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Abstract In this research, we study mathematical predator-prey models for brown planthopper (BPH)

infestation of rice under the effects of habitat complexity and monsoon for two time scales. Using a fast

time scale, we obtain a complete model which is a system of first-order differential equations including

logistic growth terms, modified Holling type II functional responses and migration terms due to the

monsoon. The positivity and boundedness of the fast time-scale model are proved. Using a slow time

scale and the aggregated method, we obtain an aggregated model which is less complicated than the former

model in terms of the number of variables and parameters. We investigate the existence of equilibrium

points and their local asymptotic stability for this aggregrated model. Hopf bifurcation of the aggregrated

model is also shown to occur as the maximum carrying capacity is varied. Numerical simulations are

performed to illustrate the theoretical results. Finally, some ecological discussion of methods for reducing

the BPH dispersion of the model is given.
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1. Introduction

The brown planthopper (BPH), Nilaparvata lugens (St̊al) is a major pest in rice pro-
duction. Because of its survival behavior it continually migrates to new vulnerable areas
of rice fields. There are two main types of BPH, namely long-winged BPH and short-
winged BPH. The long-winged BPH can migrate for both short and long distances while
the short-winged BPH can only move for short distances [1]. In the past decade, the
migration of BPHs has been discussed several times in the literature [2–4]. Its migration
normally occurs under the influence of the monsoon, which blows seasonally for a period
of about six months and in a specific direction [2].

Major factors in BPH migration are landscape and complexity of the habitat. Habitat
structure includes both biotic and abiotic features such as light, humidity, topography,
rainfall, light traps, etc. [5, 6]. This habitat structure also affects the population density
of predators of BPH. Some examples indicating the significant role of habitat in predator-
prey systems can be found in [7–11].

Rice is both a resident plant and a food plant and the properties of the rice and the
rice fields have an impact on the survival of plant pathogens and transmission of rice
viruses as well as on the survival of BHP. Since rice is a host of BPH, it is important
for BPH survival and affects BPH propagation. The planting of resistant rice varieties
in rice fields can therefore reduce the population density of the insect and the damage
it can cause. In addition, the distance between the rice plants, the amount and type of
pesticides used, weeds, BPH traps, and natural enemies of the BPH can also be used to
reduce the attack of BPHs on the rice.

There are now many types of mathematical models that have been developed to study
the foraging and survival behavior of organisms in ecosystems in areas such as ecology,
biology, and entomology [12–16]. Predator-prey models have been commonly used to
study systems in which one species, the prey, is the food of another species, the preda-
tor [13, 15–17]. A recent literature review of predator-prey models can be found in [18–20].
In addition, aggregation methods [21, 22] are a compromise between big systems and sim-
ple ones exhibiting different time scales associated with the dynamics of variables. The
time scales usually consist of a fast time scale at the individual level and a slow one at
the population or community level. Methods have been developed for ecological models
in order to seek for necessary conditions from which a reduced set of differential equations
governing aggregated variables is obtained. Normally, we assume that the migration pro-
cess taking place for each individual has a shorter time scale compared to the population
time scale.

Some of the previous studies of habitat complexity and migration effects are as fol-
lows. In 2007, Mchich et al. [23] introduced the Lotka-Volterra model on two patches. In
2011, Bairagi and Jana [24] studied a delayed predator-prey model with a Holling type II
functional response. They analyzed the stability of the system and the properties of Hopf
bifurcations that can occur in the system. In 2012, Doanh et al. [25] studied a model for
two competing species in a two patch environment. They showed that some species use a
density-dependent dispersal strategy to prevent their own extinction. Also, they showed
the importance of refuges in predator-prey systems. In 2014, Jana and Bairagi [5] devel-
oped the Rosenzweig-MacArthur model in order to investigate how habitat complexity
affects a predator-prey system. Also, in 2014, Hieu et al. [26] studied a model of fish
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migration with both small and large clusters. According to their results, fish populations
scattered in small and large groups are most effective for small maritime fisheries. In
2021, Zhang et al. [20] proposed a stochastic predator-prey model containing prey ag-
gregation and habitat complexity. Their findings demonstrated the importance of prey
aggregation, habitat complexity, and environmental noise in affecting the survival and
extinction of the system. In 2022, Nguyen et al. [27] used the aggregated method on
a predator-prey model to study the impact of a monsoon on the rice-BPH relationship.
They proved the stability of the system and the existence of a Hopf bifurcation. In this
paper, we are interested in studying the effects of degree of habitat complexity included
in a functional response and of migration of BHP during the monsoon season. These two
factors have not been incorporated together in any predator-prey models appearing in
previous investigations.

The remainder of this paper is organized as follows. In section 2, we present our com-
plete mathematical model for BPH infestation of rice which includes the effects of habitat
complexity and the monsoon. A derivation of the model and a definition of all variables
and parameters are given. We then establish the conditions for the positivity and bound-
edness of the solutions of the model. At the end of this section, we propose an aggregated
model which is our main model for analysis of the BPH-rice system. In section 3, we find
the equilibrium points of the aggregated model, analyze their stability and determine
conditions for Hopf bifurcation. In section 4, we present numerical results for the model
for a range of parameter values. Finally, in section 5 we discuss the conclusions of this
research.

2. Model Derivation

We begin this section by introducing the Holling type II functional response which can
be defined as [24, 28]:

Ψ(ξ) =
aξ

1 + ahξ
, (2.1)

where the variable ξ denotes the prey population density and the parameters a, h represent
the attack rate and the handling time, respectively. However, the above function does not
include the degree or strength of habitat complexity. A modified Holling type II functional
response which incorporates an effect of habitat complexity through a parameter ν where
0 < ν < 1 can be written as [5, 20, 24]:

Ψ(ξ) =
a(1− ν)ξ

1 + ah(1− ν)ξ
. (2.2)

If ν = 0, then Eq. (2.2) obviously reduces to Eq. (2.1). The modified Holling type II
functional response (2.2) is appropriate for the predator-prey interaction with habitat
complexity [24]. Figure 1 shows the relationships between the prey density (ξ) and the
consumed prey (Ψ(ξ)) when the degree of habitat complexity ν is varied with the param-
eter values of a and h fixed at 0.85 and 0.8, respectively.

Next, we assume that we have two fields with variables and parameters of fields labeled
by i = 1, 2. For ease of reading, the definitions of all variables and parameters used in
our model are given in Table 1.
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Figure 1. Relationships between the prey density ξ and the consumed
prey Ψ(ξ) satisfying Eq. (2.2) when ν is varied and a = 0.85, h = 0.8.

Table 1. Meaning of variables and parameters used in our models [20, 27].

