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1 Introduction

Researchers have studied equations governing the motion of an incompressible
fluid of variable viscosity in the absence of external force and presented solution
[1-7]. No work for an incompressible fluid of variable viscosity in the presence of
external force for an arbitrary state equation to the best of our knowledge, has
appeared in the literature at yet.

The objective of this paper is to present some exact solutions of equations
describing the steady plane motion of an incompressible fluid of variable viscosity
in the presence of an external force for arbitrary state equation.

The plane of the paper is as follows. In section (2), we consider the non
dimensional flow equation of the of

the fluid under considerations and give some results from differential geometry
utilized in section (3) to transform flow equation in the streamline coordinate
(¢,7). In section (3), we present flow equations into a new form in the (¢, )
system and outline the Labrapulu and Chandna approach [8]. In section (4) we
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determine the solutions of the flow equations when the expression/ term containing
the force component are non zero.

2 Basic Flow Equations

The basic non-dimensional equations governing the steady plane motion
of an incompressible fluid of variable viscosity in the presence of an unknown
external force with no heat addition are:

1 ¥
Uy + VUy = —Pg + ﬁ[(zﬂux)x + (:u(uy + U:c))y] + A fl (2'2)
1 *
wvy + vy = —py + o[y + (uluy + 0] + N2 (23)
T, +vT, = ! Ty + T, Ee 20 (u2 + v? 2 2.4
uly +v —-ji;ﬁ;[ zz + yy]+‘j§;[ plug +vy) + pluy +0)°] (2.4)
p=u(T) (2.5)

where are u,v the velocity components, p the pressure, u the fluid viscosity,
T the fluid temperature, R, the Reynolds number, P, the Prandtl number
and E. the Eckert number and fi, fo are the components of the external
force. In (2.2) and (2.3) A*, is a non-dimensional number, and in case of
motion under the gravitational force, A* is called the Froude number (F}).
We define the following functions

W= Uy — Uy (2.6)

u? + v?  2pug
2 R,

In term of these functions, the system of (2.1-2.5) is replaced by the fol-
lowing system

L=p+ (2.7)

Vg + Uy =0 (2.8)
—vw = —Ly+ [u(uyRi:v)]y + (2.9)
ww = —Ly — 4(’2‘9”)9 + [“(“y; vlle | g (2.10)

W= Uy — Uy (2.11)
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1 E.

uTy + Ty = ——(Tow + Tyy) + — [20(u2 + vf/) + puy + )% (2.12)
R.P, R

0= u(T) (2.13)

of six equations in eight unknowns u, v, L, u,T,w, F1 F» as functions of
z, 3. The advantage of this system over the original system is that the
order of the partial differential (2.2) and (2.3) has decreased from two to
one. In (2.9) and (2.10) for convenience we have put F; = \*fi Fp = A" fo.
Equation (2.8) implies the existence of a stream function ¢ (z, y) such that

U = 1y, v ==y (2.14)

Let 1 (z,y)=constant defines the family of streamlines. Let us assume
¢(z,y)= constant to be some arbitrary family of curves such that it gen-
erate with 1 (z,y)=constant a curvilinear net (¢,?) in the physical plane.
Let

z = x(d,1)), y=y(v) (2.15)

define the curvilinear net in (z,y)— plane and let the squared element of
arc length along any curve be

ds® = E(¢,¢)d¢* + 2F(¢,v)dedy + G(,)dy” (2.16)

where
Ez:z:z +y42>
F=zx +y,y, (2.17)
G =17 +y]

Equation (2.15) can be solved to obtain

¢ = (z,y), Y= (z,y) (2.18)
such that

$¢:J1/1y, l‘wZ—quy }

vo = —Jbe  yp = Jou (2.19)

provided that 0 < |J|<oo, where J is the transformation Jacobian, and is
defined as

J = Tgyy — TyYs (2.20)

If « is the angle of inclination of the tangent to the coordinate line ¢ =
constant, directed in the sense of increasing ¢, we have from differential
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geometry, the following results:

J =W,
\/Ecosa Yy, = \/Esina
¢ Fcosa Jsina _¢Fsinoc+JCosa (221)
a, = gl a, =gl
where
Fg  —FE4+2EF,—FEEy
e __ EQ WFELZ,
¢

F — T (2.22)

\/EG F?

