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Abstract In this paper, we introduce a generalization of derivation on n-ary multiplicative semilattices;

namely permuting n-(f, g)-derivation, and investigate some related properties. Moreover, we study the
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1. Introduction

For any lattice L := (L,∧,∨), a derivation on L is a function d : L→ L satisfying:

(i) d(x ∨ y) = d(x) ∨ d(y) and
(ii) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) for all x, y ∈ L.

The notion of derivations in lattices have been studied by Szasz[2], Ferrari[6] and Xin
et al.[11]. They studied some properties of derivations, and characterized modular and
distributive lattices by some special derivations. The concept of derivation in lattices has
been generalized in several ways by various authors (see [5,8,9,12,13]). In 2018, Wang et
al.[4] investigated related properties of some particular derivations and gave some char-
acterizations of zero derivations in prime commutative multiplicative semilattices. In
[7], Ozturk et al. introduced the permuting tri-derivations in lattices. Yazarli and Oz-
turk[3] generalized the permuting tri-derivations to permuting tri-f -derivations. Recently,
Leerawat and Chotchaya[10] generalized the permuting tri-f -derivations to the permuting
n-(f, g)-derivation, where n is a positive integer, and investigated some related properties.
In this paper we study the notion of a permuting n-(f, g)-derivation on n-ary multiplica-
tive semilattices, and investigate some results involving this derivations. Furthermore,
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we study the notion of trace of permuting n-(f, g)-derivation in multiplicative semilat-
tices and we also obtain some results concerning identities with traces and permuting
n-(f, g)-derivation in multiplicative semilattices.

2. Preliminaries

In this section, we give some definitions of multiplicative semilattice and some proper-
ties about multiplicative semilattices gathered by Jayaram[1] and Wang et al.[3].
A semilattice is a nonempty set L with a binary operation ∗ such that for all x, y, and z
in L, the following identities hold:

(i) x ∗ x = x.
(ii) x ∗ y = y ∗ x.
(iii) x ∗ (y ∗ z) = (x ∗ y) ∗ z.

In other words, a semilattice is an idempotent commutative semigroup. If L is a semilat-
tice with a binary operation ∗, then we write (L, ∗).

Lemma 2.1. In a semilattice (L, ∗), define x 6 y if and only if x ∗ y = x. Then (L,
6) is a partially ordered set (poset) in which every pair of elements has a greatest lower
bound or infimum. Conversely, given a partially ordered set P with that property, define
x ∗ y = inf{x, y}. Then (P , ∗) is a semilattice.

Proof. Let (L, ∗) be a semilattice and define 6 as above. First, we show that 6 is a
partial order. For any x, y, z ∈ L,

(i) x ∗ x = x implies x 6 x.
(ii) If x 6 y and y 6 x, then x = x ∗ y = y ∗ x = y.
(iii) If x 6 y and y 6 z, then x ∗ z = (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y = x,

so x 6 z.

Since (x ∗ y) ∗ x = x ∗ (y ∗ x) = (x ∗ x) ∗ y = x ∗ y, we have x ∗ y 6 x. Similarly, x ∗ y 6 y.
Thus x∗y is a lower bound for {x, y}. Let z be a lower bound for {x, y}. Then z 6 x and
z 6 y. Hence z ∗ (x ∗ y) = (z ∗ x) ∗ y = z ∗ y = z. Thus, z 6 x ∗ y. Therefore x ∗ y is the
greatest lower bound for {x, y}. The proof of the converse is likewise a direct application
of the definitions.

Sometimes it is more natural to use the dual order, setting x 6 y if and only if x∗y = y.
The following lemma can be proved similarly.

Lemma 2.2. In a semilattice (L, ∗), define x 6 y if and only if x ∗ y = y. Then (L, 6)
is a partially ordered set (poset) in which every pair of elements has a least upper bound
or supremum. Conversely, given a partially ordered set P with that property, define
x ∗ y = sup{x, y}. Then (P , ∗) is a semilattice.