Variables/
Parameters

Ecological meaning (unit)

t Slow time scale (Time)

τ Fast time scale (Time)

ε Ratio between slow and fast time scales (dimensionless)

Ri Population density of rice (Population density)

Bi Population density of BPH (Population density)

B Total population density of BPH from fields 1 and 2 (Population density)

ri Intrinsic growth rate (Time−1)

K Maximum carrying capacity of rice for each field (Population density)

ai Attack rates of BPH (Population density×Time−1)

hi Handling times of BPH (Time×Population density−1)

νi Degree of habitat complexity (dimensionless)

ei Conversion coefficient (dimensionless)

di Natural death rate of BPH (Time−1)

m̄ Per capita dispersal rate in the opposite direction to the wind (Time−1)

m0 Per capita density-independent dispersal rate from field 1 (Time−1)

m1 Strength of density-dependence in dispersal from field 1 (Time−1)

Since a logistic term can describe an interaction of biotic potential with environmental
resources, we consider that the growth rate of rice can be expressed in terms of the logistic
model with the intrinsic growth rate ri for field i and maximum carrying capacity K for
each field. For simplicity, we assume that BPH is the rice’s only enemy and that its
consumption rate for each field follows the modified Holling type II functional response
with the attack rate ai, the handling time hi and the degree of habitat complexity ν.
For example, ν = 0.1 means that the complexity of the area results in a 10% reduction
in hunting efficiency. Furthermore, we assume that the BPH migration caused by the
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monsoon has only one main direction from field 1 to field 2. Under the impact of the
monsoon and the dependence on the population density in the starting field 1, the effect
of the monsoon is modeled by a linear function of the BPH density in field 1 with the
density-independent dispersal rate m0 and the density-dependent dispersal rate m1. In
addition, the dispersal rate in the opposite direction is denoted by m̄.

We begin by constructing a complete model for the BPH-rice system with a fast time
scale τ for the fast dispersal of the BPH by the monsoon. Then, we will use the aggregation
method [25, 26] to reduce the dimension of the complete model in order to obtain a less
sophisticated model with a slow time scale t called the aggregrated model. The total
density of BPH in both fields for the aggregrated model is not affected by the rapid
dispersal but depends upon the competition process between the natural growth of the
rice and the predation by the BPH. The parameter ε = t

τ represents the ratio between
the slow and fast time scales and is multiplied into terms of the slow process. Based on
the above assumptions, the complete model for the relationship between rice and BPH
can be written as:
dR1

dτ
= F1(R1, R2, B1, B2) = ε

[
r1R1

(
1 − R1

K

)
− a1(1 − ν1)R1B1

1 + a1h1 (1 − ν1)R1

]
,

dR2

dτ
= F2(R1, R2, B1, B2) = ε

[
r2R2

(
1 − R2

K

)
− a2(1 − ν2)R2B2

1 + a2h2 (1 − ν2)R2

]
,

dB1

dτ
= F3(R1, R2, B1, B2) = ε

[
e1a1(1 − ν1)R1B1

1 + a1h1 (1 − ν1)R1
− d1B1

]
+ [m̄B2 − (m0 +m1B1)B1] ,

dB2

dτ
= F4(R1, R2, B1, B2) = ε

[
e2a2(1 − ν2)R2B2

1 + a2h2 (1 − ν2)R2
− d2B2

]
+ [(m0 +m1B1)B1 − m̄B2] ,

(2.3)

along with the initial conditions Ri(0) ≥ 0, Bi(0) ≥ 0, i = 1, 2. Figure 2 shows a diagram
of the complete model (2.3).

Figure 2. Diagram of BPH and rice dynamical system with monsoon
and habitat complexity factors. In each field, rice and BPH are the two
variables in the complete model. Growth, predation and dispersion are
the three main processes appearing in the model.
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2.1. Positivity and Boundedness

In this section, we investigate the positivity and boundedness of the complete model
(2.3). Denoting R4

+ as the state space consisting of four components whose values are
greater than or equal to zero, we have the following theorem.

Theorem 2.1. All of the solutions of system (2.3) are positive and bounded if the system
starts in R4

+.

Proof. Let

Ω+ = {x = (R1, R2, B1, B2) ∈ R4
+ : Ri, Bi ≥ 0, i = 1, 2} (2.4)

be the non-negative cone which (R1(0), R2(0), B1(0), B2(0)) ∈ Ω+. Assume that R1 ≥
0, R2 ≥ 0, B1 ≥ 0 and B2 ≥ 0, we then have

F1(0, R2, B1, B2) = 0,

F2(R1, 0, B1, B2) = 0,

F3(R1, R2, 0, B2) = m̄B2 ≥ 0,

F4(R1, R2, B1, 0) = (m0 +m1B1)B1 ≥ 0.

(2.5)

Therefore, by using a theorem in [29], we obtain (R1(t), R2(t), B1(t), B2(t)) ∈ Ω+ with
t = ετ ∈ R+. Hence, the solutions are still contained in R4

+ and the positivity of the
solutions is then derived.

Considering the first and second equations of (2.3), we have

dR1

dτ
≤ ε

[
r1R1

(
1− R1

K

)]
⇒ lim sup

t→∞
R1(t) = K, (2.6)

and

dR2

dτ
≤ ε

[
r2R2

(
1− R2

K

)]
⇒ lim sup

t→∞
R2(t) = K, (2.7)

with t = ετ .
Let W (t) = R1(t) + R2(t) + B1(t) + B2(t) and σ ∈ R will be chosen later. Then, by

using (2.3), we have

dW

dt
+ σW = r1R1

(
1− R1

K

)
− (1− e1)(1− ν1)a1R1B1

1 + a1h1 (1− ν1)R1
− d1B1

+ r2R2

(
1− R2

K

)
− (1− e2)(1− ν2)a2R2B2

1 + a2h2 (1− ν2)R2
− d2B2

+ σR1 + σR2 + σB1 + σB2.

(2.8)

Since 0 < e1, e2, ν1, ν2 < 1, we have

dW

dt
+ σW ≤ r1R1

(
1− R1

K

)
+ r2R2

(
1− R2

K

)
+ σR1 + σR2 − (d1 − σ)B1 − (d2 − σ)B2.

(2.9)
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Choosing σ = min{d1, d2} and using (2.6) and (2.7), we get

dW

dt
+ σW ≤

[
r1R1

(
1− R1

K

)
+ σR1

]
+

[
r2R2

(
1− R2

K

)
+ σR2

]
≤ (r1 + σ)R1 + (r2 + σ)R2

≤ [(r1 + σ) + (r2 + σ)]K ≡M. (2.10)

From (2.10), we obtain

0 ≤W (t) ≤ M

σ
+W (0) exp (−σt) (2.11)

and consequently

0 ≤ lim
t→∞

W (t) ≤ M

σ
. (2.12)

Therefore, the boundedness of the solutions of model (2.3) is verified.

Moreover, it is obvious that the right-hand side functions Fi(R1, R2, B1, B2), i =
1, 2, 3, 4 have continuous first partial derivatives with respect to all variables which are
positive and bounded. Consequently, the uniqueness of a solution of system (2.3) is
established when any given initial conditions in R4

+ are provided.

2.2. Derivation of the Aggregated Model

In this section, we use the aggregated approach with the relation t = ετ to simplify
the complete model (2.3). Defining B = B1 + B2 as the total population of BPH, then
system (2.3) becomes

dR1

dτ
= ε

[
r1R1

(
1− R1

K

)
− a1(1− ν1)R1B1

1 + a1h1 (1− ν1)R1

]
,

dR2

dτ
= ε

[
r2R2

(
1− R2

K

)
− a2(1− ν2)R2 (B −B1)

1 + a2h2 (1− ν2)R2

]
,

dB1

dτ
= ε

[
e1a1(1− ν1)R1B1

1 + a1h1 (1− ν1)R1
− d1B1

]
+ [m̄ (B −B1)− (m0 +m1B1)B1] ,

dB

dτ
= ε

[
e2a2(1− ν2)R2 (B −B1)

1 + a2h2 (1− ν2)R2
− d2 (B −B1) +

e1a1R1B1

1 + a1h1 (1− ν1)R1
− d1B1

]
.