The three functions E, F, G of of ¢, 1 satisfy the Gauss equation:

(WF%) _(Wr§2>
E Ty E e

w

K= (2.23)

where K is the Gaussian curvature.
3 Transformation of Basic Flow Equations in The
Streamlined Coordinate System (¢, 1)

If the arbitrary curve ¢(x, y) = constant and the streamlines ¢(x, y) =
constant, generate a curvilinear net in the physical frame, the system of
(2.8-2.13) is transformed to the following system:

E
w
(Fz—Jz)siHZQ FJ cos 2a .
Jw=—JLy+ 5 + =% Ay — (Fsinacos o
—|—JCOS2 Q)A¢ 4 (2FJsin2a—F2%052a+J2 cos2a> M¢ (32)
+(F cos 2a — J sin 2a) My, + ﬁ [F' (F} cos a
+Fysina) + J (Fycosa + Fi sina)]
0=—JLy+ (Fsinacosa — Jsin? a) Ay — Esinacosady
+(J sin 200 — F cos 200) My + E cos 2aMy, (3.3)
+JVE (Fy cos a + Fysin a)
(GT¢ FT¢> (ETw FT¢) , ,
T )y U7 T E.R. (A +4M T,
¢ Y :_ce( )+q¢(3'4)

JR.P, 4p VE
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o (M> 5

W
Wrh\ (W,

K:< - >¢W< - >¢=o (3.6)

p=puT) (3.7)

wherein ¢ and v are considered as independent variables. This is a system
of seven equations in ten unknown functions E, F, G, W, L, T, q, u, F'1,
Fy. In (3.2-3.3), the functions A and M are given by

L ML\/%&M) (g5 cosa — qagsina) (3.8)
JR, —VEsina (gy cos a — gay sin )
s (—FcosZ\t}%—JsinZ&) + qw\/E cos 2av
G| o {Bangea 0
_qad}\/ESln 204

Recently Labropulu et al. [8] presented a new approach for the determina-
tion of exact solutions of steady plane infinitely conducting MHD aligned
flows. In their approach (§,)-system and (7,1)-system are used to ob-
tain exact solution of these flows where coordinates ¥ (x,y) is the stream
function and w = £(x,y) + tn(z,y) is an analytic function of z = = + iy.
Labropulu and Chandna, following Martin [9] transform, their flow equa-
tions in (¢,1))-system where ¢ = constant represents family of streamline
and ¢ = constant is an arbitrary family of curves. The system of flow equa-
tions becomes undetermined due to arbitrariness of the coordinate lines ¢ =
constant Labropulu and Chandna made the system determinate by taking
¢ =&(x,y) or ¢ =n(x,y) where &(z,y) and n(x,y) are real and imaginary
part of the analytical functions w which is outlined blow:
Let

W= é(xay) + “7(%@/) (310)

be an analytic function of z = x + iy where £ = £(z,y) and n = n(z,y).
Since w is analytic function of x and y, then real and imaginary part must
satisfy Cauchy-Riemann equations.

o&  on o&  On

%5 %= o (3.11)
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The equations

§=¢(z,y), n=n(z,y) (3.12)
can be solved to get
x = x(&,m), y=y(&mn) (3.13)
such that
oz L0n Ox 8§ ay 877 ay L O
—=J—, —=-J =-J" =J"—= 3.14
¢ oy’ On oy’ O dz’ an Ox (3:.14)
provided that 0 <|J*| < oo where J*is given by
d(z,y) Oxdy 0Oxdy
J* = =22 =X 3.15
BEn) ooy oo (349)
Equation (3.15), utilizing (3.11) and (3.14), gives
ox\ 2 oy 2 ox\* oy 2
o (& D) - (& g 1
r=(a) (&) - (5) < () 210
Equation (3.16), employing (3.12) and (3.14), yields
ds* = J* (d€* + dn?) (3.17)
To analyse whether a family of curves ";(—fg()&) = constant, can or can’t be

streamline in (&,1) coordinate net, they assumed affirmative so that their

exist some function (1)) such that

n—1r (¢
g9 (&)
J*{ v(w,b)]Q}clﬁ2 +2J*{f'(¢)
+4g' (§) ( )}9( ) ' () dEdip + T*g* (€) A dip?
E=7 {1+ [/ ©+d©70)}
G=TJ¢ (6 ¥)
F=J"[f(&)+d ()v@W)] g ()

W =J"g()" ()
J=Tg()Y (V)

=) 7' () #0

(3.18)

(3.19)

(3.20)

3.21
3.22
3.23
3.24

AA/_\/_\
~—  — ~—  —
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Similarly to analyse whether a family of curves %7(7)") = constant, can or

can’t be streamline in (7n,1) coordinate net, they assumed affirmative so
that their exist some function (1)) such that

E—fm) _
o =) () # 0 (3.25)
T )+ ()7 ) dn? + 20 (! ()
ds” = +m’ () () ym ()~ () dndy (3.26)
+J*m? (n) 7% dy?
B =7 {1+ [} () +m (v )]} (3.27)
G = J'm* ()7 (¥) (3.28)
F=J[K () +m' () ()] m ()7 () (3.29)
W =J"m(n)v (¥) (3.30)
J==J"m(n)y () (3.31)

4  Solutions

In this section, we determine the solution of the flow equations by assuming
analytical function w = & + 1 as follows:

(1) Let
w=E§+m=lInz (4.1)
— Ly (22 4 o2
RECSIOLY @

Let us now determine the solution of the flow (3.1-3.7) along the curves
defined in (3.18) and (3.25) as follows:

Example 4.1. (Flows with & = constant as streamlines)

We let [§]
£ =) V() #0 (4.3)

where 7 () is an unknown function and ¢ is given by (4.2). Comparing
(4.3) with (3.25), we get

k(n) =0 m(n) =1 (4.4)
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Utilizing (4.4) in (3.27-3.31),we get

E=J*
F=0
G =T () (4.5)
T = =7 )
W = J"y (1)
where
J* =W (4.6)
Equations (3.1-3.7), utilizing (4.5) and (4.6), become
1
1 @e® D
_ _ o'sin2n _ ) / .
w=—Ly —/ 2(1/}) A, — Ay sin®n + ~'M,, cos ?n + My, sin 2n (4.8)
=y [F1 (n,4) cos g — Fy (1, ) sin )
0=-L,— A, cos277—A¢Simfyﬂ — M, sin277—i—M¢C°,sy,277 (4.9)
+V W [Fy (1,9) cosn — Fy (1, 9) sin ] '
V3 R2P.E, (A% + 4M?
— 3Ty =R P, Ty = Ty +7" Ty = 4/} ) (4.10)
,7//
W= el (4.11)
wherein (4.8 - 4.10), the functions A and Mare given by
_ 24 VW)
A= R/ (1) 8 <2 + ¥ () sin 27 (4.12)
o [ 7" ()
M = R (1) e500) <2 + 7 () cos 21 (4.13)

In order to determine the solutions of the partial differential (4.8-4.10), we
make use of the compatibility condition L, = Ly, and this yield

V2 = (2= 28B) Zy = Zyy = D=7/ 1, (0, )
—Fa, (n, %) cosn + (29'Fi(n, %) + 7' Fa, (0, ¥) (4.14)
+Fi,(n,v) sinn)

. u 7" ()
2= Reemry (2 MR ) (4.15)

where
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Equation (4.14) is the equation which the viscosity u and 7 (1) must satisfy
for the flow under consideration.
Equation (4.14) possesses many solutions and we consider only those so-
lutions for which the exact solution of (4.10) can be determined. These
solutions are for the following cases:

(i) Case I ¥"'=0

(ii) Case II 7' #0

We study these cases separately

Case |

When 7" = 0 we get

Equation (4.14) provides

0o — 20Xy — Xy = 1V [(=aFy, (1,9) — Fa, (n,9)) cos } (4.17)
+ (2aFy(n,¥) + aFs, (0, ) + Fu, (n,v)) sin ] '

where A

Xy p) = 2 HY)

In general, it is not possible to obtain the solution of (4.17). However if we

(4.18)

assuime
Fi(n,¢) = "W Ry ()

Fy(n, 1) = e7¥) Fyy(n) (4.19)
X(, 1) = eI H (5, )
then the solution of (4.17) is possible and (4.17), utilizing (4.19), yields

);
a2H7777(777 1/}) - H’Z’U)(T/a 1/}) - (4a + 2&1)1) HTZJ(T/ ) [ 2(1 } (4 20)
+b1) + @ (1+b1)? H(n, ¢) = e Q) '

where Q(n) is

Q(n) = [—aFy,(n) — biaF(n)] cosn + [2aFy; (1)
TaFly(n) + abyFyy ()] sing } (4.21)

The solution of (4.20) is
H(n, ) = dpe VT 4 o/

toaymmTn Ve 1
[ e V3N (Q(n) + dy )dn — [ V340400 (Q(n)

y)dn}] + e~ (dy + de2 ) +

(4.22)
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where by, d1, do, ds, dy, ds are all non-zero arbitrary constant. We note that
in (4.22) the function @ (n) is arbitrary as Fyjand Fhy are both arbitrary,
and therefore we can generate a large number of expressions for H (1, )
and viscosity p.

The temperature distribution T, for this example, satisfies

a2T7777 (777 ¢) - aRePrTn (777 1/}) + Ti/H/J (777 ¢) = _2CLR6PT’ECZ (Tla 1/}) (423)

In general it is impossible to determine the solution of (4.23), however if

we assume
T (n,¢) = e POOTY () + T ()] (4.24)

the (4.23) transforms into a simple equation whose solution can easily be
determined. The transformed equation is

a*Tiyn(n) — aRe P Tiy(n) + Topy (V) 4 2a(1 4 b1)To(v) + a*(1 } (4.25)
+b1)?[T1(n) + Ta(¥)] = —2aE.R.P; [H1 (n) + Ha ()] '