Definition 2.3. Let L be a nonempty set with two binary operations ∨ and · on L. Then
(L,∨, ·) := L is called a multiplicative semilattice if it satisfies the following conditions:

(i) (L, ∨) is a semilattice.
(ii) (L, ·) is a semigroup.
(iii) There exists an element 0 in L such that 0 6 x and

x · 0 = 0 = 0 · x for all x ∈ L.
(iv) There exists an element 1 in L such that x 6 1 and

x · 1 = x = 1 · x for all x ∈ L.
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(v) x · (y ∨ z) = (x · y) ∨ (x · z) and (x ∨ y) · z = (x · z) ∨ (y · z) for all
x, y, z ∈ L.

For convenience, we abbreviate x · y by xy for all x, y ∈ L. From Definition 2.3, 0∨x = x
and x ∨ 1 = 1 for all x ∈ L.
In a multiplicative semilattice L, by Lemma 2.2. we have (L,6) is a partially ordered
set, where 6 is defined by x 6 y if and only if x∨ y = y. Conversely, in a poset (L,6), if
a subset {x, y} of L has a least upper bound or supremum, then this supremum is unique
and denoted by x ∨ y.

The following lemma is a basic property on a multiplicative semilattice. The proof is
straightforward and hence omitted.

Lemma 2.4. Let L be a multiplicative semilattice. If y, z ∈ L such that y 6 z then
xy 6 xz and yx 6 zx for all x ∈ L.

Definition 2.5. Let L be a multiplicative semilattice. Then L is called

(i) idempotent if xx = x for all x ∈ L.
(ii) commutative if xy = yx for all x, y ∈ L.
(iii) prime if x L y = {0} where x, y ∈ L implies either x = 0 or y = 0.

Definition 2.6. Let L be a multiplicative semilattice. A nonempty subset S of L is
called a subsemilattice of L. If S is closed under the operation · and ∨ that is,

(i) x ∨ y ∈ S for all x, y ∈ S.
(ii) xy ∈ S and yx ∈ S for all x, y ∈ S.

Definition 2.7. Let L be a multiplicative semilattice and I be a nonempty subset of L.
Then I is called an ideal of L if it satisfies the following conditions:

(i) x ∨ y ∈ I for all x, y ∈ I.
(ii) for x, y ∈ L, if x ∈ I and y 6 x then y ∈ I.
(iii) xy ∈ I and yx ∈ I for all x ∈ I, y ∈ L.

3. Main Results

In what follows, let (L,∨, ·) be a multiplicative semilattice and f, g : L→ L be functions
unless otherwise specified. Let n be a fixed positive integer and Ln denote L×L×· · ·×L
(n terms).

Definition 3.1. A mapping D : Ln → L is said to be a permuting if the relation

D(x1, x2, . . . , xn) = D(xπ(1), xπ(2), . . . , xπ(n))

holds for all xi ∈ L and for every permutation π ∈ Sn, where Sn is the permutation group
on {1, 2, . . . , n}.

Definition 3.2. A permuting mapping D : Ln → L is called a permuting n-(f, g)-
derivation of L if it satisfies the following conditions:

D(x1 ∨ y, x2, . . . , xn) = D(x1, x2, . . . , xn) ∨D(y, x2, . . . , xn)

D(x1y, x2, . . . , xn) = (D(x1, x2, . . . , xn)f(y)) ∨ (g(x1)D(y, x2, . . . , xn))

for all x1, x2, . . . , xn, y ∈ L.
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Example 3.3. Let L = {0, a, b, 1}. Define operations ∨ and · on L as follows:

∨ 0 a b 1

0 0 a b 1

a a a b 1

b b b b 1

1 1 1 1 1

and

· 0 a b 1

0 0 0 0 0

a 0 0 0 a

b 0 0 b b

1 0 a b 1

Then (L,∨, ·) is a multiplicative semilattice.

Define a function D : L3 → L by D(x1, x2, x3) = x1x2x3 for all x1, x2, x3 ∈ L.
Let f, g : L→ L be defined respectively by

f(x) =

 0 if x = 0
1 if x = a
a if x = b, 1

and g(x) =

 0 if x = 0, a
b if x = b
1 if x = 1

Then it can be easily verified that D is a permuting 3-(f, g)-derivation on L.

