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Abstract An interesting class of polynomials over finite fields, namely self-conjugate-reciprocal poly-

nomials, has been studied here. Some elementary properties on their roots and a way to find all self-

conjugate-reciprocal irreducible monic polynomials of a given degree are provided. Moreover, in the last

part, we define a map taking a polynomial over a finite field with some conditions to a self-conjugate-

reciprocal polynomial. Certain properties of the polynomial obtained from this map are investigated.
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1. Introduction

Let Fq be the finite field of order q, where q is a prime power. For a polynomial f(x)
of degree n over Fq with nonzero constant term, its reciprocal is the polynomial

f∗(x) := xnf(1/x).

A polynomial f(x) is called self-reciprocal if f∗(x) = f(x). Self-reciprocal polynomials
were studied by many researchers in different aspects. In [8], Yucas and Mullen classified
self-reciprocal irreducible monic (SRIM) polynomials and enumerated these polynomials.
Due to the conjecture appearing in [3], infinite families of self-reciprocal irreducible poly-
nomials were constructed under some conditions in [8].

Let f(x) be a polynomial over Fq of degree n. Define a map φ to be

φ : f(x) 7→ fR(x) := xnf(x+ 1/x).

The resulting polynomial fR(x) is self-reciprocal and the map φ is called a self-reciprocal
transformation. A factorization of the polynomial fR(x) was studied by Meyn in [6], and
later, by Kobayashi and Nogami in [4].
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Definition 1.1. Let g(x) and h(x) be polynomials over Fq with g(0) 6= 0 and h(0) 6= 0.
They are called a reciprocal pair if there exist γ ∈ F∗q such that

g∗(x) = γh(x).

Theorem 1.2. [6] If f(x) is irreducible over Fq of degree n > 1, then either

(i) fR(x) is a SRIM polynomial of degree 2n, or
(ii) fR(x) is the product of a reciprocal pair of irreducible polynomials of degree n
which are not self-reciprocal.

On the other hand, Ahmadi and Vega [1] proved that any self-reciprocal polynomial over
Fq of even degree can be written in the form

xng(x+ 1/x)

for some g(x) ∈ Fq[x] and obtained some results about the parity of the number of
irreducible factors of self-reciprocal polynomials.

The concept of self-reciprocal polynomials is analogously extended to self-conjugate-
reciprocal polynomials. Naturally, some properties of self-reciprocal polynomials have
been investigated for self-conjugate-reciprocal polynomials.

Definition 1.3. Let f(x) = a0 + a1x + ... + anx
n be a polynomial of degree n over Fq2

such that a0 6= 0. The conjugate of f(x) is written as

f(x) = a0 + a1x+ ...+ anx
n,

where − : Fq2 → Fq2 is defined by α 7→ αq for all α ∈ Fq2 . The conjugate-reciprocal
polynomial of f(x) is defined to be

f†(x) = a−10 xnf(1/x)

and the polynomial f(x) is called self-conjugate-reciprocal if f(x) = f†(x).

If f(x) is self-conjugate-reciprocal, then its leading coefficient must be a−10 a0 = 1 so it is
monic.

Some properties related to this kind of polynomials can be found in e.g. [2] and [7].

Remark 1.4. (i) α is a root of f(x) if and only if α−1 = α−q is a root of f†(x),

(ii) any self-conjugate-reciprocal irreducible monic (SCRIM) polynomials have odd
degree,

(iii) a polynomial f(x) = a0 + a1x + ... + anx
n is self-conjugate-reciprocal if and

only if ai = a−10 an−i for all 0 ≤ i ≤ n,
(iv) for any α ∈ Fq2 , α ∈ Fq if and only if α = αq = α.

Moreover, Boripan [2] showed analogous results as those in [8] to characterize self-conjugate-
reciprocal polynomials.

Definition 1.5. The order of a polynomial f(x) over a finite field, denoted by ord(f),
is the smallest positive integer s such that f(x) divides xs − 1.

