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Some Remarks on Certain Types of Continuity
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Abstract: Infinite matrix transformation theory plays an important role in anal-
ysis, specially on the theory of summability. In this paper we introduce the concept
of A− continuity of a real valued function associated with a regular infinite ma-
trix A and some result related to A−continuous function has been established.
Also a characterization of A−continuous function is presented after introducing
the notion of A− oscillation of a function.
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1 Introduction

Let A = (amn) be an infinite matrix with elements in the real line R and {sn} be

a sequence of real numbers. Let us consider tm =
∞∑

n=1

amnsn where it is assumed

that the right hand series is convergent for all m = 0, 1, 2, .... Then {tm} represents
A− transform of {sn} generated by the matrix A = (amn). If tm → s as m →∞
then the sequence is said to be summable by the limitation method generated by
the matrix (amn) and we shall write sn

A−→ s. If tm → s as m → ∞ whenever
sn → s then the matrix A = (amn) is said to be regular. A necessary and sufficient
condition for a matrix A = (amn) to be regular is

(i) sup
∞∑

n=1

|amn| < ∞,

(ii) lim
m→∞

amn = 0 for all n,

(iii) lim
m→∞

∞∑
n=1

amn = 1.

The matrix A = (amn) satisfying these above conditions (i)-(iii) is called
Toeplitz matrix or simply T− matrix [3]. In particular, if amn = 1

m , n ≤ m ;
and = 0,n > m then it is called the first order Cesaro matrix which is designated
by C = (C, 1).

Let A be a regular matrix and f : R → R be a real-valued function. Then
f is A− continuous at the point xo ∈ R if f(xn) A−→ f(xo) whenever xn

A−→ xo.
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Otherwise f is said to be A− discontinuous at the point xo.
R.C.Buck [2] showed that the function f : R → R is linear if f is C− continuous

at at least one point of R.
Posner [5] proved the following result:
Let A be a regular matrix and f : R → R be a real-valued function such that

f(xn)n is A−summable whenever {xn} converges. Then f is continuous on R
A regular matrix A = (amn) is said to satisfy the property (α) if there exists a
sequence {sn} of 0′s and 1′s such that A− lim sn exists and is equal to 1

2 .

2 Main Results

Theorem 2.1 Let A = (amn) be a regular matrix with property (α). If f is A−
continuous at atleast one point xo then f is continuous.

Proof. Let f be A− continuous at a point xo. We first show that f is continuous
at any x ∈ R. Since A is the regular matrix having the property (α) so there
exists a sequence αn of 0′s and 1′s which is A− summable to 1

2 . We consider the
sequence xn in R such that xn = αnx + (1 − αn)[x0− x

2
1
2

]; where αn = 0 or 1 for
all n. Therefore A− lim xn = xo. If possible, let f be not continuous at x. Then
there exists a sequence hn, hn → 0 such that f(x + hn) → y 6= f(x) as hn → 0.
Now we take another sequence yn given by yn = αn(x + sn) + (1 − αn)[x0− x

2
1
2

].
Then for every sequence {sn}, sn → 0, A − lim yn = xo. In particular, for
zn = αn(x + hn) + (1 − αn)[xo− x

2
1
2

]; A − lim f(zn) = 1
2y + 1

2f(2x0 − x). Since
f is A− continuous at x0, A− lim f(xn) = f(x0) = A− lim f(zn). Hence y = f(x)
which is a contradiction. Hence f is continuous at the point x. �

Note 2.1 The property (α) of the regular matrix A is essential for holding Theorem
2.1. We give the following example in support of this.

Example 2.1 Let A be an infinite identity matrix. Then clearly A is regular. But
A does not have the property (α).

Now we consider the function f defined by

f(x) =
{

0 if x < 1
2 ,

1 if x ≥ 1
2 .