It is obvious from the equation that it possesses solution of the form

T (n, ) = Ta(n) + T2 () (4.26)
and is given by
n(—PrReJr\/m) ”(\/m)
Tny)=e 2 d7 + dge a
o Prie—/ a0 P PR
< e — 77(—PrR6+\/—4a2(1+b1)2+p3Rg)
LV e Je (dg
—20E:P.R.H (n))dn + e a «
Je % (ds — 2aE.P,RHi (n)) dn)

+ (dg + pdyg) e~ W+ 4 Elf(e_aw(1+bl)(_¢ [ e (1401 (g
+2aE. PR Ha (¥))dy + [ e 40 (dg + 2aE P, R.Hs (1)) dv))

(4.27)
where
Hy (n) = daeV3 4R gy oony/3+0bi 41
L (o3BT 20341+
NV A - (1.28)

J eI (Q (1) + dy )
— [ eN3FEVHQ (1) + di)dn}]
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dy
a? (34 4by +b?)

and dg, d7, dg, dg, d1g are all non-zero arbitrary constants. We mention that
T(n,) in (4.27) involves arbitrary ((n) and hence we can construct in-
finite number of expression for T'(n,1).The generalised energy function L
is determined from (4.8) and (4.9). Equations (4.8) and (4.9), utilizing
expression for A and M, become

Hy (¢) = e” B (dy + dse®™) + (4.29)

Ly, = —axy — Xy sin2n — ae?1H0) g () (4.30)
1
L, = —sin2n x, — 4cos’n x — X + (40 () (4.31)
where
t(n) = F11(n) cosn — Fag () sinn (4.32)
k1 (n) = Fye () cosn — Fi1 (n) sinn (4.33)

and x (n,) is defined by (4.18). The solution of (4.30) and (4.31) is

1
L= —sin2y xy — 2/Xd77 — Xy + /e“*(p“bl)/f1 (n)dn (4.34)

The pressure distribution can easily be determined from the definition of
generalized energy function L from (2.7).
When ~” = 0, we see that the expressions for viscosity p, temperature
T, and generalized energy function involve arbitrary functions and this
indicates that the flow equations admit an infinite number of solutions.
Case 11

When ~” # 0, then 2 + ::,l;((ﬁ)) #0

Since, 2 + ;Y,/;((ﬁ)) = 0, leads to the previous case. If we let 4/ = g,then

the compatibility Equation (4.14) becomes:

Gy — g (2= B8 2y — Zyy = O(—g (0, 4)
_F21p (777 ¢)) cosn + (ZQFI (777 ¢) + QFQn (777 ¢) (435)
+F1,(n,9)) sin ]

The general solution of (4.35) is not possible. However, we can transform
this equation into an equation whose solution is possible by substituting

Fi(n,y) = e Fyy ()
Fy(n,1) = 227 Fyy () (4.36)
Z(n, ) = T2 H (o))
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Equation (4.35), utilizing (4.36) transforms to the equation

1 1 / 1
Hon = 3 How = [2 (2 + by) — 5—2} Hy—(1+b2) (3+ by) Hzgg(ﬁ) (4.37)

where

G (n) = [=Fi; (n) — baFyy ()] cosn + [F11 (n) + Fyq () + baFY; ()] siny

(4.38)
Equation (4.37) can further be simplified by defining a function
L_r (4.39)
; .

On introducing the function in (4.37), we get
Hopy — .7:2H¢¢ — FlA+2by + FTHy — (1 + b2) (3+ bo) H = FG (n) (4.40)

Since our interest is in finding the solutions of the flow equations for which
the function G () containing the force term is non-zero, we consider only
those cases for which G (n) # 0. The (4.37) for G (n) # 0, has many solutions
and here we consider some of them as follows:

When by = -1, -3

the (4.37) become

Hon — F*Hyy — F2+ FHy = FG (n) for by=-1 (4.41)
and
Hpy — ,7'_2H¢¢ —Fl-2+FHy = FG(n) for by=-3 (4.42)

Two solutions of (4.41), are determined and these are

)6727]\/5

H (1,0) = F{t1e¥V2 4 tye 212 4 e~ 21V2 V2 | g(n4\/§ dn
e20v2 )
— [ )} + [ ety +

(4.43)

and

t5(2 t 14142
H=eM % + (2¢ + tG)Hfm <t7 + t(20) + tﬁ)—m>

(4.44)

provided

F=2p+ts and G(n) = —t5e™ (4.45)
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The temperature distribution T, for by = —1, satisfy the equation

Ty — RePr(20 + t6)Tyy + (200 + t6)* Ty +2(200 +16)Ty =0 (4.46)
Two solutions of (4.46) are determined and these solutions are

T(n,%) = 7 + BesselK |0, /PR, (20 + )] t1o } (147

+tgHypergeometricOF1Regularized [1, %PrRe (2¢ + tﬁ)]