If f(x) is an irreducible polynomial over Fq, then one can see that ord(f) is the order of
any root of f in the multiplicative group F∗

qdeg(f) .

Theorem 1.6. [2] Let f(x) be an irreducible monic polynomial of degree n over Fq2 .
Then the following statements are equivalent:
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(i) f(x) is self-conjugate-reciprocal,
(ii) ord(f) ∈ Dn := {d ∈ N : d | (qn + 1) but d 6 |(qk + 1) for all 0 ≤ k < n},

(iii) f(x) = fβ(x) :=
n−1∏
i=0

(x − βq
2i

) for some primitive dth root of unity β with

d ∈ Dn.

Some parts of our earlier works in [7] showed a relation between self-conjugate-reciprocal
polynomials and cyclotomic polynomials as in the following.

Theorem 1.7. [7] For d ∈ Dn, the dth cyclotomic polynomial

Qd(x) :=

d∏
s=1

gcd(s,d)=1

(x− βs),

where β is a primitive dth root of unity, can be factored uniquely into the product of all
self-conjugate-reciprocal irreducible polynomials over Fq2 of degree n and order d.

Consequently, to find all SCRIM polynomials with a given degree, it is enough to find
all irreducible factors of the corresponding cyclotomic polynomial. For example, to find
all SCRIM polynomials over F22 of degree 5, first we consider

D5 = {d ∈ N : d | (25 + 1) but d - (2k + 1) for all 0 ≤ k < 5} = {11, 33}.
Next, factorizing the dth cyclotomic polynomial Qd(x) for each d ∈ D5 by letting α ∈ F22

that satisfies α2 + α+ 1 = 0, we have

Q11(x) = (x5 + αx4 + x3 + x2 + (1 + α)x+ 1)(x5 + (1 + α)x4 + x3 + x2 + αx+ 1), and

Q33(x) = (x5 + x4 + αx3 + x2 + αx+ α)(x5 + x4 + (1 + α)x3 + x2 + (1 + α)x+ (1 + α))

(x5 + αx4 + αx3 + x2 + x+ α)(x5 + (1 + α)x4 + (1 + α)x3 + x2 + x+ (1 + α)).

The formula to count the number of all SCRIM polynomials degree n is given in [2],

which is equal to
1

n

∑
d∈Dn

φ(d). Thus the number of all SCRIM polynomials of degee 5 is

1

5

∑
d∈D5

φ(d) = 6. They are listed in the following table separating for each order d ∈ D5.

SCRIM polynomials order
x5 + αx4 + x3 + x2 + (1 + α)x+ 1 11
x5 + (1 + α)x4 + x3 + x2 + αx+ 1 11
x5 + x4 + αx3 + x2 + αx+ α 33
x5 + αx4 + αx3 + x2 + x+ α 33
x5 + x4 + (1 + α)x3 + x2 + (1 + α)x+ (1 + α) 33
x5 + (1 + α)x4 + (1 + α)x3 + x2 + x+ (1 + α) 33

2. Results

Some elementary results about the roots of self-conjugate-reciprocal irreducible poly-
nomials are given in the following lemmas.

Lemma 2.1. Let β ∈ Fq2(2m+1) be a root of a self-conjugate-reciprocal irreducible polyno-
mial f(x) over Fq2 of odd degree 2m+ 1. Then

(i) β−1 is a root of f(x), and
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(ii) for each 0 ≤ j ≤ 2m, (βq2j )−1 = βq
2(m+j+1)

.

Proof. (i) It follows immediately from Remark 1.4 (i) and the fact that f(x) = f†(x).
(ii) We know that ord(f) divides q2m+1 + 1 by Theorem 1.6. Then for each 0 ≤ j ≤ 2m,

βq2j · βq
2(m+j+1)

= βq
2j+1+q2(m+j+1)

= (βq
2m+1+1)q

2j+1

= 1.

Thus, (βq2j )−1 = (βq2j )−1 = βq
2(m+j+1)

.