Then f is discontinuous.
We shall show that f is A−continuous at the point 0,i.e. A − lim f(xn) =

f(0) = 0 whenever A− lim xn = 0.
Now A− limxn = 0 implies xn → 0. To show that f(xn) → f(0) = 0. There

are two possibilities:
i)| xn |< 1

2 and ii)| xn |≥ 1
2 .

i) | xn |< 1
2 ⇒ − 1

2 < xn < 1
2 . In this case f(xn) = f(0) = 0. Hence f is A−

continuous at 0.
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ii)| xn |≥ 1
2 . As xn → 0, this case is impossible.

Hence the result.

Theorem 2.2 Let A = (amn) be a regular matrix with the property (α). If f is
A−continuous at every point of R, then f is linear.

Proof. By property (α) of A, there exists a sequence vn of 0′s and 1′s such that
A− lim tn = (x+y)

2 . It can be shown that A− lim f(tn) = [f(x)+f(y)]
2 .

Since f is A− continuous at (x+y)
2 , so f(x+y

2 ) = [f(x)+f(y)]
2 i.e. f is half-point

linear. By theorem 2.1, f is also continuous. Hence by a well-known result of
functional equations, we conclude that f is linear. �

Note 2.2 In Theorem 2.2, A− continuity of f at every point is essential for the
linearity of f . In this regard we mention the example given by Anatoni and Salat
[1], of the function which is everywhere continuous but not linear and which fails
to be A− continuous at more than one point.

Example 2.2 Let us consider the regular matrix,

A =


1
2

1
2 0 0 0 · · · · · ·

0 1
2

1
2 0 0 · · · · · ·

0 0 1
2

1
2 0 · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·


Let the function be defined by

f(x) =

 −1 if x ≤ −1,
x if −1 < x < 1,
1 if x ≥ 1.

The matrix A is regular with property (α). The function is continuous but
nonlinear. Also note that the function f is A−continuous only at one point x = 0.

Theorem 2.3 Let A = (amn) be a regular matrix. If f : R → R and the graph of
f is a Gδ set, then the set of points of A−discontinuity of f is a closed set.

Proof. Let G denote the graph of f . Since G is Gδ therefore G =
∞⋂

n=1

Gn where

each Gn is open. Now G̃ \ G =
∞⋃

n=1

(G̃ \Gn). Each G − Gn is nowhere dense in

G̃. Therefore G̃ \ G is a set of first category inG̃. For any x ∈ G̃ \ G, we have
x + G ⊂ G̃ \ G. Hence x + G is of the first category and so also is G. Thus
G̃ = (G̃ \G)

⋃
G is a set of first category in G . Since G̃ ⊂ R and R2 is complete,
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G̃ is a set of second category in G̃. Thus we arrive at a contradiction. Hence
G̃ = G i.e. G is closed. Therefore Df , the set of points of discontinuity of f is a
closed set.

Let DfA denote the set of points of A−discontinuity of f . We will show that
DfA is precisely the set Df . Let xo ∈ Df , then there exists a sequence {xn} of
real numbers such that x → xo but f(xn) 6→ f(xo). If possible, let xo 6∈ DfA.
If tn → xo is an arbitrary sequence then tn → xo and since xo 6∈ DfA we get

f(tn) A−→ f(x0). Hence by Posner’s result [5], f is continuous. Thus xo is a point
of continuity, which contradicts the choice of xo. Hence Df is a subset of DfA.
Again suppose that x ∈ DfA. Let xn → x. Since A is regular we have xn → x.
As x ∈ DfA, f(xn) is not A− summable to f(x). If x 6∈ Df then x is a point of
continuity of f . Therefore xn → x implies f(xn) → f(x) and this in fact means
that xn

A−→ x implies f(xn) A−→ f(x). This shows that x 6∈ DfA; a contradiction.
Hence DfA is also a subset of Df . Thus DfA = Df . �

Theorem 2.4 If S ⊆ R be an Fσ set then there exists a regular infinite matrix A
and a real function f such that S = {x ∈ R : f is A- discontinuous at x}.