T(n,) =e " e‘wm(thypergeometricU[%
14/PR.’ 1,(2¢ +t6) VAP Re | (4.48)
+t12Laguerrell [/%?—2 + %) VAP R, (29 + tﬁ)} )]

where t;, 1 = 1,2, ...,12, are all non-zero arbitrary constants.
The (4.42) admits solution for F = 2¢ + t13 and is given by

2

H (777 1/}) = (21/} + t13) [g(ﬂ)% + 1/Jt14:| +ti5 (4.49)

The temperature distribution 7" in this case, satisfies the equation
Ty — RePr (20 + t13) Ty + (200 + t13)* Ty — 2(200 + t13) Ty +4T = 0 (4.50)

The solution of (4.50) is

T(n,v) = [%/\(BesselJ[—L)\, VAP R (29 + t13)]t17Gammall
—1\]+BesselJ [, \/)\PTRe (2¢) + t13)]t16Gammall (4.51)
+A))Pr R, (24 + t13)]e* "

where t13,t14, t15, t16, t17 are all non-zero arbitrary constants.

We note that G(n) involves the force components and they are arbitrary
and this indicates that for the flows with & = constant as streamlines the
flow equations admit an infinite set of solutions.

Example 4.2. (Flows with n = constant as streamlines)

Assume [8]
n="7) (4.52)

where 7 (1) is unknown function and 7 is given by (4.2).
Equation (4.52) and (3.18), give

f(&) =0 g9(§) =1 (4.53)
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Equation (3.20-3.24),employing (4.53) yield

E =e%

F=0
G = 7% (1) (4.54)
J = ey ()
W =%y (¥)

Equation (3.1-3.7), employing (4.54), give
1

= 2% (D) 4,
17 2 ) (4.55)
w=—Ly —cos® () Ay — M¢ sin 2 (¢) — MAg
+7/M5 cos 2 (¢) + 'V (¥ [ (&,9) cosy (¥) (4.56)
+F1 (&, 1) siny ()]
cos sin cos 2 .
0= —Le = Ayl 4 My —sin®y (W) de (o)

+Me sin 2y (¢) + "W [Fy (€,4) cosn+ Fa (€,4) sin )

, Ty > eX~' (1) R2P.E, (A2 + 4M2)
T - _
Ve (’Y/ (¥) "

+ R.PT; (4.58)

4p
- % (4.59)

where the functions A and M are given by
_ W (- cos 2 (1) + 21:2(2/2) sin 27y (w)) (4.60)
M= —W <sin 2y (1) + % cos 2 (1/;)) (4.61)

Equations (4.56) and (4.57), employing (4.60) and (4.61), can be rewritten
as

A = —Ly — 4’y’X sin2y — 'Y +4cos? v Xy,
—47/ cos? vy Y — sin 2y Yy (4.62)
+7'eY[cos y () F2(€,9)

+F1(E, ) siny ()]

0=—vL¢ — 47 sin? yX¢ — 49X — +/sin2y Y; — Y,
¢ 13 13 ¥

+eT[cos I (€, 9) + Fa(€,4) sin] (4.63)
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where i
X=—— 4.64
Ree2¢’}’/ ( )

,.Y//
Y = Wu (465)

The (4.62) and (4.63), employing compatibility conditions Ly = Ley yield
—2E 11
2 4Ky = Y+ Yy — Ve + 497y
—73Yee = 728 [(Fa, — 7' Fi, — 2/ F1)siny (4.66)
+(F1, — ' Fy, ) cos 7]

In general, in literature, there exists no method of finding the solution
of (4.66). However, (4.66), can easily be transformed into an equation
through transformations or substitutions whose some solutions are possible
to determine using existing methods/ techniques. The substitutions

X (&) = e XMV X(€,9)) (4.67)
Y (&) = e 2Ry (¢, ) (4.68)
Fi(§,9) = e i (4) (4.69)
Fy(8,9) = e By (1) (4.70)
transform (4.66) into equation
—4"}/2 ()\1X1 + Xlw) eMY 4 4’}’/2 (Xlwﬁ + )\1X1§) eM¥
(2922 =")Y1, (Y A2 =) AeY1 +7'Y1,, (4.71)

+29°Y1, = VY1 e = 25 +y2{[Fy (1)
+YFy (¥)]siny + [F] (¢) + 37/ F5, (¢)] cos v}

Equation (4.71) following example 4.1 possesses for v/ = 0 and " # 0.

