ ⊆ A with {ker(α) : α ∈ A′} = K. Therefore, rank(OPR(X,Y ) :

OD(X,Y )) ≥ |A′| ≥ |K| =

(
n− 1

m

)
. Assume that 〈OD(X,Y ), {αK : K ∈ K}〉 =
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OPR(X,Y ). By definition of η∗, we have η∗ ∈ OPR(X,Y ) \ OD(X,Y ) ⊆ OPR(X,Y )
and ker(η∗) /∈ K because (1, n) /∈ ker(η∗). Since η∗ ∈ OPR(X,Y ) \ OD(X,Y ) ⊆
OPR(X,Y ) = 〈OD(X,Y ), {αK : K ∈ K}〉, there are θ1, . . . , θl ∈ OD(X,Y ) ∪ {αK :
K ∈ K} such that η∗ = θ1 · · · θl. Since rank(η∗) = m and {1, n} ⊆ Y , we obtain
that (1, n) /∈ ker(θi) for all i ∈ {2, 3, . . . , l} that implies θ2 · · · θl ∈ OD(X,Y ). Since
rank(η∗) = m, we get ker(η∗) = ker(θ1). If θ1 ∈ OD(X,Y ), we have θ1θ2 · · · θk ∈
OD(X,Y ) that is a contradiction. If θ1 = αK for some K ∈ K, we have (1, n) ∈ ker(η∗)
that contradicts with (1, n) /∈ ker(η∗). That is η∗ /∈ 〈OD(X,Y ), {αK : K ∈ K}〉, i.e.

rank(OPR(X,Y ) : OD(X,Y )) ≥ 1 +

(
n− 1

m

)
.

Consequently, we get that rank(OPR(X,Y ) : OD(X,Y )) = 1 +

(
n− 1

m

)
.

3. Conclusion

In this paper, we study and observe the transformation semigroup with restricted
range T (X,Y ) and its subsemigroups. In section 1, we introduce some notation and
some definition of the transformation semigroups to use through this paper. In section
2.1, we study and describe the relative rank of OP(X,Y ) modulo O(X,Y ). In section
2.2, we determine the relative rank of OPR(X,Y ) modulo OD(X,Y ). In future work, we
plan to study other kind structure of the transformation semigroup with restricted range.
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