Proof. Since S is an Fσ set it is possible to find a function f such that Df = S.
Let us consider a subset B of N, the set of natural number such that N \ B is an
infinite set. We now order the set B as n1 < n2 < n3... .

Now we define a regular matrix T = (amn) as follows

amn =
{

0 if n 6= nm(m = 1, 2, ...),
1 if n = nm.

Let x 6∈ S. Then x is a point of continuity of f . Let xn
A−→ x. Then

tm =
∞∑

n=1

amnxn = xmn → x. As f is continuous at x, hence f(xmn) → f(x).

This shows that x is a point of A− continuity of f . Now x ∈ S. Then x is a point
of discontinuity of f . Then there exists a sequence {xn} such that xn

A−→ x but
f(xn) 6 A−→ f(x). However this means that there exists a sequence xn such that
xn

A−→ x but f(xn) 6 A−→ f(x). Hence f is A− discontinuous at x and the theorem
follows. �

Note 2.3 We have seen that if f is A− continuous at at least one point then f
is continuous. Now a question arises: Does any A− continuous function posses
derivative. We give an affirmative answer in the following theorem.

Theorem 2.5 If f is A− continuous at a point xo ∈ R with A having property (α)
then f is differentiable almost everywhere on a dense open subset of an interval.

Proof. We have shown on the proof of theorem 1 that f is continuous on R.
Therefore f is continuous on an open interval I ⊂ R. We know that every hor-
izontal line meets the graph of a continuous function on some interval J of I in
finite number of points. �
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Cech [3] proved that such function must be monotone on some interval. There-
fore we can decompose the interval J in countably many closed intervals in each
of which f is monotone. Thus by Baire category theorem, there exists a sequence
of intervals In whose union is dense in J , so that f is monotone in each In. Hence
f is differentiable almost everywhere on dense open subset of I.

We now study the properties of some local types of uniform convergence which
are sufficient for proving the A− continuity at one point of the limit of a sequence
of A− continuous functions and also introduced the concept of the A− oscillation
of the function to give a characterization of the A−continuity of a function.

Definition 2.1 Let A be a regular matrix and f : R → R be a real valued
function. Let xo ∈ R. Let K = {{xn} : xn

A−→ xo}. Then f is said to be locally
A− continuous at the point xo ∈ R if there exists a neighborhood V (xo) of xo

such that for any sequence {xn} in V (xo)
⋂

K, f(xn) → f(x0), i.e. there exists
V (xo) and for any ε > 0 there exists m ∈ N such that for all n > m and all

{xn} ∈ V (xo)
⋂

K, |
∞∑

k=1

ankf(xk)− f(xo) | < ε.

The following example shows that a function which is locally A− continuous
at a point may not be A− continuous at the point .

Example 2.3 Let A = (ank), where ank = 1
n , if k ≥ n and ank = 0 if k > n and

f : R → R defined by

f(x) =
{

1
2 if x ≥ 0
− 1

2 if x < 0
Let us consider the point 0, then f(0) = 1

2 . Now consider the sequence {xn} where

xn = (−1)n, with xn
A−→ 0. But f(xn) A−→ 0 6= f(0) = 1

2 . Thus f is not A−
continuous at the point 0.

Now let us take the neighborhood [0,∞) of 0,and {xn} any sequence in [0,∞)
⋂

K,
where K = {{xn} : xn

A−→ 0}. Then f(xn) → f(0) = 1
2 . Thus f is locally A−

continuous at 0.

Definition 2.2 A sequence of functions {fn} is said to be uniformly convergent
to a function f at a point if for a given ε > 0, ∃m ∈ N such that for all x ∈ N(a)
(some neighborhood of a), n ≥ m, | fn(x)− f(x) |< ε .

