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Abstract In this article, we propose a new discrete-time stochastic epidemic compartment model to

study and analyze the spread of disease. The SUQIHR model consists of six compartments; Susceptible

(S), Unsafe (U), Quarantined (Q), Infected (I), Hospitalized (H) and Recovered (R). The Unsafe

class (U) comprises individuals who are at higher risk of infection compared to the general susceptible

population, such as those with close contact to infected individuals. Transitions between compartments

are assumed to follow certain probability distributions that capture the movement of individuals. The

advancement of tracking technologies enables the differentiation of unsafe individuals from susceptible

ones through the use of tracking equipment or mobile applications. Therefore, this model finds relevance

in technology-ready societies. In this study, we utilize the SUQIHR model to forecast the future spread of

diseases. The model incorporates both the transmission dynamics of epidemics and measures to control

their spread. We examine the mathematical analysis of the model such as long-term behavior, the basic

reproduction number and sensitivity analysis. Moreover, the Monte Carlo simulation can be employed

to study the survival distribution of the outbreak, the final size of infected individuals, and the expected

duration of the epidemic. By this comprehensive approach, our model provides valuable insights for

understanding and managing disease outbreaks in various scenarios.
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1. Introduction

The Centers for Disease Control and Prevention (CDC) describes an epidemic as an
increase, often sudden, in the number of cases of a disease above what is normally ex-
pected in a given population [1]. The examples of human-related epidemics include Ebola,
Yellow fever, MERS, SARS, Influenza and, recently, COVID-19. An epidemic can cause
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enormous damage through social, financial and economic losses in addition to impaired
health and loss of life.

Mathematical models can project how infectious diseases progress to show the likely
outcome of an epidemic. The modelling is a tool that has been used to study the dynamics
of disease transmission, analyze the causes and risk factors for the outbreaks, predict the
spread of disease, and evaluate strategies to control an epidemic. The classic epidemic
models include SI, SIS, SIR, and SEIR models, where S, E, I, and R denote susceptible,
exposed, infected, and recovered populations, respectively. The models can also be classi-
fied in two different types; deterministic and stochastic. Both can be used to describe the
dynamics of epidemics, but there is a significant difference. In deterministic models, the
variables are not random and are functions of time only. For a given set of parameters and
initial conditions, the solution is unique. But stochastic models are formulated in terms
of random variables which depend on time and probability. The same set of parameter
values and initial conditions will lead to many different outcomes.

Several mathematical modeling studies have been conducted to describe the epidemic
in the past. The list of deterministic models are as follows: Giraldo and Palacio [2] propose
SIR models for varicella outbreaks in children. Kibona et al. [3] propose SIPA model for
HIV/AIDS. Aldila and Asrianti [4] propose SVIQR model for measles infection. Okyere
et al. [5] propose SIR and SEIR models for Ebola. Demongeot et al. [6] propose SI model
for COVID-19. Ndamuzi and Gahungu [7] propose SLIR model for malaria parasite in
mosquito and human populations. Some examples of stochastic models are: Lekone and
Finkenstdt [8] propose SEIR model for Ebola. Maki and Hirose [9] propose SIR model for
SARS outbreak in Hong Kong. Greenhalgh et al. [10] propose SIS model for gonorrhea
and pneumococcus. Ming et al. [11] propose SIR model for 2009 H1N1 pandemic. Chanu
and Singh [12] propose SEQIR model for COVID-19. He et al. [13] propose a discrete-
time stochastic epidemic model with binomial distributions for COVID-19. Allen [14]
proposes deterministic and stochastic SIR model for malaria. Getz and Dougherty [15]
propose deterministic and stochastic SEIR model for Ebola. Rihan et al. [16] propose
deterministic and stochastic SIRC model for COVID-19. Fortunately, due to the current
technology of tracking and recording devices, it is possible to keep track of people in
technology-ready communities who had direct contact with the patients or/and may have
been to place where there is an outbreak or superspreading. This class of people can be
defined as the unsafe class (U). To be precise, people who have close contact with infected
individuals but have not been confirmed as patients are in the unsafe class. The example
of this technology includes NOVID which is a contact tracing app that uses ultrasound
technology and Bluetooth to follow people’s exposure to COVID-19 [17]. These sorts of
technology will help us classified the number of people in unsafe class.