(2.13)

Substituting ε = 0 into (2.13) and finding a fast equilibrium point of the complete model
(2.13), we have that

m̄ (B −B1)− (m0 +m1B1)B1 = 0, (2.14)

or

B2
1 +

(m̄+m0)

m1
B1 −

m̄

m1
B = 0. (2.15)

From (2.15), we obtain B1(> 0) in the terms of B as follows:

B1 = −µ1 +
√
µ2
1 + µ2B, (2.16)

where

µ1 =
m0 + m̄

2m1
and µ2 =

m̄

m1
. (2.17)
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Using the relations B1 = B − B2,
dB1

dt = dB
dt −

dB2

dt , (2.16), the fourth equation of
(2.3) and the condition (2.14), system (2.13) can be reduced to system (2.18) from which
the variable B1 disappears. Hence, the aggregated model, which only remains on the
slow-time scale t, is obtained as follows:

dR1

dt
=f1(R1, R2, B) = r1R1

(
1 −

R1

K

)
−
a1(1 − ν1)R1

(
−µ1 +

√
µ21 + µ2B

)
1 + a1h1 (1 − ν1)R1

,

dR2

dt
=f2(R1, R2, B) = r2R2

(
1 −

R2

K

)
−
a2(1 − ν2)R2

(
B + µ1 −

√
µ21 + µ2B

)
1 + a2h2 (1 − ν2)R2

,

dB

dt
=f3(R1, R2, B) =

e2a2(1 − ν2)R2

(
B + µ1 −

√
µ21 + µ2B

)
1 + a2h2 (1 − ν2)R2

− d2

(
B + µ1 −

√
µ21 + µ2B

)

+

e1a1(1 − ν1)R1

(
−µ1 +

√
µ21 + µ2B

)
1 + a1h1 (1 − ν1)R1

− d1

(
−µ1 +

√
µ21 + µ2B

)
.

(2.18)

3. Analysis of the Aggregated Model

In this section, we investigate the existence of equilibrium points of the aggregated
model (2.18). In addition, the local stability of all of the equilibrium points is established.
Finally, the Hopf bifurcation of the model is derived.

3.1. Existence of Equilibrium Points

The aggregated model (2.18) has the following seven equilibrium points:
(i) The vanishing equilibrium E0(0, 0, 0) always occurs. This corresponds to the case

that populations of rice and BPH are absent on both fields.
(ii) The axial equilibrium point E1(K, 0, 0) always exists.
(iii) The axial equilibrium point E2(0,K, 0) always exists.
(iv) The ideal equilibrium point (i.e., the BPH-free equilibrium point) E3(K,K, 0)

always occurs. This means the BPH becomes extinct and rice grows to the maximum
capacity on both fields.

(v) The equilibrium point E4(0, R̂2, B̂) is associated with the case that the BPH have

depleted all rice on field 1, but rice on field 2 still remains. The expressions of R̂2 and B̂
can be implicitly written as

B̂ =

(
b0R̂2 + b1

)(
b2R̂2 + d1 − d2

)
(
b3R̂2 + d2

)2 , (3.1)

where R̂2 >
d2−d1
b2
≥ 0 and R̂2 must satisfy the following equation

r2R̂2

(
1 − R̂2

K

)
− a2(1 − ν2)R̂2

1 + a2h2 (1 − ν2) R̂2

{
(
b0R̂2 + b1

)(
b2R̂2 + d1 − d2

)
(
b3R̂2 + d2

)2


+µ1 −

√√√√√√µ2
1 + µ2


(
b0R̂2 + b1

)(
b2R̂2 + d1 − d2

)
(
b3R̂2 + d2

)2
} = 0,

(3.2)
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where

b0 = a2 (1− ν2) (((d1 − d2)h2 + e2)µ2 + 2µ1 (d2h2 − e2)) ,

b1 = (d1 − d2)µ2 + 2 d2µ1,

b2 = a2 (1− ν2) ((d1 − d2)h2 + e2) ,

b3 = a2 (1− ν2) (d2h2 − e2) .

(3.3)

(vi) The equilibrium point E5(R̃1, 0, B̃) corresponds to the extinction of rice on field 2
due to the BPH migration but some rice population on field 1 still exists. The expressions
of R̃1 and B̃ can be implicitly obtained from

B̃ =

(
c0 R̃1 + c1

)(
c2 R̃1 + d1 − d2

)
d22

(
c3 R̃1 + 1

)2 , (3.4)

where R̃1 >
d2−d1
c2
≥ 0 and R̃1 must satisfy the following equation:

r1R̃1

(
1− R̃1

K

)
− a1(1− ν1)R̃1

1 + a1h1 (1− ν1) R̃1

×

−µ1 +

√√√√√√µ2
1 + µ2


(
c0 R̃1 + c1

)(
c2 R̃1 − d1 + d2

)
d2

2
(
c3 R̃1 + 1

)2

 = 0,

(3.5)

where

c0 = a1 (1− ν1) (((d1 − d2)h1 − e1)µ2 + 2 d2h1µ1) ,

c1 = (d1 − d2)µ2 + 2 d2µ1,

c2 = a1 (1− ν1) ((d1 − d2)h1 − e1) ,

c3 = a1 (1− ν1)h1.

(3.6)

(vii) The co-existence equilibrium point E∗(R∗1, R
∗
2, B

∗) corresponds to the case that
rice and BPH remain on both fields where the positive values of R∗1 and R∗2 are implicitly
defined in terms of B∗ as

R∗1 = p1 +

√
p2 − p3

√
µ2
1 + µ2B∗, R∗2 = q1 +

√
q2 + q3

√
µ2
1 + µ2B∗ − q3B∗, (3.7)

where

p1 =
a1 (1 − ν1)h1K − 1

2a1 (1 − ν1)h1
, p2 =

K2

4
+
k1µ1

h1r1
+

K

2a1 (1 − ν1)h1
+

1

4 (a1 (1 − ν1)h1)2
, p3 =

K

h1r1
,

q1 =
a2 (1 − ν2)h2K − 1

2a2 (1 − ν2)h2
, q2 =

K2

4
+
k2µ1

h2r2
+

K

2a2 (1 − ν2)h2
+

1

4 (a2 (1 − ν2)h2)2
, q3 =

K

h2r2
,

(3.8)
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and the positive value of B∗ must satisfy the following equation

e2a2(1− ν2)

(
q1 +

√
q2 + q3

√
µ2
1 + µ2B∗ − q3B∗

)(
B∗ + µ1 −

√
µ2
1 + µ2B∗

)
1 + a2h2 (1− ν2)

(
q1 +

√
q2 + q3

√
µ2
1 + µ2B∗ − q3B∗

)

+

e1a1(1− ν1)

(
p1 +

√
p2 − p3

√
µ2
1 + µ2B∗

)(
−µ1 +

√
µ2
1 + µ2B∗

)
1 + a1h1 (1− ν1)

(
p1 +

√
p2 − p3

√
µ2
1 + µ2B∗

)
− d1

(
−µ1 +

√
µ2
1 + µ2B∗

)
− d2

(
B∗ + µ1 −

√
µ2
1 + µ2B∗

)
= 0.

(3.9)

3.2. Local Stability of Equilibrium Points

In this section, we derive the local stability of all equilibrium points as mentioned above
using the Routh-Hurwitz criterion [30].

Theorem 3.1. The axial equilibrium points E0(0, 0, 0), E1(K, 0, 0), and E2(0,K, 0) of
system (2.18) are always unstable.