Lemma 2.2. Let f(x) be an irrducible polynomial over Fq2 of degree n and {α1, α2, ..., αn}
the set of all distinct roots of f(x). Then {α−11 , α−12 , ..., α−1n } is the set of all distinct roots
of f†(x). Moreover, f†(x) is also irreducible over Fq2 .

Proof. Note that α−11 , α−12 , ..., α−1n are roots of f†(x). To show that they are all distinct,

suppose that α−1i = α−1j for some i, j ∈ {1, 2, ..., n}. We then have α−qi = α−qj , and so

0 = αqi − α
q
j = (αi − αj)q. This implies that αi − αj = 0 and then αi = αj and i = j.

Since deg (f†) = n, {α−11 , α−12 , ..., α−1n } is the set of all distinct roots of f†(x).

Definition 2.3. A subset R of a finite field is said to be closed under conjugate-inversion
if for any a ∈ R, a−1 ∈ R.

Theorem 2.4. Let f(x) be an irreducible monic polynomial over Fq2 . Then f(x) is self-
conjugate-reciprocal if and only if its set of all roots is closed under conjugate-inversion.

Proof. Let R and R
′

be the set of all roots of f(x) and f†(x), respectively. By Lemma 2.1,
if f(x) is a SCRIM polynomial, then R is closed under conjugate-inversion. Conversely,
assume that R is closed under conjugate-revision. We will show that f(x) = f†(x) by

considering their roots. Let β ∈ R. Then β−1 ∈ R′. By assumption, {β−1 : β ∈ R} ⊆ R.

By Lemma 2.2, the set {β−1 : β ∈ R} = R
′
. Hence deg(f) = deg(f†) = |R′ | ≤ |R| =

deg(f). It follows that R = R
′
. Since f(x) and f†(x) are monic, f(x) = f†(x).

Next, we give a relation between SCRIM polynomials over Fq2 of degree n and the
polynomial of the form

Hq,n(x) := xq
n+1 − 1.

Based on this relation, another way to find all SCRIM polynomials of a given degree is
obtained.

Lemma 2.5. [5] Let f(x) be an irreducible polynomial over Fq of degree n. Then

(i) f(x) has a root α in Fqn and all the roots of f(x) are given by the n distinct

elements α, αq, ..., αq
n−1

, and
(ii) f(x) divides xq

m − x if and only if n divides m.

Theorem 2.6. We have

(i) each SCRIM polynomial of odd degree n over Fq2 is a factor of the polynomial
Hq,n(x), and

(ii) each irreducible factor over Fq2 of Hq,n(x) (where n is odd) is a SCRIM poly-
nomial over Fq2 of degree d, where d divides n.

Proof. (i) Let f(x) be a SCRIM polynomial of degree n = 2m + 1 over Fq2 . Then f(x)

has a root in Fq2n , say α. By Lemma 2.5 (i), {α, αq2 , αq4 , ..., αq2(n−1)} is the set of all
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roots of f(x) in Fq2n . For each 0 ≤ j ≤ n− 1, (αq2j )−1 is a root of f(x) and by Lemma
2.1 (ii),

α−q
2j+1

= (αq2j )−1 = αq
2(m+j+1)

, so 0 = αq
2(m+j+1)+q2j+1

− 1 = [αq
n+2j+q2j − 1]q.

Then (αq
2j

)q
n+1 − 1 = 0. Therefore, for each 0 ≤ j ≤ n − 1, αq

2j

is a root of Hq,n(x).
This implies f(x) divides Hq,n(x).

(ii) Write n = 2m + 1 and let g(x) be a monic irreducible factor of Hq,n(x) with

deg(g(x)) = d and α a root of g(x). Then α is a root of Hq,n(x). It means αq
n+1− 1 = 0,

so

αq
2(m+1)

− α−1 = αq
n+1

− α−q = α−q · (αq
n+1 − 1)q = 0.

Then α−1 = αq
2(m+1)

. Moreover, we have R := {α, αq2 , ..., αq2(d−1)} is the set of all roots

of g(x), and for each 0 ≤ j ≤ d− 1, (αq2j )−1 = αq
2(m+j+1)

, which is a root of g(x). This
implies that R is closed under conjugate-inversion. By Theorem 2.4, g(x) is SCRIM.