In this research, we introduce a novel discrete-time stochastic epidemic model where
the unsafe compartment, justified by tracking technology, is included. We propose a
susceptible-unsafe-quarantine-infected-hospitalized-recovered (SUQIHR) compartment
model. Since quarantine is one of a commonly used way to control the spread of epidemic,
the quarantine and hospitalized classes are included to the model. Both classes are related
to the unsafe individuals as follows. The quarantined class (Q) is the class of unsafe
individuals which are not confirmed to be safe of infected that are quarantined and isolated
from people. The hospitalized class (H) is the unsafe individuals who are confirmed
patients that are admitted to hospital and isolated to prevent spread of the virus to others.
The dynamics of the model are assumed based on certain probability distributions. The
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models are studied based on various levels of the quarantine rates and the probability
of isolation of the patients to other people. We mainly focus on three quantities; the
survival function of the outbreak, the final size of total infected population, and the
expected duration of the epidemic. These quantities are investigated via Monte Carlo
simulation. Moreover, we also analyze the epidemic as a Markov chain perspective and
outline some interesting quantities such as the long-term behavior, the basic reproduction
number and the sensitivity analysis.

2. Background

Definition 2.1. [18] A discrete-time stochastic process {Xn}∞n=0 is said to have the
Markov property if

P(Xn = in|X0 = i0, . . . , Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1),

where the values of ik ∈ {1, 2, ...} for k = 1, 2, . . . , n. The stochastic process is then called
a Markov chain or, more specifically, a discrete-time Markov chain (DTMC).

Definition 2.2. [18] The one-step transition probability, denoted as pij(n), is defined as
the following conditional probability

pij(n) = P(Xn+1 = j | Xn = i),

the probability that the process is in state j at time n+ 1 given that the process was in
state i at the previous time n, for i, j = 1, 2, . . ..

Definition 2.3. [18] If the transition probabilities pij(n) in a Markov chain do not
depend on time n, they are said to be time-homogeneous. In this case, the notation pij
is used. If the transition probabilities are time dependent, pij(n), then they are said to
be time-nonhomogeneous.

Definition 2.4. [19] A state si of a Markov chain is called absorbing if it is impossible
to leave it (i.e., pii = 1). A Markov chain is absorbing if it has at least one absorbing
state, and if from every state it is possible to go to an absorbing state.

Definition 2.5. [19] For a finite absorbing Markov chain, the probability that the Markov
chain is being absorbed is 1 and not depends on the initial distribution.

Definition 2.6. [20] The normalized forward sensitivity index of the basic reproduction
number R0, that depends differentiably on a parameter p, is defined by

ΥR0
p =

∂R0

∂p
× p

R0
.

3. Model Setup

We construct a discrete-time stochastic epidemic model, namely the SUQIHR model,
to describe the transmission of epidemics, to understand the dynamics of disease trans-
mission and to predict the spread of disease in technology-ready communities. This model
is invented based on the development of modern world technology. Compare to the past,
it is much easier and cheaper to have tracking devices for population. The devices can be
appeared as items in various form such as microchips, mobile phones or animal collars.
The aim of tracking is to keep track of people in who may have had direct contact with the
population from the infected class. Therefore, the devices could further help us to classify
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the unsafe individuals from the susceptible individuals. The model can be used not only
for humans but also for farm animals. In SUQIHR model, the population is partitioned
into six compartments as susceptible (S), unsafe (U), quarantined (Q), infected (I), hospi-
talized (H), and recovered (R) individuals. Let N = S(t)+U(t)+Q(t)+I(t)+H(t)+R(t)
denote the total population size. The flow diagram is shown in Figure 1.

Figure 1. Diagram of the SUQIHR model.

The susceptible class (S) is the individuals who are not infected but could become
infected.

The unsafe class (U) is the susceptible individuals who have close contact with infected
individuals.

The quarantined class (Q) is the unsafe individuals who are quarantined and isolated
from people.

The infected class (I) is the individuals who have already been infected and can spread
the virus to the susceptible individuals.

The hospitalized class (H) is the confirmed patients who are admitted to hospital and
isolated to prevent spread of the virus to others.

The recovered class (R) is the infected individuals who have recovered and are assumed
to be immune and have died from disease.

As indicated in Figure 1, the susceptible individuals move to the unsafe class (U) if
they contact the infected individuals. Note that the number of people in unsafe class is
classified by tracking technology. The unsafe individuals may move to the quarantined
class (Q) when they are quarantined and isolated from people, either by themselves or
by the societys order. After a period of time, the unsafe and quarantined individuals
who are not infected return to the susceptible class (S). On the other hand, a group of
unsafe individuals who get infected may move to the infected class (I), or the hospitalized
class (H) depends on their decisions. Additionally, the quarantined individuals who get
infected are assumed to move to the hospitalized class (H). After recovery or death, the
infected and hospitalized individuals move to the recovered class (R).