Proof. First, the stability of the equilibrium point E0 of model (2.18) can be obtained by
computing the Jacobian matrix at point E0 as follows:

J(E0) =


r1 0 0

0 r2 0

0 0 − 2 d2µ1+µ2(d1−d2)
2µ1

 . (3.10)

Now we consider the characteristic equation: det ‖J(E0)−λI‖ = 0, where λ and I are an
eigenvalue and the identity matrix 3× 3, respectively. Then, we have

(λ− r1) (λ− r2)

(
λ+

2 d2µ1 + µ2 (d1 − d2)

2µ1

)
= 0. (3.11)

From (3.11), it is obvious that at least one of the eigenvalues of the system is positive,
i.e., λ = r1 > 0 and λ = r2 > 0. Thus, E0 is always unstable.

Secondly, we obtain the Jacobian matrix of model (2.18) at the equilibrium point E1

as follows:

J(E1) =


−r1 0 a1(ν1−1)Kµ2

2µ1(a1h1Kν1−a1h1K−1)

0 r2 0

0 0 jE1
3,3

 , (3.12)

where

jE1
3,3 =

(1− ν1) (((d1 − d2)h1 − e1)µ2 + 2 d2h1µ1)Ka1 + µ2 (d1 − d2)

2µ1 (h1K (ν1 − 1) a1 − 1)

+
d2

(h1K (ν1 − 1) a1 − 1)
.

(3.13)
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Next, the characteristic equation using J(E1) is

det ‖J(E1)− λI‖ = (λ+ r1) (λ− r2)
(
λ− jE1

3,3

)
= 0. (3.14)

So, the equilibrium point E1 is always unstable because λ = r2 > 0.
Lastly, the Jacobian matrix at the equilibrium point E2 can be expressed as

J(E2) =


r1 0 0

0 −r2 K(ν2−1)a2(2µ1−µ2)
2(a2h2Kν2−a2h2K−1)µ1

0 0 jE2
3,3

 , (3.15)

where

jE2
3,3 =

a2 (1− ν2)K (((d1 − d2)h2 + e2)µ2 + 2µ1 (d2h2 − e2))

2 (a2Kh2 (ν2 − 1)− 1)µ1

+
µ2 (d1 − d2) + 2 d2µ1

2 (a2Kh2 (ν2 − 1)− 1)µ1
.

(3.16)

The characteristic equation using J(E2) can be obtained by

det ‖J(E2)− λI‖ = (λ− r1) (λ+ r2)
(
λ− jE2

3,3

)
= 0. (3.17)

Since λ = r1 > 0, we then obtain that the equilibrium point E2 is always unstable.

Theorem 3.2. If jE3
3,3 < 0, where jE3

3,3 is the element in the third row and third col-

umn of the Jacobian matrix of system (2.18) evaluated at the BPH-free equilibrium point
E3(K,K, 0), then the equilibrium point E3 is locally asymptotically stable.

Proof. The Jacobian matrix of system (2.18) at E3 is expressed as

J(E3) =


−r1 0 − a1(ν1−1)Kµ2

2µ1(a1Kh1(ν1−1))−1

0 −r2 (µ1−µ2/2)(ν2−1)Ka2
(1+a2Kh2(1−ν2))µ1

0 0 jE3
3,3

 . (3.18)

Consequently, the characteristic equation of J(E3) is provided by

(λ+ r1) (λ+ r2)
(
λ− jE3

3,3

)
= 0, (3.19)

where

jE3
3,3 =

1

s1
[a2K(1− ν2) (a1K(ν1 − 1)s3 + s4) + s2] , (3.20)

where

s1 = 2µ1 (a1Kh1 (ν1 − 1)− 1) (a2Kh2 (ν2 − 1)− 1) 6= 0,

s2 = (K (ν1 − 1) (d1h1 − d2h1 − e1) a1 − d1 + d2)µ2 + 2 d2µ1 (a1Kh1 (ν1 − 1)− 1) ,

s3 = (((d1 − d2)h2 + e2)µ2 + 2µ1 (d2h2 − e2))h1 − µ2e1h2,

s4 = ((−d1 + d2)h2 − e2)µ2 − 2µ1 (d2h2 − e2) .

(3.21)

From (3.19), we find that λ = −r1 < 0, λ = −r2 < 0 and λ = j3,3(E3). If it is required
that j3,3(E3) < 0, then system (2.18) is locally stable around E3.
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Theorem 3.3. The equilibrium point E4(0, R̂2, B̂) is locally asymptotically stable if

N1 < 0, N2 > 0 and N3 > 0, (3.22)

where N1, N2 and N3 are the coefficients of λ in the characteristic equation of the varia-
tional matrix of system (2.18) evaluated at E4 which can be arranged in the form

(λ−N1)
(
λ2 +N2λ+N3

)
= 0. (3.23)

Proof. The Jacobian matrix of model (2.18) at E4 can be expressed as

J(E4) =


jE4
1,1 0 0

0 jE4
2,2 jE4

2,3

a1e1

(
µ1 −

√
B̂ µ2 + µ1

2

)
(ν1 − 1) jE4

3,2 jE4
3,3

 , (3.24)

where

jE4
1,1 = r1 + a1 (1− ν1)

(
µ1 −

√
B̂µ2 + µ2

1

)
,

jE4
2,2 =

[
a2k2 (1− ν2)

√
B̂µ2 + µ2

1 − (ν2 − 1)
2
R̂2

2

(
2R̂2 − k2

)
r2h

2
2a

2
2

+ a2(ν2 − 1)
((
−2 R̂2 h2r2 + B̂ + µ1

)
k2 + 4 R̂2

2h2r2

)
−
(

2 R̂2 − k2
)
r2

]
×
(
k2

(
−1 + R̂2 h2 (ν2 − 1) a2

)2)−1
,

jE4
2,3 =

a2 (1− ν2) R̂2

(
2
√
B̂ µ2 + µ2

1 − µ2

)
2
(
R̂2 a2h2ν2 − R̂2 a2h2 − 1

)√
B̂ µ2 + µ2

1

,

jE4
3,2 = −

e2a2 (ν2 − 1)

(
B̂ + µ1 −

√
B̂ µ2 + µ2

1

)
(
−1 + R̂2 h2 (ν2 − 1) a2

)2 ,

jE4
3,3 = −

[ (
2R̂2 (ν2 − 1) (d2h2 − e2) a2 − 2 d2

)√
B̂ µ2 + µ2

1

+ µ2

(
R̂2 (v2 − 1) ((d1 − d2)h2 + e2) a2 − d1 + d2

) ]
×
(√

B̂ µ2 + µ2
1

(
−2 + 2 R̂2 h2 (v2 − 1) a2

))−1
.