Then d is odd. Since qn+1 divides q2n−1, Hq,n(x) divides xq
2n−1−1. Thus g(x) divides

xq
2n − x. By Lemma 2.5 (ii), d divides 2n, so d divides n.

Denote Cq,n(x) to be the product of all distinct SCRIM polynomials of degree n over
Fq2 .

Lemma 2.7. For each d1, d2 ∈ N with d1 6= d2, gcd(Cq,d1(x), Cq,d2(x)) = 1.

Proof. Let d1 6= d2. Suppose that gcd(Cq,d1(x), Cq,d2(x)) 6= 1. Then there exists an
irreducible polynomial p(x) over Fq2 such that p(x)|Cq,d1(x) and p(x)|Cq,d2(x). We know
that Cq,di(x) =

∏
e∈Ddi

Qe(x) where Qe(x) is the eth cyclotomic polynomial. Then there

exist a ∈ Dd1 and b ∈ Dd2 such that p(x) | Qa(x) and p(x) | Qb(x), respectively. By
Theorem 1.7, we have p(x) is a SCRIM polynomial of order a and b. It follows that a = b
which is impossible because Dd1 ∩Dd2 = ∅ when d1 6= d2.

Theorem 2.8. Let n be an odd positive integer. Then

Hq,n(x) =
∏
d|n

Cq,d(x).

Proof. We first note that Hq,n(x) has no repeated root. Let

Hq,n(x) = f1(x)f2(x) · · · fk(x),

where f1(x), ..., fk(x) are distinct irreducible monic polynomials over Fq2 . By Theorem
2.6 (ii), for each 1 ≤ i ≤ k, fi(x) is a SCRIM polynomial of degree d where d|n. Then
fi(x) divides

∏
d|n

Cq,d(x), so Hq,n(x) divides
∏
d|n

Cq,d(x) since f1(x), ..., fk(x) are pairwise

relatively prime.
Conversely, let f(x) be a SCRIM polynomial of degree d where d|n. By Theorem 2.6

(i), f(x) divides Hq,d(x). Since d | n and n
d is odd, it follows that (qd + 1) | (qn + 1).

This implies that Hq,d(x) divides Hq,n(x). Thus f(x) divides Hq,n(x). Since any irre-
ducible factors of Cq,d(x) are pairwise relatively prime and by Lemma 2.7, it follows that∏
d|n

Cq,d(x) divides Hq,n(x).
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Example 2.9. Considering the factorization of H2,5(x) over F22 where F22 = F2(α) with
α ∈ F22 satisfying α2 + α+ 1 = 0 as follows

H2,5(x) = (x+ 1)(x+ α)(x+ (1 + α))(x5 + x4 + αx3 + x2 + αx+ α)

(x5 + x4 + (1 + α)x3 + x2 + (1 + α)x+ (1 + α))

(x5 + αx4 + x3 + x2 + (1 + α)x+ 1)(x5 + (1 + α)x4 + x3 + x2 + αx+ 1)

(x5 + αx4 + αx3 + x2 + x+ α)(x5 + (1 + α)x4 + (1 + α)x3 + x2 + x+ (1 + α))

=C2,1(x)C2,5(x),

we can find all SCRIM polynomials of degee 1 and 5 over F22 .

degree SCRIM polynomials
1 x+ 1

x+ α
x+ (1 + α)

5 x5 + αx4 + x3 + x2 + (1 + α)x+ 1
x5 + (1 + α)x4 + x3 + x2 + αx+ 1
x5 + x4 + αx3 + x2 + αx+ α
x5 + x4 + (1 + α)x3 + x2 + (1 + α)x+ (1 + α)
x5 + αx4 + αx3 + x2 + x+ α
x5 + (1 + α)x4 + (1 + α)x3 + x2 + x+ (1 + α)

3. Self-Conjugate-Reciprocal Transformation

Analogously to the concept of self-reciprocal transformation, we need to define a map
that generates self-conjugate-reciprocal polynomials.