The solutions of (4.71), for these two cases are determined as follows:
Case-I
For ~” = 0, the compatibility (4.71) becomes

da? (=M Xy — X1, 4+ X1, + M X0, ) MY 4 (2002Y7, + aA3V)
+aYi,, +2a%Y1, —a®Yy,)eM? = a?{[F3 (¢) (4.72)
+alyy (¢)]siny + [F] () + 3aF3; (¢)] cos v}

The (4.72) admits solutions when A\; = Ay and A; # Ay, we consider these
as sub-cases, separately, as follows:
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Sub-Case-1
For \y = A9 and Y7 = Y7 (¥), the (4.72) becomes

()N

v (4.73)

- Xy - Xy, + X X, =

where

T (¥) = a®{[F3s (¥) + aFyy (V)] siny + [F (¥) + 3aF3, (¥)] cos
+(2a\oY1, + ad3Ys + aYy,, )e ¥

(4.74)
The solution of (4.73) is
Xl (gaw) :g_/zl(alé)dw"i'h for /\1 :/\2 =0 (4.75)
and
Xl (§7¢) == |:/ T4(CZ§) dz/} + h1:| e_)\lw for )‘1 = )‘2 7é 0
and Xi (§,¢) = X1 (¢) (4.76)
where h, hy are both non-zero arbitrary constants.
Sub-Case-11
To determine solution for \; # Ag, we set
M X1+ Xy =0(¢) (4.77)
Y1 =di§+dy + Y2 () (4.78)
On utilizing (4.77) and (4.78) in (4.72) we find
X, =e MY [ / e~ MY0 (1) dip + ho (4.79)
and Y5(1)) satisfies
Y3 (1) + 2XaY5 () + A3Ya () = ¢ () — Aydi& (4.80)
where
(V) = ogw @ {[F33 (¥) + aFyfy (¥)]siny + [Ff (¢)
+3aFy, (¥)] cosv} + 4a®eMV0 (¢) — (aX3dy (4.81)
+2a3d1)e)‘2’l’} — /\%fdl
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where ¢ (1) is an unknown function . The solution of (4.80) is

Y1 =di€E+do + / / © (V) dpdip + 1pds + dy for Ay =0 (4.82)

and

Yy = e 2Vds + e Mg 4 eV [ 2200 (v) dip } (4.83)

= [e0 (v) dy)] for Ay # 0,d; = 0

The temperature distribution T, for v = 0, is

anE (67 w) + éTdeJ (67 w) - RePTTf (67 1/}) = _4ECR6PT’X (67 1/}) (484)

where
1

- aR.e%

Two solution of (4.84), are obtained, and these are

(4.85)

_ RePry Re Pry

f [f <7h3_4ECReP’"€)e Td¢+h4} e e« dy

a

= + [[f (he — 4E.R.P,Z (¥)) ady (4.86)
+h7]d¢ + hg for )\1 =0

and

T = hio€ —l—/ |:/ CLRePr(hll —4F.X, (w))dlb + hlg] dy

+ h* for A\ #0 (4.87)

where hs, hy, hs, he, h7, ho, h1g, h11, h12, h* are all non-zero arbitrary con-
stant and hg = hg + hs. We mentioned that in obtaining the solution in
(4.86), we set X (&,v) = &+ Z(1p) where Z(v) is an unknown function.
For solution (4.87), X (&,) is considered only function of ¢ and we set
X (&,7) = X1(v) For sub case-11, the solutions can easily be determined in
the same manner as in example 4.1 and sub case-I.

Case-11

When ~” # 0, compatibility equation is

—4"}/2 ()\1X1 + Xlw) eM¥ + 4’}//2 (Xlng + )\1X1§) eM¥
+[(2"}//)\2 — ’y//)Ylw + (YA = ") Aoy + ’Y/Ylww (4.88)
+29%Y1, — Y1 |V = H* (v)
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where
1!

H* (1) = 2% + 72 {[F3 () + 7'y ()] siny

YT () + 37 F5, (¢)] cos v} (4.89)

The (4.88) admits solutions when X;,Y; both are function of ¢ alone and
when X; = X11(¢),Y, = h13 + Y, (¢).These solutions are

X, =e MY [ / —%de + hlS] (4.90)
A2t
Y] = / U h“‘j, dip + hlG} eV dip + hyg (4.91)
X1 (0) =X () =e MY [ / —%de + hlg] (4.92)

_94/3
Y1 (& 9) = hisé + / e [/ WCM + hzo} dip +ho1  (4.93)

where h;,i = 13,...,21 are all non-zero arbitrary constants. For (4.90) and
(4.91), the function ~ (v)) is

er2tha1
v (W) = T hao (4.94)
2
where hyo is an non-zero arbitrary constant.
Following the procedure as in example 4.1, the temperature distribution

T is given by
72
et [+] [or @ (2w + Tnw)a
+h23RePr"}/1/J + h24]d¢ + h25 (495)
where has, hog, hos are all non-zero arbitrary constant. The temperature

distribution T for X1 = X11(v), Y1 = h13€ + Y11 () is given by

12

T =hy,§+ / |:ewh26+h28 / G* (¥) (Xll + %YVI (&)