Then, the characteristic equation of J(E4) is in the following form

(λ−N1)
(
λ2 +N2λ+N3

)
= 0,

where

N1 = jE4
1,1, N2 = −jE4

2,2 − j
E4
3,3 and N3 = jE4

2,2j
E4
3,3 − j

E4
2,3j

E4
3,2. (3.25)

If N1, N2, N3 in (3.25) are such that N1 < 0, N2 > 0 and N3 > 0, then the locally
asymptotic stability of the equilibrium point E4 is established by the Routh-Hurwitz
criterion.
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Theorem 3.4. The equilibrium point E5(R̃1, 0, B̃) is locally asymptotically stable if

S1 < 0, S2 > 0 and S3 > 0, (3.26)

where S1, S2 and S3 are the coefficients of λ in the characteristic equation of the varia-
tional matrix of system (2.18) evaluated at E5 which can be written in the form

(λ− S1)
(
λ2 + S2λ+ S3

)
= 0. (3.27)

Proof. The Jacobian matrix of model (2.18) evaluated at E5 is as follows

J(E5) =


jE5
1,1 0 jE5

1,3

0 jE5
2,2 0

jE5
3,1 e2a2 (1− v2)

(
B̃ + µ1 −

√
B̃ µ2 + µ2

1

)
jE5
3,3

 , (3.28)

where

jE5
1,1 =

{
a1K (ν1 − 1)

√
B̃ µ2 + µ2

1 − h21r1R̃2
1

(
2R̃1 −K

)
(ν1 − 1)

2
a21

+
(

4R̃2
1h1r1 − 2R̃1h1Kr1 − k1µ1

)
(ν1 − 1) a1 − r1

(
2R̃1 −K

)}
×
((

a1R̃1h1 (ν1 − 1)− 1
)2
K

)−1
,

jE5
2,2 = (1− ν2) a2

√
B̃µ2 + µ2

1 + (ν2 − 1)
(
B̃ + µ1

)
a2 + r2,

jE5
1,3 =

a1 (ν1 − 1) R̃1 µ2

2

√
B̃ µ2 + µ1

2
(

1− a1R̃1 h1 (ν1 − 1)
) ,

jE5
3,1 =

e1a1

(
µ1 −

√
B̃ µ2 + µ1

2

)
(ν1 − 1)(

a1R̃1h1 (ν1 − 1)− 1
)2 ,

jE5
3,3 =

µ2

(
(ν1 − 1) ((d1 − d2)h1 − e1) R̃1 a1 − d1 + d2

)
2

√
B̃ µ2 + µ1

2
(

1− a1R̃1 h1 (ν1 − 1)
) − d2.

The characteristic equation of the above matrix can be written in the following form

(λ− S1)
(
λ2 + S2λ+ S3

)
= 0,

where

S1 = jE5
2,2, S2 = −jE5

1,1 − j
E5
3,3, S3 = jE5

1,1j
E5
3,3 − j

E5
1,3J

E5
3,1 . (3.29)

If S1, S2, S3 in (3.29) are such that S1 < 0, S2 > 0 and S3 > 0, then, by the Routh-
Hurwitz criterion, the equilibrium point E5 is locally asymptotically stable. Otherwise,
the system is unstable at E5.
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Theorem 3.5. The equilibrium point E∗(R∗1, R
∗
2, B

∗) is locally asymptotically stable if
the following conditions hold:

P1 > 0, P2 > 0, P3 > 0, and P1P2 > P3, (3.30)

where P1, P2, P3 are the coefficients of λ in the characteristic equation of the variational
matrix of system (2.18) evaluated at E∗ which can be written in the form

λ3 + P1λ
2 + P2λ+ P3 = 0. (3.31)

Proof. The Jacobian matrix of system (2.18) at E∗ is

J(E∗) =


jE

∗

1,1 0 jE
∗

1,3

0 jE
∗

2,2 jE
∗

2,3

jE
∗

3,1 jE
∗

3,2 jE
∗

3,3

 , (3.32)

where

jE
∗

1,1 = r1

(
1− R∗1

K

)
− r1R

∗
1

K
−
a1(1− ν1)

(
−µ1 +

√
µ2
1 + µ2B∗

)
1 + a1h1 (1− ν1)R∗1

+
a21(1− ν1)2R∗1h1

(
−µ1 +

√
µ2
1 + µ2B∗

)
(1 + a1h1 (1− ν1)R∗1)

2 ,

jE
∗

1,3 = − a1 (1− ν1)R∗1µ2

2 (1 + a1h1 (1− ν1)R∗1)
√
µ2
1 + µ2B∗

,

jE
∗

2,2 = r2

(
1− R∗2

K

)
− r2R

∗
2

K
−
a2(1− ν2)

(
B∗ + µ1 −

√
µ2
1 + µ2B∗

)
1 + a2h2 (1− ν2)R∗2

+
a22(1− ν2)2R∗2h2

(
B∗ + µ1 −

√
µ2
1 + µ2B∗

)
(1 + a2h2 (1− ν2)R∗2)

2 ,

jE
∗

2,3 = − a2(1− ν2)R∗2
1 + a2(1− ν2)h2R∗2

(
1− µ2

2
√
µ2
1 + µ2B∗

)
,

jE
∗

3,1 =
e1a1 (1 − ν1)

(
−µ1 +

√
µ2
1 + µ2B∗

)
1 + a1 (1 − ν1)h1R∗

1

+
e1 (a1 (1 − ν1))2

(
−µ1 +

√
µ2
1 + µ2B∗

)
R∗

1h1

(1 + a1 (1 − ν1)h1R∗
1)2

,

jE
∗

3,2 =
e2a2 (1 − ν2)B∗

a2 (1 − ν2)h2R∗
2 + 1

− e2a
2
2 (1 − ν2)2R∗

2B
∗ h2

(a2 (1 − ν2)R∗
2 + 1)2

−
e2a2 (1 − ν2)

(
−µ1 +

√
B∗ µ2 + µ1

2
)

a2 (1 − ν2)h2R∗
2 + 1

+
e2a

2
2 (1 − ν2)2R∗

2

(
−µ1 +

√
B∗ µ2 + µ1

2
)
h2

(a2 (1 − ν2)h2R∗
2 + 1)2

,

jE
∗

3,3 =
e1a1 (1 − ν1)R∗

1µ2

2 (a1 (1 − ν1)h1R∗
1 + 1)

√
B∗ µ2 + µ2

1

− d1µ2

2
√
B∗ µ2 + µ2

1

+
e2a2 (1 − ν2)R∗

2

a2 (1 − ν2)h2R∗
2 + 1

− e2a2 (1 − ν2)R∗
2µ2

2 (a2 (1 − ν2)h2R∗
2 + 1)

√
B∗ µ2 + µ2

1

+
d2µ2

2
√
B∗ µ2 + µ2

1

− d2.
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Then, the characteristic equation of the matrix J(E∗) can be obtained in the following
form

λ3 + P1λ
2 + P2λ+ P3 = 0,

where

P1 = −jE
∗

3,3 − jE
∗

2,2 − jE
∗

1,1 ,

P2 = −jE
∗

1,3j
E∗

3,1 − jE
∗

2,3j
E∗

3,2 + jE
∗

1,1j
E∗

3,3 + jE
∗

1,1j
E∗

2,2 + jE
∗

2,2j
E∗

3,3 ,

P3 = −jE
∗

1,1j
E∗

2,2j
E∗

3,3 + jE
∗

1,1j
E∗

2,3j
E∗

3,2 + jE
∗

1,3j
E∗

2,2j
E∗

3,1 .

(3.33)

Using the Routh-Hurwitz criterion for the necessary and sufficient conditions for the
locally asymptotic stability of system (2.18) at E∗, if

Pi > 0, (i = 1, 2, 3), and P1P2 > P3. (3.34)

hold, then the equilibrium point E∗ is locally asymptotically stable. Hence, Theorem 3.5
is proved.