Definition 3.1. For A ⊆ Fq2 [x], a map ψ from A to Fq2 [x] is called a self-conjugate-
reciprocal transformation for A if ψ(f(x)) is a self-conjugate-reciprocal polynomial for all
f(x) ∈ A.

For any polynomial f(x) over Fq2 of degree n, define Ψ to be

Ψ : f(x) 7→ F (x) := xnqf(xq + x−q).

It is clear that the degree of the polynomial F (x) is 2nq and its leading coefficient is equal
to the leading coefficient of f(x).

The resulting polynomial F (x) obtained from Ψ may not be self-conjugate-reciprocal.
This problem leads us to find the necessary and sufficient conditions to produce a self-
conjugate-reciprocal polynomial F (x).

Theorem 3.2. Let f(x) =
n∑
i=0

aix
i ∈ Fq2 [x] with an, a0 6= 0. Then F (x) is self-conjugate-

reciprocal if and only if an = 1 and ai ∈ Fq for all i = 0, 1, ..., n− 1.

Proof. Let f(x) =
n∑
i=0

aix
i ∈ Fq2 [x]. Assume that ai ∈ Fq for all i = 0, 1, ..., n − 1 and

an = 1. Then

F †(x) = x2nqx−nqf(xq + x−q) = xnq
n∑
i=0

ai(x
q + x−q)i = xnq

n∑
i=0

ai(x
q + x−q)i = F (x).
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Conversely, assume that F (x) =
2n∑
i=0

biqx
iq is self-conjugate-reciprocal. Note that

F (x) =
n∑
i=0

aix
nq(xq + x−q)i. For each 0 ≤ i ≤ n, each term of F (x) can be expressed as

aix
nq(xq + x−q)i = aix

nq
i∑

k=0

(
i

k

)
(xq)i−k(x−q)k = ai

i∑
k=0

(
i

k

)
x(n+i)q−2qk.

Then for each 0 ≤ k ≤ i, the coefficient of x(n+i)q−2qk and x(n−i)q+2qk, which are ai
(
i
k

)
and ai

(
i

i−k
)
, respectively, must equal. Moreover, these two terms appear only in the

expansion of

ai+2tx
nq(xq + x−q)i+2t = ai+2t

i+2t∑
k=0

(
i+ 2t

k

)
xq(n+i+2t)−2qk

for all 0 ≤ t ≤ bn−i2 c. We then have b0 = b2nq = an and bq = b(2n−1)q = an−1. In general,
for each 0 ≤ i ≤ n,

b(2n−i)q = biq =

{
an−i + an−i+2

(
n−i+2

1

)
+ ...+ an

(
n
i
2

)
, if i is even,

an−i + an−i+2

(
n−i+2

1

)
+ ...+ an−1

(n−1
i−1
2

)
, if i is odd.

(3.1)

Since F (x) is self-conjugate-reciprocal,

b2nq = 1 and blq = b−10 b(2n−l)q, for all 0 ≤ l ≤ 2n.

It follows that an = b0 = b2nq = 1.

By the assumption, the coefficients of x(2n−1)q and xq are given by b(2n−1)q and bq,
respectively. Moreover, these two terms appear only in the expansion of an−1x

nq(xq +
x−q)n−1 and they have the same coefficient which is equal to an−1. These imply that

an−1 = bq = b(2n−1)q, and then b(2n−1)q = b−10 bq = an−1. Thus an−1 = an−1, so
an−1 ∈ Fq. By (3.1), it can be proved inductively to obtain that ai ∈ Fq for all i.

Remark 3.3. Ψ is a self-conjugate-reciprocal transformation for A where A is the set of
all monic polynomials f(x) over Fq. From now on, we consider only all monic polynomials
f(x) over Fq. We notice that

F (x) = xnqf(xq + x−q) = [xnf(x+ x−1)]q = (fR(x))q

where fR(x) is the resulting polynomial derived from the self-reciprocal transformation.
Clearly, F (x) is reducible. It is natural to investigate irreducible factors of the self-
conjugate-reciprocal polynomial F (x).