+hay Re Py )dib + hage?2)dyp + hg (4.96)
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where hag, haz, haog and hag are all non-zero arbitrary constant and v () for
(4.96) is

7 () = ——elVatha 4 h (4.97)
hag
where hsg, h31, hge are all non-zero arbitrary constants and the function
G* () is
EcR.P,

We note here that the function X7 = X71(¢),and Y11 (¢)) are both arbitrary.
(2) Assume
w=&+in=a"z+b" (4.99)

where a* = a1 + tas, b* = by + iby
Example 4.3. (Flows with n — \{= constant as streamlines)

Proceeding in the same manner as in examples 4.1 and 4.2, we find

af a3 (4.100)

J = ’Y}(’/’)

For this example, the (3.1 - 3.7), employing (4.100), become

V+22) (a3 +a3)

— 4.101
! v () ( )
7(1?;)7” = —7'BsLy +7?B7A¢ — 7' BsAy + 7P Me } (4.102)
+7'Bo My, + ' BroF1(§, ) + ' Bri Fa (&, v)
0= —7'B5L¢ + ' B1Ac + B3Ay + B2 () Me + B4 My, } (4.103)
+B127' F1(&, %) + v B13Fa (&, ) ’

1+ A2 P57 RePE, (A* + 4M°)

/
—_ S — —_— _— e r = —
(VTe = ATy), +<fy, ) Ty /\T§>w R P, T "

(4.104)
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where ,
4
A= (4.105)
R~
2 2 "
M = _M (4.106)
Ry 1

and, §;, 1 = 1,2,...,13 are all given in appendix-A.
The (4.102-4.104), employing (4.105) and (4.106), become

i

Ly = _ﬁIS% + Bi97' Xe + Boo Xy + B F1 (&, ¢) + BoaFo(€,9)  (4.107)

B1s

Le = =hraXe = =7 Xy + BioFi(& ¥) + Bir (&, ¥) (4.108)

2 " 2 ' 2 9

Ve — Ty + Xy AN gy Y REDEX

7 Bs i

(4.109)
where ”
7" (¢

X = BB D) 4.110

(&) = g m a6 v) (4.110)

and 3;, j = 14,...,17 are all given in appendix-A.
The compatibility condition in this case is

%Xdzdz + 197 Xee + (Boo + Bra) Xye — ﬁlj’g Xy = —Po1Fig (4.111)
+B16F1, + Birks, — Baalkh,
where X is defined in (4.110) and f3;, j = 18, ..., 22 are all given in appendix-
A.
We note here that in the previous example the flow equation possesses
solutions for 7/= 0, and ~”# 0. If we consider the same cases in this
example we see that when 7" = 0, the (4.111) becomes

0:_521F15+/816F1w +517F2w _522F2§ (4112)

We have already mentioned that we are interested in those solutions of
the flow equations for which the expression containing the components of
force is not equal to zero. The (4.112) contains the force component and
therefore, we do consider the case for v”=0, . For this example we consider
only the case v"# 0 . When ~”# 0 the (4.111), using transformations,



Exact Solution of Steady Plane Flows of an Incompressible.... 279

can be transformed into a differential equation whose solutions are easily
determinable. These transformations are

X (&) =06+ X1 ()
Fy = Fii (¥) (4.113)
Fy = Fy (¥)
and
X (&) = "2y ()
Fy =" Q) (¢) (4.114)
Fy = e"£Qy (¢)
For transformation (4.113), the (4.111) becomes
Xiyy = %Xlw = % [Bi6 F11 () + By Fa ()] (4.115)

whose solution is
X =0+ 12 [0ty () + BirFh () de} i+ ko + ks (2.116)
15

where 7y (¢) is arbitrary.
For transformation (4.114), the (4.111), takes the form

Z

BisZy (¥) + [7/ (B0 + P1a) 02 — ﬁ15% Zy (V) + Br1o7203 2, (v) = k ()

(4.117)
where
k() = [8.,02Q1 (¥) + B,4Q1 (V) + B17Q% (¥) — P2262Q2 (¢)
(4.118)
and the solution of (4.117) is
1 \/—4B156519+ (Bra+520 )2
Z, (V) = (k3fis + ¢ (Bia — Ba0) b2) 2 2(B14=F20) (ks

—4815B819+(B14+B820)>

+kg (k3615 + Y (614 + 520) 92)\/ (B14+B820)

1
k
+ \/_4515519"‘(5144‘520)292 [( 3015 + ¢ (ﬁm

1 V/—1815810+(B1a+B20)2
+/820)62) 2 2(514+520) (— f(k3/815 —+ 1/}(514
l(1+ \/*4ﬁ15ﬁ19+(l314+l320)2)
: Pratiao K(p)dp + ([ (k35
1 \/*4ﬁ1551g+(l314+l320)2
+(B14 + B20)02)2 2(014+520) K(p)dy) (ks 15
\/—4815819+(B14+B20)2
+1)(B1a + B20)02) Pra+ha0