3.3. Hopf Bifurcation

In this section, we study the Hopf bifurcation [31] of the aggregated model (2.18) at

the equilibrium point E4(0, R̂2, B̂) when the the maximum carrying capacity K is taken
as a bifurcation parameter. Expanding the characteristic equation (3.23), we obtain its
alternative form as

λ3 + U1λ
2 + U2λ+ U3 = 0, (3.35)

where U1 = U1(K) = N2 −N1, U2 = U2(K) = N3 −N1N2 and U3 = U3(K) = −N1N3.
Now, we define

f(K) = U3(K)− U1(K)U2(K). (3.36)

Theorem 3.6. If there exists K = K∗ satisfying the following conditions:

U2(K∗) > 0, U3(K∗) > 0, f(K∗) = 0 and f ′(K∗) 6= 0, (3.37)

then system (2.18) gives a Hopf bifurcation at K = K∗ or there is a limit cycle around
the equilibrium point E4.

Proof. It is possible to find a positive value K = K∗ such that U2(K∗) > 0, U3(K∗) > 0
and f(K∗) = 0. Next, it must verify that the Hopf bifurcation condition f ′(K∗) 6= 0
holds. By substituting λ = γ + iβ into (3.35), we obtain

γ3 − 3γβ2 +
(
3γ2β − β3

)
i+ U3

(
γ2 + 2γβi− β2

)
+ U2 (γ + iβ) + U3 = 0. (3.38)

Separating real and imaginary parts of (3.38), we get the real part as

γ3 − 3γβ2 + U1

(
γ2 − β2

)
+ U2γ + U3 = 0, (3.39)

and the imaginary part as

3γ2 − β2 + 2U1γ + U2 = 0. (3.40)

From (3.40), we get β2 = 3γ2 + 2U1γ + U2. Replacing the value of β2 into (3.39), we
then get

8γ3 + 8U1γ
2 + 2(U2

1 + U2)γ + U1U2 − U3 = 0. (3.41)
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Differentiating Eq. (3.41) with respect to K, substituting K = K∗ and γ(K∗) = 0 into
the resulting equation, we have[

dRe(λ)

dK

] ∣∣∣∣∣
K=K∗

=

(
dγ

dK

) ∣∣∣∣∣
K=K∗

=
U ′3 (K∗)− (U1 (K∗)U ′2 (K∗) + U ′1 (K∗)U2 (K∗))

2 (U2
1 (K∗) + U2 (K∗))

6= 0.

(3.42)

The above result can be obtained using the assumption f ′(K∗) 6= 0. Hence, the transver-
sality condition of the Hopf bifurcation at point K = K∗ is derived and consequently the
theorem is proved.

4. Numerical Simulations and Discussions

In this section, we use numerical simulations of model (2.18) to illustrate its stability,
and the effects of the carrying capacity, monsoon factors and habitat complexity factors.
We also give a discussion of the numerical results.

4.1. Stability of the Model

In this section, we study the local asymptotic stability of the equilibrium points of
model (2.18) for a range of parameter values. Some parameter values are taken from
research findings for actual BPH infestations reported in [27, 32] such as monsoon rate,
attack rate, conversion rate, intrinsic growth rate and death rate of BPH. We begin by
showing some numerical results for the equilibrium point E3(K, K, 0) of model (2.18) by
using the parameter set in Eq. (4.1) and the initial conditions R1(0) = 5, R2(0) = 23 and
B(0) = 2. Figure 3 shows that system (2.18) has a local asymptotically stable equilibrium
point E3(10, 10, 0) in which both the rice in field 1 and field 2 converge to the maximum
capacity of rice K = 10 and the total population of BPH eventually disappears.

r1 = 0.1, d1 = 0.18, e1 = 0.067, a1 = 0.15, h1 = 0.2, ν1 = 0.15,

r2 = 0.08, d2 = 0.15, e2 = 0.068, a2 = 0.1, h2 = 0.1, ν2 = 0.2,

K = 10, m0 = 0.3, m1 = 0.1, m̄ = 0.2.

(4.1)

With the parameter set in Eq. (4.1), we have jE3
3,3 = −0.1045 < 0 and consequently the

numerical results agree with Theorem 3.2 for the equilibrium point E3.

Next, we investigate the local asymptotic stability of the equilibrium point E4(0, R̂2, B̂)
of system (2.18). We use the parameter set in Eq. (4.2), initial conditions R1(0) =
10, R2(0) = 20 and B(0) = 10, carrying capacity K = 150 and with the growth rate of
BPH for field 1 (r1) much less than field 2 (r2). The results in Figure 4 show that the
equilibrium point E4(0, 55.78, 12.10) in which the rice in field 1 eventually decreases to
zero is locally asymptotically stable.

r1 = 0.01, d1 = 0.18, e1 = 0.067, a1 = 0.15, h1 = 0.2, ν1 = 0.15,

r2 = 0.8, d2 = 0.15, e2 = 0.068, a2 = 0.1, h2 = 0.1, ν2 = 0.2,

K = 150, m0 = 0.3, m1 = 0.1, m̄ = 0.2.

(4.2)

Since the assumptions of Theorem 3.3 are satisfied, i.e., N1 = −0.3748 < 0, N2 = 0.1260 >
0 and N3 = 0.05736 > 0, then the numerical results agree with the theorem for the
equilibrium point E4 as shown in Figure 4.
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(a) (b)

Figure 3. Numerical simulations of population densities of model (2.18)
using the parameter set (4.1) in case of the locally asymptotically stable
equilibrium point E3: (a) Time series solutions of R1, R2, and B, (b)
Phase portrait of R1, R2, and B.

(a) (b)

Figure 4. Numerical simulations of population densities of model (2.18)
using the parameter set (4.2) in case of the locally asymptotically stable
equilibrium point E4: (a) Time series solutions of R1, R2, and B, (b)
Phase portrait of R1, R2, and B.

Using the parameter set in Eq. (4.1), except changing the parameter K from K = 10
to K = 300 and the handling time of BPH in field 1 (h1) from 0.2 to 0.02, we use the
parameter set in Eq. (4.3) to study the local asymptotic stability of the equilibrium point

E5(R̃1, 0, B̃) of system (2.18). Applying the initial conditions R1(0) = 80, R2(0) = 1,
and B(0) = 10 and the parameter values in (4.3) for system (2.18), we find that the
equilibrium point E5(62.26, 0, 2.05) is locally asymptotic stable as displayed in Figure 5.
It can be observed that when the predator’s capture time h2 is longer than h1 and the
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monsoon takes more BPHs to field 2, i.e., m0 +m1 > m̄, the extinction behavior of rice
in field 2 due to the BPH’s attack eventually appears. However, the density of rice in
field 1 oscillates in the early period and finally grows constantly.

r1 = 0.1, d1 = 0.18, e1 = 0.067, a1 = 0.2, h1 = 0.02, ν1 = 0.15,

r2 = 0.08, d2 = 0.15, e2 = 0.068, a2 = 0.1, h2 = 0.1, ν2 = 0.2,

K = 300, m0 = 0.3, m1 = 0.1, m̄ = 0.2.

(4.3)

The above numerical results agree with the asymptotic convergence to E5 of system 2.18
stated in Theorem 3.4 because S1 = −0.0271 < 0, S2 = 0.0266 > 0 and S3 = 0.00045 > 0.

(a) (b)

Figure 5. Numerical simulations of population densities of model (2.18)
using the parameter set (4.3) in case of the locally asymptotically stable
equilibrium point E5: (a) Time series solutions of R1, R2, and B, (b)
Phase portrait of R1, R2, and B.