Lemma 3.4. Let f(x) be a monic polynomial over Fq with nonzero constant term. Then
f(0)−1f(x)f∗(x) is both self-reciprocal and self-cojugate-reciprocal over Fq.

Proof. Let f(x) = xn + an−1x
n−1 + ... + a1x + a0 be a polynomial of degree n over Fq

with a0 6= 0. Then f∗(x) = a0x
n + a1x

n−1 + ...+ an−1x+ 1. Hence

f(0)−1f(x)f∗(x) = a−10 [(xn + an−1x
n−1 + ...+ a1x+ a0)

· (a0xn + a1x
n−1 + ...+ an−1x+ 1)]

= a−10 [a0x
2n + (a1 + an−1a0)x2n−1 + (a2 + an−1a1 + an−2a0)x2n−2

+ ...+ (a2 + a1an−1 + a0an−2)x2 + (a1 + a0an−1)x+ a0].
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If we write f(0)−1f(x)f∗(x) =
2n∑
i=0

bix
i where bi ∈ Fq, then by comparing the coefficients,

we have

b2n = a−10 a0 = 1 b0 = a−10 a0 = 1
b2n−1 = a−10 [a1 + an−1a0] b1 = a−10 [a1 + a0an−1]
b2n−2 = a−10 [a2 + an−1a1 + an−2a0] b2 = a−10 [a2 + a1an−1 + a0an−2]

...
...

b2n−i = a−10

i∑
j=0

an−jai−j bi = a−10

i∑
j=0

ai−jan−j

(i = 0, ..., n− 1) (i = 0, ..., n)
...

...
b2n−(n−1) = a−10 [an−1 + an−1an−2 + ... bn−1 = a−10 [an−1 + an−2an−1 + ...

+a2a1 + a1a0] +a1a2 + a0a1]
bn = a−10 [a2n + a2n−1 + ...+ a21 + a20].

These imply that b2n−i = bi for all 0 ≤ i ≤ 2n. Thus f(0)−1f(x)f∗(x) is self-reciprocal.

Moreover, f(0)−1f(x)f∗(x) is self-conjugate-reciprocal over Fq since b−10 b2n−i = b2n−i =
bi for all 0 ≤ i ≤ 2n.

Lemma 3.5. Let f(x) be a monic polynomial over Fq of degree n with nonzero constant
term. Then f(x) is self-conjugate-reciprocal over Fq if and only if f†(x) is self-conjugate-
reciprocal over Fq.

Proof. Let f(x) = xn+an−1x
n−1 + ...+a1x+a0 be a monic polynomial over Fq of degree

n with a0 6= 0. Then f†(x) = xn + a−10 a1x
n−1 + ...+ a−10 an−1x+ a−10 . It suffices to show

that (f†)†(x) = f(x). We have

(f†)†(x) = (a−10 )−1xnf†(1/x) = a0[a−10 xn + a−10 an−1x
n−1 + ...+ a−10 a1x+ 1]

= xn + an−1x
n−1 + ...+ a1x+ a0 = f(x)

as required.

Definition 3.6. Let g(x) and h(x) be polynomials over Fq with g(0) 6= 0 and h(0) 6= 0.
They are called a conjugate-reciprocal pair if there exists β ∈ F∗q such that

g†(x) = βh(x).

Theorem 3.7. Let f(x) be a monic irreducible polynomial over Fq of degree n. Then
either

(i) F (x) is a qth power of an irreducible polynomial of degree 2n which is a self-
conjugate-reciprocal polynomial over Fq, or

(ii) F (x) is a qth power of the product of a conjugate-reciprocal pair of irreducible
polynomials over Fq of degree n.