Theorem 2.6Let A be a regular infinite matrix and {fn} is uniformly convergent
to f at a point a.If infinitely many fn are locally A − continuous at a, then f is
also locally A− continuous at a.

Proof. {fn} being uniformly convergent to f at a, given ε > 0 , ∃m ∈ N and
some neighborhood N(a) of a, such that for all x ∈ N(a), n ≥ m,

| fn(x)− f(x) |< ε

3
(1)
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As infinitely many fn are locally A− continuous at a, we can choose s > m such
that fs is locally A− continuous at a . Therefore there exists a neighborhood V (a)
of a such that for any sequence {xn} in V (a)

⋂
K we have , fs(xn) A−→ fs(a), i.e.

, ∃mo ∈ N such that ∀n > m0,

|
∞∑

n=1

ankfs(xk)− fs(a) | < ε

3
(2)

Again A being regular, ∃m1 ∈ N and a constant G such that ∀n > m1,

∞∑
n=1

| ank | < G (3)

Let M = max{mo,m1}.
Now, for each {xk} ⊂ V (a)

⋂
N(a)

⋂
K and for n > M we have

|
∞∑

k=1

ankf(xk)− f(a) |

≤|
∞∑

k=1

ankfs(xk)−
∞∑

k=1

ankf(xk) | + |
∞∑

k=1

ankf(xk)− fs(a) | + | fs(a)− f(a) |

<|
∞∑

k=1

ankfs(xk)−
∞∑

k=1

ankf(xk) | + ε
3 + ε

3

=|
∞∑

k=1

ank[fs(xk)− f(xk)] | +2
ε

3

≤
∞∑

k=1

| ank || [fs(xk)− f(xk)] | +2
ε

3

≤ G ε
3 + 2 ε

3 = ε (G+2)
3 .

Thus, f is locally A−continuous at a. �

The concept of quasi-uniform convergence of a sequence of functions is well
known. This concept plays an important part in the formulation of conditions for
continuity of limit functions of sequence of continuous functions. By analogy with
definition1, we give the following local version of it.

Definition 2.3 A sequence {fn} is said to be quasi-uniformly convergent to f
at a point a, if there exists a neighborhood N(a) of a such that fn(a) converges
pointwise to f(a) in N(a), and for every ε > 0, for each n ∈ N, there exists
r(n) ∈ N such that min0≤i≤r(n) | fn+i(x)− f(x) | < ε for all x ∈ N(a).

Theorem 2.7 Let A be a regular infinite matrix. If {fn} is a sequence of functions
locally A−continuous at the point a and converges quasi-uniformly to f at the point
a, then f is also locally A− continuous at a.
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Proof. A being regular, ∃m0 ∈ N and a constant G such that

∀n > m,
∞∑

k=1

| ank | < G (4)

Let ε > 0. Since, fn(a) → f(a) as n →∞, ∃m1 ∈ N such that

| fn(a)− f(a) |< ε

3
∀n ≥ m1 · · · (5)

Let m = max(mo,m1).
Then, by quasi-uniform convergence of {fn} at the point a, ∃ a neighborhood

N(a) of p ≥ 1 such that ∀x ∈ N(a),∃t ≤ p for which

| fm=t(x)− f(x) |< ε

3
(6)

Again, by locally A− continuity of functions fm+t at the point a, ∃ a neigh-
borhood V (a) of a such that for all {xn} in V (a)

⋂
K,

|
∞∑

k=1

ankfm+t(xk)− fm+t(a) |< ε

3
(7)

Let {xk} be an arbitrary sequence taken from N(a)
⋂

V (a)
⋂

K. Then we
have,

|
∞∑

k=1

ankf(xk)− f(a) |

≤|
∞∑

k=1

ankfm+t(xk)−
∞∑

k=1

ankf(xk) |

+ |
∞∑

k=1

ankfm+t(xk)− fm+t(a) | + | fm+t(a)− f(a) |

<|
∞∑

k=1

ankfm+t(xk)−
∞∑

k=1

ankf(xk) | + ε

3
+

ε

3

≤
∞∑

k=1

| ank || [fs(xk)− f(xk)] | +2
ε

3

≤ G ε
3 + 2 ε

3 = ε (G+2)
3 .