We consider discrete-time point series t = 1, 2, . . . as the time progression of the dis-
ease. At this timescale, the number of each compartment is dependent on the number in
the previous period and the inflows and removals from other compartments during the
time. Let Ci(t) be the number of individual transportations between compartments. The
transition from each state is listed as follows:
C1(t) is the number of susceptible individuals who have contact with infected individ-

uals at time t.
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C2(t) is the number of unsafe individuals who are not infected and go back to the
susceptible class at time t.
C3(t) is the number of unsafe individuals who become infected at time t.
C∗3 (t) is the number of new patients from the unsafe class who are admitted to hospital

at time t.
Ĉ3(t) is the number of newly infected individuals from unsafe class at time t.
C4(t) is the number of newly recovered or death individuals from infected class at time

t.
C5(t) is the number of quarantined individuals who are not infected and go back to

the susceptible class at time t.
C6(t) is the number of unsafe individuals who are quarantined at time t.
C7(t) is the number of new patients from quarantined class who are admitted to hospital

at time t.
C8(t) is the number of newly recovered and death individuals from hospitalized class

at time t.
The dynamic of the SUQIHR model can be written in the system of equations as follows:

S(t+ 1) = S(t)− C1(t) + C2(t) + C5(t),

U(t+ 1) = U(t) + C1(t)− C2(t)− C3(t)− C6(t),

Q(t+ 1) = Q(t)− C5(t) + C6(t)− C7(t),

I(t+ 1) = I(t) + Ĉ3(t)− C4(t),

H(t+ 1) = H(t) + C∗3 (t) + C7(t)− C8(t),

R(t+ 1) = R(t) + C4(t) + C8(t), (3.1)

where the random variables can be assumed with binomial distributions Bin(n,p), trino-
mial distribution Trin(n, p, q) and multinomial distribution Mult(n,~p)as follows:

C1(t) ∼ Bin(S(t), q1(t)),

C2(t), C3(t), C6(t) ∼Mult(U(t), q2, q3, q6) where C3(t) = Ĉ3(t) + C∗3 (t),

C∗3 (t) ∼ Bin(C3(t), θ),

C4(t) ∼ Bin(I(t), q4),

C5(t), C7(t) ∼ Trin(Q(t), q5, q7),

C8(t) ∼ Bin(H(t), q8),

with probabilities:

q1(t) = 1− exp
(
−βI(t)

N

)
,

q2 = q5 = 1− exp(−α),

q3 = q7 = 1− exp(−σ),

q4 = q8 = 1− exp(−γ),

q6 = 1− exp(−δ).

The parameter β is the contact rate, α is the transition rate from unsafe and quaran-
tined class to susceptible class, σ is the infection rate, δ is the quarantine rate, θ is the
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probability that the unsafe individuals are admitted to hospital, and γ is the recovery
rate. Additionally, the assumption of SUQIHR model includes

1. The transition of an individual from one state to the next state is considered
as a stochastic process.
2. The time length that an individual has been in a certain compartment obeys
exponential distribution. Note that, the exponential distribution has a memory-
less property. This implies that for the exponential distribution with parameter
λ(t), the probability that individuals leave the current state at the next time is
1− e−λ(t) uniformly at all time t. By the memoryless property, this implies that
the transition probabilities remain constant throughout the time.
3. The numbers of inflows and removals from other compartments during the
time step can be generated by a binomial distribution, trinomial distribution, or a
multinomial distribution. This assumption is valid since the transition events are
independent and that the probabilities of individuals leaving from one to another
state are constants. For example, people in the unsafe class, one may move to
the susceptible class, the quarantined class, the hospitalized class, infected class,
or otherwise stay in the unsafe class. Therefore, the random variables C2(t),
C3(t), and C6(t) are assumed to follow multinomial distribution. The number
of experiments in these distributions is the number of individuals in the current
compartment. The successful probabilities in the random variables of transitions
are θ and qi, i = 1, . . . , 8 where θ, qi ∈ [0, 1]. Note that the probability q1 is the
only parameter that depends on the number of infected individuals I at time t,
while the other transition probabilities are constants.
4. The transmission of the disease is presumed to occur in the context of close
contact between susceptible and infected individuals.
5. Population size N is constant. There are no births or deaths.
6. The parameters β, α, σ, δ, θ, and γ are constants.