Theorem 3.4. Let D be a permuting n-(f, g)-derivation on L.
Then the following statements hold for all x1, x2, . . . , xn, y ∈ L:

(i) If f(0) = 0 = g(0), then D(0, x2, . . . , xn) = 0.
(ii) If f(1) = 1, then g(x1)D(1, x2, . . . , xn) 6 D(x1, x2, . . . , xn).

(iii) If g(1) = 1, then D(1, x2, . . . , xn)f(x1) 6 D(x1, x2, . . . , xn).
(iv) If f(1) = 1 = g(1) and D(1, x2, . . . , xn) = 1, then g(x1) 6 D(x1, x2, . . . , xn)

and f(x1) 6 D(x1, x2, . . . , xn).
(v) If x 6 y, then D(x, x2, . . . , xn) 6 D(y, x2, . . . , xn).

(vi) D(x1, x2, . . . , xn)f(x1) 6 f(x1) and
D(x1, x2, . . . , xn)f(x1) 6 D(x1, x2, . . . , xn).

(vii) g(x1)D(x1, x2, . . . , xn) 6 g(x1) and
g(x1)D(x1, x2, . . . , xn) 6 D(x1, x2, . . . , xn).

(viii) D(x1y, x2, . . . , xn) 6 D(x1, x2, . . . , xn) ∨D(y, x2, . . . , xn).
(ix) If L is an idempotent multiplicative semilattice then D(x1, x2, . . . , xn) 6

f(x1) ∨ g(x1).

Proof. Let x1, x2, . . . , xn, y ∈ L.

(i) Suppose f(0) = 0 = g(0). Then
D(0, x2, . . . , xn) = (D(0, x2, . . . , xn)0) ∨ (0D(0, x2, . . . , xn)) = 0.

(ii) Suppose f(1) = 1. Then
D(x1, x2, . . . , xn) = (D(x1, x2, . . . , xn)f(1))∨(g(x1)D(1, x2, . . . , xn))
= D(x1, x2, . . . , xn) ∨ (g(x1)D(1, x2, . . . , xn)).
Hence g(x1)D(1, x2, . . . , xn) 6 D(x1, x2, . . . , xn).

(iii) Similar to the proof of (ii).
(iv) Follows from (ii) and (iii).
(v) Assume x 6 y, then we have y = x ∨ y. Therefore

D(y, x2, . . . , xn) = D(x∨y, x2, . . . , xn) = D(x, x2, . . . , xn)∨D(y, x2, . . . , xn).
Hence D(x, x2, . . . , xn) 6 D(y, x2, . . . , xn).

(vi) Consider
D(x1, x2, . . . , xn)f(x1) ∨ f(x1) = [D(x1, x2, . . . , xn)f(x1)] ∨ [1f(x1)]

= [D(x1, x2, . . . , xn) ∨ 1]f(x1)
= f(x1).
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So D(x1, x2, . . . , xn)f(x1) ∨ f(x1) = f(x1).
Therefore D(x1, x2, . . . , xn)f(x1) 6 f(x1).
Similarly, D(x1, x2, . . . , xn)f(x1) 6 D(x1, x2, . . . , xn).

(vii) Similar to the proof of (vi).
(viii) Consider D(x1, x2, . . . , xn)f(y) ∨D(x1, x2, . . . , xn)

= [D(x1, x2, . . . , xn)f(y)] ∨ [D(x1, x2, . . . , xn)1]
= D(x1, x2, . . . , xn)[f(y) ∨ 1]
= D(x1, x2, . . . , xn)1
= D(x1, x2, . . . , xn).

Hence D(x1, x2, . . . , xn)f(y) 6 D(x1, x2, . . . , xn).
Similarly, g(x1)D(y, x2, . . . , xn) 6 D(y, x2, . . . , xn).
ThereforeD(x1y, x2, ..., xn) = (D(x1, x2, ..., xn)f(y))∨(g(x1)D(y, x2, ..., xn))
6 D(x1, x2, . . . , xn) ∨D(y, x2, . . . , xn).
Hence D(x1y, x2, . . . , xn) 6 D(x1, x2, . . . , xn) ∨ D(y, x2, . . . , xn).