The local A−continuity of f at the point a follows. �

CHARACTERIZATION OF A-CONTINUOUS FUNCTION BY A-
OSCILLATION:

We can give characterization of the points of A−continuity of a function .
Let f be a real-valued function and A = (amn) be a regular infinite matrix.

For each point a ∈ R and an open neighborhood V (a) of a and every natural



148 D. K. Ganguly Chandrani Mitra and Chandana Dutta

number N , we define the number wA(a, V (a), N) = sup |
∞∑

k=1

ankf(xk)− f(a) |,

where the supremum is taken over all n ≥ N and all sequence {xk} in V (a) for

which the transformed sequence {
∞∑

k=1

ankxk}n also belong to V (a).

If N < N ′ then obviously wA(a, V (a), N ′) ≤ wA(a, v(a)k, N). Then,

wA(a, V (a), N) = infwA(a, V (a), N).

Definition 2.4 Let U(a) be a system of all open neighborhood of a. Then wA(a) =
infwA(a, V (a)) is called the A−oscillation of the function f at the point a.

Theorem 2.8 Let r > 0 and f be a function defined on R. Then, the set Hr =
{x ∈ R : wA(x) < r} is an open set.

Proof. Let xo be any point of Hr. We shall show that xo is an interior point
of Hr. Since, wA(xo) < r, there is an open neighborhood N(xo) of x0 such that
wA(xo, N(x0)) < r. By definition of wA(xo, N(xO)), ∃ an integer m ≥ 1 such that

wA(xo, N(xo),m) = sup |
∞∑

k=1

ankf(xk)− f(xo) |< r. Since for each x ∈ N(xo),

the open set N(xo) is a neighborhood of x. So, we have , wA(x, N(xo),m) < r,
and this implies wA(x,N(xo)) < r and hence wA(x) < r, for each x ∈ N(xo).
Hence N(xo) ⊂ Hr, which shows that xo is an interior point of Hr and therefore
Hr is an open set. �

Theorem 2.9 A function f is A−continuous at the point a iff wA(a) = 0.

Proof. Let f be A−continuous at a. Then f(xn) A−→ f(a) whenever xn
A−→ a.

So, given ε > 0,∃no ∈ N and V ∈ U(A) such that for n ≥ no,

|
∞∑

k=1

ankf(xk)− f(a) |< ε whenever {xn} ∈ V (a)
⋂

K.

From this we get immediately wA(a, V, no) ≤ ε. Then wA(a, V ) ≤ ε and hence
wA(a) ≤ ε. Now ε being arbitrary small wA(a) = 0.

Conversely, let wA(a) = 0. Then for each ε > 0∃N(a) ∈ U(a) such that
wA(a, n(a)) < ε. Then by definition of wA(a,N(a))∃ a natural number no such

that wA(a,N(A), no) < ε i.e. sup |
∞∑

k=1

ankf(xk)− f(a) |< ε where the supremum

is taken for all n ≥ no and all {xk} ∈ N(a)
⋂

K i.e. |
∞∑

k=1

ankf(xk)− f(a) |< ε for

all n ≥ no and all {xk} ∈ N(a)
⋂

K. Hence f is A−continuous at the point a. �
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Theorem 2.10 The set of points of A−continuity of a function is of type Gδ in
R.

Proof. Let Cf represent the set of points of A−continuity of f in R. Then
Cf = {x ∈ R : wA(x) = 0}.

By the above theorem we have Cf =
⋂

Uk where Uk = {x ∈ R : wA(x) <
1
k}k ≥ 1.

But each Uk is open set in X. Then Cf is of type Gδ in R. �
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