4. Model Analysis

By the assumption of the SUQIHR model, it can be concluded that the model is a
time-homogeneous Markov chain where the set of states is {(S,U,Q, I,H,R) where S +
U +Q+ I +H +R = N}. The transition probabilities, denoted by,

p(s,u,q,i,h,r),(s+j,u+k,q+l,i+m,h+n,r+o)

which is equivalent to

P ((∆S,∆U,∆Q,∆I,∆H,∆R) = (j, k, l,m, n, o)|(S,U,Q, I,H,R)(t) = (s, u, q, i, h, r))

where ∆S = S(t+1)−S(t). The transition probabilities are complicated since the states
are 6-tuple and the transition probabilities depend on the possibility of transportation
between compartments from previous unit time. The set of states {(S, 0, 0, 0, 0, N −
S)}NS=0 are absorbing states while the remaining states are transient states. Since the
SUQIHR model is a finite Markov chain, the probability that the chain will be absorbed
to absorbing states is 1. This implies that, in the long run, the disease would extinct from
the community with probability 1.
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Basic Reproduction Number

A quantity of major importance within mathematical epidemic theory is the basic re-
production number R0. The basic reproduction number R0 is defined as the expected
number of secondary cases produced by a single (typical) infection in a completely suscep-
tible population. Many researchers obtained the basic reproduction number in stochastic
epidemic model, see [13, 21–23]. We calculate the basic reproduction number for SUQIHR
model using the next generation matrix method [13, 24] as follows. Firstly, we consider
the infection subsystem from Equation (3.1) as

U(t+ 1) = U(t) + C1(t)− C2(t)− C3(t)− C6(t),

I(t+ 1) = I(t) + Ĉ3(t)− C4(t). (4.1)

Next, we take the expectations to both sides of Equation (4.1). Hence, the equation is
transformed to

U ′(t) =
β

N
I(t)S(t)− αU(t)− σU(t)− δU(t),

I ′(t) = σ(1− θ)U(t)− γI(t). (4.2)

Next, by the next generation matrix method, the vectors F and V are given as follows:

F =

[
βS
N
0

]
, V =

[
(α+ σ + δ)U
σ(θ − 1)U − γI

]
.

The Jacobian matrices of F and V evaluated at the disease-free equilibrium are given by

F =

[
0 β
0 0

]
, V =

[
α+ σ + δ 0
σ(θ − 1) γ

]
,

and

FV −1 =

[
(1−θ)σβ
γ(α+σ+δ)

β
γ

0 0

]
.

The eigenvalues of FV −1 are

λ1 =
(1− θ)σβ

γ (α+ σ + δ)
and λ2 = 0.

Therefore, the basic reproduction number of the SUQIHR model is

R0 =
(1− θ)σβ

γ (α+ σ + δ)
. (4.3)

Note that, R0 varies depending on a variety of parameters. The parameters β, α, σ, δ, θ
and γ are dependent of the epidemic.

If R0 > 1 or, equivalently, (1−θ)σβ > γ (α+ σ + δ), then the disease will spread faster
and the epidemic occurs. It will result in an increase in the number of infected individuals
because each existing infection causes more than one new infection.

If R0 ≤ 1 or, equivalently, (1 − θ)σβ ≤ γ (α+ σ + δ), then the number of infected
individuals will decrease because each existing infection causes less than one new infection.
The disease eventually disappears from the population.
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Sensitivity Analysis

Sensitivity analysis shows how each parameter affects the basic reproduction number
to control the spread of disease. When the values of parameters change, we can use the
sensitivity index to measure the relative change in a variable. The sensitivity index of
each parameter is derived from the basic reproduction number R0 and by Definition 2.6.
All sensitivity indices can be calculated as follows:

ΥR0

β =
∂R0

∂β
× β

R0
= 1, (4.4)

ΥR0
α =

∂R0

∂α
× α

R0
=

−α
α+ σ + δ

, (4.5)

ΥR0
σ =

∂R0

∂σ
× σ

R0
=

α+ δ

α+ σ + δ
, (4.6)

ΥR0

δ =
∂R0

∂δ
× δ

R0
=

−δ
α+ σ + δ

, (4.7)

ΥR0

θ =
∂R0

∂θ
× θ

R0
=
−θ

1− θ
, (4.8)

ΥR0
γ =

∂R0

∂γ
× γ

R0
= −1. (4.9)

For example, in the case that β = 31, α = 0.7, σ = 0.095, δ = 0.3, θ = 0.6 and
γ = 1/14, all sensitivity indices are calculated by Equations (4.4)-(4.9), as shown in
Table 1.