Proof. Let f(x) be an irreducible polynomial over Fq of degree n. We divide this proof
into 2 cases according to Theorem 1.2 and Remark 3.3.
Case 1 F (x) = [fR(x)]q where fR(x) is a SRIM polynomial of degree 2n over Fq. In this
case, it remains to show that fR(x) is self-conjugate-reciprocal over Fq.
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Let fR(x) =
2n∑
i=0

bix
i ∈ Fq[x]. Then bi = b2n−i for all 0 ≤ i ≤ 2n. Since F (x) is

self-conjugate-reciprocal, F (0) = 1. So,

1 = F (0) = (fR(0))q = fR(0) = b0.

Thus for each 0 ≤ i ≤ 2n, b−10 b2n−i = b−10 b2n−i = bi. Therefore, fR(x) is self-conjugate-
reciprocal over Fq.
Case 2 F (x) = [g(x)h(x)]q where g(x) and h(x) are a reciprocal pair of monic irreducible
polynomials over Fq of degree n, i.e., g∗(x) = γh(x) for some γ ∈ F∗q . We have F (x) =

[g(x)h(x)]q = [g(x)γ−1g∗(x)]q, and then

1 = F (0) = [g(0)γ−1g∗(0)]q = [g(0)γ−1]q = g(0)γ−1.

Hence γ = g(0). Now,

g†(x) = g(0)
−1
g∗(x) = g(0)−1γh(x) = g(0)−1g(0)h(x) = h(x).

Therefore, g(x) and h(x) are a conjugate-reciprocal pair.

From the proof of Theorem 3.7, we notice that if f(x) is monic irreducible over Fq of
degree n such that F (x) = Ψ(f(x)) = [g(x)h(x)]q where g(x) and h(x) are a conjugate-
reciprocal pair of irreducible polynomials of degree n, then h(x) = g†(x). Moreover, the
product g(x)h(x) is self-conjugate-reciprocal over Fq since g(x)h(x) = g(x)g(0)−1g∗(x)
and g(x)g(0)−1g∗(x) is self-conjugate-reciprocal by Lemma 3.4.

For any polynomial over F2 with nonzero constant term, its constant term is always
equal to 1, so we obtain the next corollary.

Corollary 3.8. Let f(x) be an irreducible polynomial over F2 of degree n. Then either

(i) F (x) is a 2nd power of a irreducible polynomial of degree 2n which is a self-
conjugate-reciprocal over F2, or

(ii) F (x) is a 2nd power of the product of a conjugate-reciprocal pair of irreducible
polynomials over F2 of degree n which are not self-conjugate-reciprocal.

Proof. It remains to show that the conjugate-reciprocal pair appearing in (ii), say g(x) and

h(x), are not self-conjugate-reciprocal polynomials. Write g(x) =
n∑
i=0

aix
i. By Theorem

1.2 (ii), g(x) is not self-reciprocal. That is, there exists i ∈ {0, 1, ..., n} such that ai 6= an−i.
So, ai 6= a−10 an−i. This implies that g(x) is not self-conjugate-reciprocal over F2. By
Lemma 3.5, g†(x) is not self-conjugate-reciprocal over F2. In fact, h(x) = g†(x). It
follows that h(x) is not self-conjugate-reciprocal.

From above results, we have some properties of the factorization of F (x) as follows.

Corollary 3.9. If f(x) is an irreducible polynomial over F2 then F (x) is a 2nd power of

SCRIM polynomial over F2 if and only if f
′
(0) = 1.

Proof. By Remark 3.3 and Corollary 7 of [6].

Corollary 3.10. If f(x) = xn+an−1x
n−1+...+a1x+a0 is a monic irreducible polynomial

over F2k(k ≥ 1) then F (x) is a qth power of SCRIM polynomial over Fq if and only if
TrF

2k
(a1/a0) = 1.

Proof. By Remark 3.3 and Theorem 6 of [6].



102 Thai J. Math. Vol. 22 (2024) /H. Palasak et al.

Corollary 3.11. Let q be an odd prime power. If f(x) is an irreducible monic polynomial
of degree n over Fq then F (x) is a qth power of SCRIM polynomial over Fq if and only if
f(2)f(−2) is a non-square in Fq.

Proof. By Remark 3.3 and Theorem 8 of [6].
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