(4.119)
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provided

B i . 02 (B20 + Pra)
02 (B20 + B14) ’ Bis

where k1, ko, k3, k4, k5, kg are all non-zero arbitrary constants.
The temperature distribution 7', for X (§,v) = 601 + X1(v) is

In

’y:

w‘ + ky (4.120)

T (m-RePrl)fsy® \* (m—Re Prls) 05
= "L\ 21 B5 Re Pry?—EcRe Pry"01 2\ 21185 Re Pry®—EcRe P01

m— ! 2 _ cltelr "
+ /9 [f (m=2y l(ll)fi;/)gsng By dip + 53} dip +1y for 61 #0

(4.121)
When 6, = 0 the temperature distribution 7" is
—E.R.P.v'
T= ! —X d Is| d l 4.122
[V e s | o @z

where l1,12,13,14,15,l¢ are all non-zero arbitrary constants. In (4.122) the
function v (¢) is arbitrary.

When X = e%¢Z1(¢)), the temperature distribution T, satisfies the
differential equation

2) 1+ A2 " (L+X), RP

R.P.E 7”692§Z1(1/1)
Tee= Tt Tow———— Ty Te = ————

vy P57y’
(4.123)

which on using T' = e%¢Ty (1)), transforms into differential equation

9 G2\ 1 9% — R.P05¢ R.P.E.(Z) (TZJ)
etz (g o) e () T o
(4.124)
where Z;(v) is an unknown function and { = c¢;¢ + ¢2.The solution of
(4.124) can easily be determined for given Zi(1)). However the form of
Z1(1), if not given which satisfies (4.124) can easily be determined by
arranging the L.H.S of (4.124) in such a way that the combination of some
of the terms vanish when T therein is replaced by a special function. For
example, the (4.124) can be rewritten as

O\ 1

¢*Ty, +2 (m - 5) (T, + (P —d*) Ty

N <d2 ey 02 — RePT02§> - R.P.E.CZ1 (%)) (4.125)

(1+A%) 17 B0+
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If we set
Ty, + 2T, + (¢*—d®) Ty =0 (4.126)

which is a Bessel equation in T3 of order d whose solution is
Besseld |3V +4d%,¢| Iy BesselY |51 +48,¢] Iy
= +
V¢ NG

On using (4.127) in (4.125), we get the expression for Z;(¢) and is

Z1(Y) = v <<BesselJ [%\/ 1+ 4d2,§] ls

- C% Ecl’?PrRe

Ty

(4.127)

1 2 _ 2\ 72
+BesselY [5 V1+4d?, C] ly) s < (i (C]glrl)%gl——;g)\) 2217 > (4.128)

Following the above procedure we can find Z;(1)in terms of other spe-
cial functions. We indicate that as in previous solutions, the solutions in
example 4.3 involve arbitrary functions and therefore the flow equations for
flows with 7-A{= constant as streamlines admits a large number of exact
solutions.

provided = %, and [7,lg,lyg are all non-zero arbitrary constant.

5 Conclusion

In this paper some exact solutions governing the steady plane motion of
an incompressible fluid of variable viscosity in the presence of an external
force for an arbitrary state equation are presented. It is indicated that
all solutions involve arbitrary function(s) for the streamline pattern of the
form =28 — constant or <=L = constant and this arbitrariness indicates
that the glow equations admits infinite set of solutions for these streamline
patterns.

A Appendix

B ag()\al —I—CLQ)
b=~ (1+ A2)(a2 + a2)? (A1)
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(Aa? + 2aiaz — \a3)

b= Ao @ 1) (A-2)
B3 = % (A.3)
2 2
Bi= ((5%1 - %2))2 (A.4)
1

- al(al — )\(12)
b6 = T )@ + )2 (4.6)
(Aa1 + az2)(a1 — Aag)
(14 A?)2(af + a3)?
(=14 )\2)(1% + 4 ajag — (-1 + /\2)a%)
Fo =~ (14 A2)2(a? + a3)? (4.8)

(Aa? + 2a1as — \a3)

Br =

(A7)

=" )@ 1+ ) (4.9)
Bro = Af St (A.10)

B = % (A11)

b= 12 —T—la%)2 (A.12)

Bz = —@72&%)2 (A.13)

By, = darazf +ﬁﬁ52(a% —a?) (A14)
Bis — 4ayas 3 +5654(a§ —a3) (A.15)
Bie = % (A.16)

Pir = % (A.17)

Pis = L (A.18)

Bs
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_ 4aragfr + Bs(ai — a3)

Big 5 (A.19)
By = dayazfs —ﬁfg(a% —a3) (A.20)
Bo1 = % (A.21)
Bag = % (A.22)
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