In Figure 6, the parameter set (4.1) is used for model (2.18) except changing from
K = 10 to K = 100. In consequence, the solution behavior of the system changes from
converging to E3 to converging to E∗(R∗1, R

∗
2, B

∗). For the parameter set (4.4) and the
initial conditions R1(0) = 40, R2(0) = 20 and B(0) = 10, system (2.18) has the co-
existence equilibrium point E∗(78.69, 28.18, 1.38) which is locally asymptotically stable
as shown in Figure 6. In addition, the solutions R1(t), R2(t) and B(t) oscillate in the
beginning but eventually stay constant and converge to E∗(78.69, 28.18, 1.38).

r1 = 0.1, d1 = 0.18, e1 = 0.067, a1 = 0.15, h1 = 0.2, ν1 = 0.15,

r2 = 0.08, d2 = 0.15, e2 = 0.068, a2 = 0.1, h2 = 0.1, ν2 = 0.2,

K = 100, m0 = 0.3, m1 = 0.1, m̄ = 0.2.

(4.4)

By numerical computations obtained by using the parameter set (4.4), we have P1 =
0.0785 > 0, P2 = 0.0053 > 0, P3 = 0.00026 > 0 and P1P2 − P3 = 0.00016 > 0 corre-
sponding to the Routh-Hurwitz criterion (3.30). Hence, the numerical results agree with
Theorem 3.5.
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(a) (b)

Figure 6. Numerical simulations of population densities of model (2.18)
using the parameter set (4.4) in case of the locally asymptotically stable
equilibrium point E∗: (a) Time series solutions of R1, R2, and B, (b)
Phase portrait of R1, R2, and B.

4.2. Impact of the Carrying Capacity

In this section, the stability of model (2.18) is investigated through the Hopf bifurca-
tion parameter K, which is the maximum carrying capacity of rice for each field (i.e.,
the field area). Taking the parameter set in Eq. (4.2) and using the initial conditions
R1(0) = 10, R2(0) = 20 and B(0) = 10 with the bifurcation parameter K, Theo-
rem 3.6 will be numerically checked about the equilibrium point E4. The critical value
K∗ = 219.31 for Hopf bifurcation is calculated utilizing the conditions in (3.37). Figure 7
shows that when K = 201 < K∗, the model is asymptotically stable around the equilib-
rium point E4(0, 54.59, 13.98). In addition, when K = K∗ = 219.31, the system (2.18)
undergoes a Hopf bifurcation at the equilibrium point E4(0, 54.47, 14.17) as shown in
Figure 8. Ultimately, when K = 250 > K∗, the system (2.18) has a limit cycle around
the equilibrium point E4(0, 54.18, 14.69) as shown in Figure 9. Precisely speaking, the
model (2.18) has the Hopf bifurcation at E4 for K ≥ K∗. This can be numerically ob-
tained by simulating the model with the above parameter set and the initial conditions,
30,000 time steps and K ∈ [150, 400] and collecting the maximum and minimum popu-
lation density variables. Figure 10 demonstrates the Hopf bifurcation diagrams of rice in
field 2 (R2) and the total BPH (B) with respect to K. It can be seen from the diagrams
in Figure 10 that when K < K∗ = 219.31, then the model’s behavior (i.e., R2 and B) is
asymptotically stable around E4 and when K > K∗ = 219.31, then the behavior of R2

and B alters from stable focus to unstable state with oscillations between maximum and
minimum values. Consequently, if the field area K is increased, then the instability of
the BPHrice system also increases.

Moreover, Figure 11 shows the intervals ofK such that the equilibrium points E3, E4, E5

and E∗ are asymptotically stable for the parameter sets (4.1), (4.2), (4.3), (4.4), respec-
tively as mentioned in section 4.1. The intervals of K for stability of the equilibrium
points E3, E4, E5 and E∗ are shown in Figures 11(a), (b), (c) and (d), respectively.
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(a) (b)

Figure 7. Solution behavior of system (2.18) when the parameter
set (4.2), the initial values R1(0) = 20, R2(0) = 20, B(0) = 10 and
K = 201 < K∗ = 219.31 are used. The solution asymptotically converges
to the equilibrium point E4(0, 54.59, 13.98): (a) Time series solutions of
R1, R2, and B, (b) Phase plot of R1, R2, and B.

(a) 2D (b) 3D

Figure 8. Solution behavior of system (2.18) when the parameter
set (4.2), the initial values R1(0) = 20, R2(0) = 20, B(0) = 10 and
K = K∗ = 219.31 are used. The solution oscillates around the equi-
librium point E4(0, 54.47, 14.17): (a) Time series solutions of R1, R2,
and B, (b) Phase plot of R1, R2, and B.
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(a) 2D (b) 3D

Figure 9. Solution behavior of system (2.18) when the parameter
set (4.2), the initial values R1(0) = 20, R2(0) = 20, B(0) = 10 and
K = 250 > K∗ = 219.31 are used. The solution oscillates around the
equilibrium point E4(0, 54.18, 14.69: (a) Time series solutions of R1, R2,
and B, (b) Phase plot of R1, R2, and B.

(a) (b)

Figure 10. Hopf bifurcation diagrams for population density of rice in
field 2 and total BPH with respect to the bifurcation parameter K.
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(a) (b)

(c) (d)

Figure 11. Intervals of K for which the equilibrium points are asymp-
totically stable: (a) E3, (b) E4, (c) E5, (d) E∗.

4.3. Impact of the Monsoon Factors

In this section, the effects of the monsoon factors m0, m1 and m̄ on model (2.18)
are numerically examined. Using the parameter set (4.2) and varying the values of the
monsoon factors, the intervals of m0, m1 and m̄ in which the equilibrium point E4 is
stable are shown in Figure 12(a), (b) and (c), respectively. In Figure 12, the population
density of the stable variable R1 of E4 decreases when the value of m0, m1 increases while
if m̄ becomes higher, then the density of R1 quickly grows.

Similarly, we use the parameter set (4.3) and vary the values of the monsoon factors
for model (2.18), then the intervals of m0, m1 and m̄ in which the equilibrium point E5

is stable are displayed in Figure 13(a), (b) and (c), respectively. From the current figure,
when the value of m0, m1 increases, then the population density of the stable variable R1

of E5 grows linearly, on the other hand, when m̄ increases, then the population density
of R1 is reduced.

In the same manner, the dependence of the stability of the equilibrium point E∗ on the
values of m0, m1 and m̄ can be observed from Figure 14(a), (b) and (c), respectively. We
can see from Figure 14 that the population density of the stable variable R1 of E∗ grows
when the parameters m0, m1 increase while if m̄ increases, then the population density
of R1 is drastically reduced.
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(a) (b)

(c)

Figure 12. Effects of the monsoon factors on the stability of the equi-
librium point E4 of model (2.18): (a) m0, (b) m1, (c) m̄.

(a) (b)

(c)

Figure 13. Effects of the monsoon factors on the stability of the equi-
librium point E5 of model (2.18): (a) m0, (b) m1, (c) m̄.
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(a) m0 (b) m1

(c) m̄

Figure 14. Effects of the monsoon factors on the stability of the equi-
librium point E∗ of model (2.18): (a) m0, (b) m1, (c) m̄.

4.4. Impact of the Habitat Complexity Factors

In this section, we study the impact of habitat complexity factors in field 1 (ν1) and
field 2 (ν2) on model (2.18). Using the parameter set (4.2) for system (2.18), we obtain the
intervals of ν1 and ν2, in which the equilibrium point E4 is stable shown in Figure 15(a)
and (b), respectively. It can be noticed from Figure 15(b) that ν2 strongly affects the
growth of the stable variable R2.