(ix) Assume that L is an idempotent.
D(x1, x2, . . . , xn) = [D(x1, x2, . . . , xn)f(x1)]∨[g(x1)D(x1, x2, . . . , xn)]
6 f(x1) ∨ g(x1).
Hence D(x1, x2, . . . , xn) 6 f(x1) ∨ g(x1).

Let D be a permuting n-(f, g)-derivation on L. Define a set Ker(D) by
Ker(D) = {x ∈ L | D(x, x2, . . . , xn) = 0 for all x2, . . . , xn ∈ L }.

Theorem 3.5. Let D be a permuting n-(f, g)-derivation on L. If f(0) = 0 = g(0), then
Ker(D) is a subsemilattice of L.

Proof. Assume that f(0) = 0 = g(0). Let x2, . . . , xn ∈ L.
By Theorem 3.4 (i), we have D(0, x2, . . . , xn) = 0. Thus 0 ∈ Ker(D).
Let x, y ∈ Ker(D), so we have D(x, x2, . . . , xn) = 0 and D(y, x2, . . . , xn) = 0.
By Theorem 3.4 (viii), we have
D(xy, x2, . . . , xn) 6 D(x, x2, . . . , xn) ∨D(y, x2, . . . , xn) = 0 ∨ 0 = 0. So
D(xy, x2, . . . , xn) 6 0. Hence D(xy, x2, . . . , xn) = 0. That is xy ∈ Ker(D).
D(x ∨ y, x2, . . . , xn) = D(x, x2, . . . , xn) ∨D(y, x2, . . . , xn) = 0 ∨ 0 = 0. Hence
D(x ∨ y, x2, . . . , xn) = 0. That is x ∨ y ∈ Ker(D).
Therefore Ker(D) is a subsemilattice of L.

Theorem 3.6. Let L be an idempotent multiplicative semilattice and D be a permut-
ing n-(f, g)-derivation on L. Assume that f(0) = 0 = g(0), f(1) = 1 = g(1), and
D(1, x2, . . . , xn) = 1 for all x2, . . . , xn ∈ L. Then Ker(D) is an ideal of L.

Proof. By Theorem 3.5, Ker(D) is a subsemilattice of L. Then x ∨ y ∈ Ker(D) for all
x, y ∈ Ker(D). Now, let x, y ∈ L be such that x 6 y and y ∈ Ker(D).
By theorem 3.4 (v), we get D(x, x2, . . . , xn) 6 D(y, x2, . . . , xn) = 0 for all x2, . . . , xn ∈ L.
Therefore D(x, x2, . . . , xn) = 0 for all x2, . . . , xn ∈ L, and so x ∈ Ker(D). Next, let x ∈ L
and y ∈ Ker(D). We now show that D(xy, x2, . . . , xn) 6 D(x, x2, . . . , xn)D(y, x2, . . . , xn)
for all x2, . . . , xn ∈ L. Let x2, . . . , xn ∈ L.
By Theorem 3.4 (iv) and Lemma 2.4 we have
D(x, x2, . . . , xn)f(y) 6 D(x, x2, . . . , xn)D(y, x2, . . . , xn) and
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g(x)D(y, x2, . . . , xn) 6 D(x, x2, . . . , xn)D(y, x2, . . . , xn). Therefore

D(xy, x2, . . . , xn) = (D(x, x2, . . . , xn)f(y)) ∨ (g(x)D(y, x2, . . . , xn))

6 D(x, x2, . . . , xn)D(y, x2, . . . , xn).

Since y ∈ Ker(D), D(y, x2, . . . , xn) = 0. Then
D(xy, x2, . . . , xn) 6 D(x, x2, . . . , xn)D(y, x2, . . . , xn) = 0.
Thus D(xy, x2, . . . , xn) = 0, it follows that xy ∈ Ker(D).
In the similar way, one can prove that yx ∈ Ker(D).
Therefore, xy and yx ∈ Ker(D). Hence Ker(D) is an ideal of L.

Theorem 3.7. Let L be a prime multiplicative semilattice. Let D be a permuting
n-(f, g)-derivation on L with g : L → L is onto. If there exists u ∈ L such that
uD(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ L, then u = 0 or D(x1, x2, . . . , xn) = 0 for
all x1, x2, . . . , xn ∈ L.

Proof. Assume that there exists u ∈ L such that uD(x1, x2, . . . , xn) = 0
for all x1, x2, . . . , xn ∈ L. Let x, x1, x2, . . . , xn ∈ L. Then we get

0 = uD(xx1, x2, . . . , xn)
= u[(D(x, x2, . . . , xn)f(x1)) ∨ (g(x)D(x1, x2, . . . , xn))]
= (uD(x, x2, . . . , xn)f(x1)) ∨ (ug(x)D(x1, x2, . . . , xn))
= 0 ∨ (ug(x)D(x1, x2, . . . , xn))
= ug(x)D(x1, x2, . . . , xn).

Thus ug(x)D(x1, x2, . . . , xn) = 0 for all x, x1, x2, . . . , xn ∈ L.
Since g is onto, uLD(x1, x2, . . . , xn) = {0} for all x1, x2, . . . , xn ∈ L. By the primeness of
L, we have u = 0 or D(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ L.

Definition 3.8. Let D be a permuting n-(f, g)-derivation on L. A mapping d : L → L
defined by d(x) = D(x, x, . . . , x) for all x ∈ L is called the trace of D.

Theorem 3.9. Let L be an idempotent multiplicative semilattice and D be a permuting
n-(f, g)-derivation on L with trace d. Then d(x) 6 f(x) ∨ g(x) for all x ∈ L.

Proof. The proof follows from Theorem 3.4(ix).

For simplicity, we denote from now on D(x(n−k), y(k)) by D(x, x, . . . , x︸ ︷︷ ︸
n−k copies

, y, y, . . . , y︸ ︷︷ ︸
k copies

), where

k = 1, 2, 3, . . . , n− 1, x, y ∈ L, and D is a permuting n-(f, g)-derivation of L.

Theorem 3.10. Let L be a multiplicative semilattice and D be a permuting n-(f, g)-
derivation on L with trace d. Then

d(x ∨ y) = d(x) ∨ [D(x(n−1), y) ∨D(x(n−2), y(2)) ∨ · · · ∨D(x, y(n−1))] ∨ d(y),

for all x, y ∈ L.
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Proof. Let x, y ∈ L, we have

d(x ∨ y) = D(x ∨ y, x ∨ y, . . . , x ∨ y)

= D(x, (x ∨ y)(n−1)) ∨D(y, (x ∨ y)(n−1))

= D(x, x, (x ∨ y)(n−2)) ∨D(x, y, (x ∨ y)(n−2)) ∨D(y, y, (x ∨ y)(n−2))

= D(x, x, x, (x ∨ y)(n−3)) ∨D(x, x, y, (x ∨ y)(n−3)) ∨D(x, y, y, (x ∨ y)(n−3))

∨D(y, y, y, (x ∨ y)(n−3))

...

= D(x, x, . . . , x) ∨ [D(x, y(n−1)) ∨D(x(2), y(n−2)) ∨ · · · ∨D(x(n−1), y)]

∨D(y, y, . . . , y)

= d(x) ∨ [D(x, y(n−1)) ∨D(x(2), y(n−2)) ∨ · · · ∨D(x(n−1), y)] ∨ d(y).

This completes the proof.

The proof of the following theorem is similar to the proof of Theorem 3.10.

Theorem 3.11. Let L be a commutative multiplicative semilattice and D be a permuting
n-(f, g)-derivation on L with trace d. Then
d(xy) = (d(x)f(y))∨(g(x)d(y))∨[(g(x)f(y))[D(x(n−1), y)∨D(x(n−2), y(2))∨...∨D(x, y(n−1))]
for all x, y ∈ L.
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