In the same manner, we use the parameter set (4.3) and vary the values of the habitat
complexity factors for system (2.18). We find the intervals of ν1 and ν2 in which the
equilibrium point E5 is stable shown in Figure 15(c) and (d), respectively. It can be
observed from Figure 15(c) that small values of ν1 strongly affects the growth of the
stable variable R1.

Finally, we use the values of the parameters in Eq. (4.4) and a range of degrees of the
habitat complexity in field 1 (ν1) and field 2 (ν2) to study the effect on system (2.18).
Figures 15(e) and (f) show the intervals of ν1 and ν2, respectively, in which the co-existence
equilibrium point E∗ is stable. From these figures, the parameters ν1 and ν2 clearly have
a distinct effect on the growth of the stable variables R1 and R2 of E∗.
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Stability diagrams of population densities of model (2.18)
when the habitat complexity factors ν1 and ν2 are varied: (a)-(b) for E4,
(c)-(d) for E5, (e)-(f) for E∗.

5. Conclusions

In this paper, we studied predator-prey models of BPH infestation of rice fields which
included the effects of the monsoon and habitat complexity. We discussed two mathemat-
ical models, namely a complete model as a system of first-order differential equations with
a fast time scale and an aggregated model as a system of first-order differential equations
with a slow time scale. In each model, we considered two rice fields with a monsoon wind
blowing from field 1 to field 2. We assumed that the growth of rice in each field could



60 Thai J. Math. Vol. 22 (2024) /N. Khansai et al.

be modeled by logistic growth with different intrinsic growth rates r1 and r2 for the two
fields but with the same carrying capacity K. For the BPH populations, we assumed
that the growth rates could be modeled by a modified Holling type II function which also
included the effects of habitat complexity through a parameter ν, 0 < ν < 1. We included
the effects of the monsoon through factors representing an extrinsic BHP dispersal by
monsoon from field 1 to field 2 and intrinsic BHP dispersals through population density
between the two fields. In both models, we assumed that rice has no naturally occurring
mortality but that the BPH has naturally occurring mortality. Also, in order to simplify
the models, we only considered the adult BPH population and did not include egg and
larval states.

For the fast time model, we included population densities for the rice and the BPH
in the two fields and proved that the solutions were nonnegative and bounded. We then
assumed that the effect of the monsoon in the fast time model was to obtain equilibrium
BPH population densities in the two fields. It was then possible to aggregate the BPH
populations in the two fields to obtain the slow time aggregated model.

In section 3, we analyzed the behavior of the slow time system. We found that the
system had seven equilibrium points Ej(R1,j , R2,j , Bj), where R1,j and R2,j are the equi-
librium population densities for rice fields 1 and 2, respectively, for the jth equilibrium
point, and Bj is the total BPH density on the two fields. The seven points are as follows.

(1) The trivial point is E0(0, 0, 0).
(2) The point E1(K, 0, 0) shows maximum rice in field 1, zero rice in field 2 and

zero BPH.
(3) The point E2(0,K, 0) shows zero rice in field 1, maximum rice in field 2 and

zero BPH.
(4) The point E3(K,K, 0) presents maximum rice in fields 1 and 2 and zero BPH.

(5) The point E4(0, R̂2, B̂) gives zero rice in field 1, equilibrium rice in field 2 and
nonzero BPH.

(6) The point E5(R̃1, 0, B̃) presents equilibrium rice in field 1, zero rice in field 2
and nonzero BPH.

(7) The point E∗(R∗1, R
∗
2, B

∗) gives nonzero rice in both fields and nonzero BPH.

We then analyzed the local asymptotic stability of each equilibrium point using the
eigenvalues of the Jacobians and the Routh-Hurwitz conditions. We first proved that
equilibrium points E0, E1 and E2 are unstable. For the other four points, we found that
the stability depended on parameter values and on the effects of the monsoon and the
habitat complexity. In particular, we found that under certain conditions, point E4 can
undergo a Hopf bifurcation as the maximum capacity K of the fields is increased.

Finally, we carried out numerical simulations using the ODE45 differential solver in the
MATLAB package for a range of parameter values, some of which such as monsoon rate,
attack rate, conversion rate, intrinsic growth rate and death rate of BPH were obtained
from real data measured by [27, 32]. By varying the parameters, we were able to study and
plot detailed figures for the effects of carrying capacity, monsoon and habitat complexity
factors. One simple interesting result was the stability around point E3 when K is not
large, which indicates that in the case where the area used to grow rice is not large, and
together with added habitat complexity, the BPH become extinct due to an inadequate
amount of rice and the rice will gradually grow to fill the space that can contain it.
Alternatively, if K is greater, the stability will change to other points depending on the
defined parameters.
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We have provided a mathematical approach for the interaction of rice and BPH with
monsoon effects and habitat complexity factors that can reduce BPH predation. In fact,
BPH outbreaks are influenced by many other factors, such as: distance, precipitation,
temperature, humidity, fertilizer, insecticide, government policy etc. In the future, we
intend to include some of these factors in the model for greater realism. In future research,
it will be interesting to compare the results reported in this paper with real data collected
by a research unit in order to examine how closely our results fit with real data and to
estimate the values of the model parameters from real data. Ultimately, we hope that
this research will provide a guide for the analysis and control of BPH outbreaks in rice
fields.

Acknowledgements

The authors are grateful to anonymous referees for the valuable comments, which
have significantly improved this article. The first author is supported by the PhD schol-
arship between King Mongkut’s University of Technology North Bangkok (KMUTNB)
and National Science and Technology Development Agency (NSTDA) under Contract
No. GRAD.001/2565.

References

[1] H.J. Xu, C.X. Zhang, Insulin receptors and wing dimorphism in rice planthoppers,
Philosophical Transactions of the Royal Society B: Biological Sciences 372 (1713)
(2017) 20150489.

[2] R. Kisimoto, Bionomics, forecasting of outbreaks and injury caused by the rice brown
planthopper, Seminar on the Rice Brown Planthopper, Tokyo (Japan) (Oct 5, 1976),
FFTC, ASPAC.

[3] A. Otuka, M. Matsumura, S. Sanada-Morimura, H. Takeuchi, The 2008 overseas mass
migration of the small brown planthopper, Laodelphax striatellus, and subsequent
outbreak of rice stripe disease in western Japan, Applied Entomology and Zoology
45 (2) (2010) 259–266.

[4] J.P. Hereward, M. Matsumura, X. Cai, A.M.A. Matias, G.H. Walter, C. Xu, Y. Wang,
Migration dynamics of an important rice pest: The brown planthopper (Nilaparvata
lugens) across AsiaInsights from population genomics, Evolutionary Applications 13
(9) (2020) 2449–2459.

[5] D. Jana, N. Bairagi, Habitat complexity, dispersal and metapopulations: Macro-
scopic study of a predator–prey system, Ecological Complexity 17 (2014) 131–139.

[6] S.S. Bell, Habitat complexity of polychaete tube-caps: Influence of architecture on
dynamics of a meioepibenthic assemblage, Journal of Marine Research 43 (3) (1985)
647–671.

[7] X. Li, H. Wang, A stoichiometrically derived algal growth model and its global
analysis, Mathematical Biosciences & Engineering 7 (74) (2010) 825.

[8] N.E. Humphries, H. Weimerskirch, N. Queiroz, E.J. Southall, D.W. Sims, Forag-
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