Parameter Sensitivity Index

β 1

α -0.639

σ 0.913

δ -0.274

θ -1.5

γ -1

Table 1. The sensitivity index of each parameter given that β = 31,
α = 0.7, σ = 0.095, δ = 0.3, θ = 0.6 and γ = 1/14.

The parameters β and σ have a positive sensitivity index which means that the param-
eters β and σ have a positive effect on the basic reproduction number. In other words, the
basic reproduction number shall increase (decrease) when the parameter value increases
(decreases). Generally, if β (respectively, σ) increases by 10%, the basic reproduction
number should increase 10% (9.13%). On the contrary, the parameters α, δ, θ and γ have
a negative sensitivity index. It means that the parameters α, δ, θ and γ have a negative
effect on the basic reproduction number, that is, the basic reproduction number should
decrease (increase) when the parameter value increases (decreases). If α, δ, θ or γ is in-
creased by 10%, then the basic reproduction number should decrease by 6.39%, 2.74%,
15%, and 10%, respectively. In order to prevent the spread of infection, we aim to reduce
the number of patients by reducing the basic reproduction number R0 to less than 1. One
of things we can do to reduce the basic reproduction number. Decreasing the value of the
contact rate (β) and increasing the value of the quarantine rate (δ) and the probability
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that the unsafe individuals are admitted to hospital (θ) will lead to decreases in the basic
reproduction number.

5. Monte Carlo Simulations

Due to the stochastic dynamic of the model, it is very challenging to obtain the be-
haviors of the model since it depends on many factors such as parameter values, initial
population, probability distributions and randomness. Since we focus on the survival
function of the outbreak, the final size of total infected population and the expected du-
ration of the epidemic, it is possible to analyses these empirical results via Monte Carlo
simulations.

5.1. A Monte Carlo Simulation Example of SUQIHR Model

Example 5.1. We give a simulation of SUQIHR model under COVID-19 situation with
the total population size N = 10, 000. In addition, at the beginning of the epidemic,
we assume the initial number of infected individuals I(0) = 5. We provide Monte Carlo
simulations for SUQIHR model with the parameter values are given in Table 2 and initial
values: S(0) = 9, 995, I(0) = 5, and U(0) = Q(0) = H(0) = R(0) = 0.

Parameters Value Source

β 31 [13]

α 0.7 assumed

σ 0.095 [13]

δ 0.3 assumed

θ 0.6 assumed

γ 1/14 [25]

Table 2. Parameter values used in Example 5.1.

The simulation is done for 1,000 times. The dynamic of population in each class
according to time is plotted. Moreover, we obtain the survival function, the final size of
total infected population and the expected duration of the epidemic from the simulation
empirically. The survival function of the outbreak is calculated from the ratio of the
simulations that disease still occur compare with the total samples. The expected final
size of total infected population and the expected duration of the epidemic are obtained
from the average of total infected population and the average of the duration of epidemic
from the simulations respectively. For the last two quantities, the 95% confidence intervals
are also calculated. The simulation results are displayed on Figure 2, Table 3 and Figure
3.

Duration of Epidemic Final size of infected population

Lower Expected Upper Lower Expected Upper
95% C.I. 95% C.I. 95% C.I. 95% C.I.

140 174.619 225 9,859.975 9,892.397 9,922

Table 3. The final size of total infected population and the expected
duration of the epidemic with 95% confidence intervals of Example 5.1.
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Figure 2. The survival distribution of the outbreak from Example 5.1.

Figure 3. The Monte Carlo simulation result of Example 5.1. The red
lines represent the average values of each compartment.
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For this example, note that R0 = 0.7×0.095×31
1
14 (0.7+0.095+0.3)

= 27.18. Therefore, the outbreak

is expected to occur. From Figure 3, it can be seen that the outbreak reaches the peak
around t = 30 to 40. The number of infected individuals peak at around 1,000 patients,
while the unsafe individuals can be as high as 3,300. The number of quarantine individuals
can be as much as 1,500 while the number of hospitalized individuals, which may come
either from quarantine class or unsafe class, may go up to around 2,500. At the end,
almost everyone would have had the disease. From Figure 2 and Table 3, it can be seen
that the duration of the outbreak is around 174, with a 95% confidence interval from 140
to 225. The expected final size is 9,892.397 with a 95% confidence interval from 9,859.975
to 9,922.

5.2. Effects of Quarantine and Isolation to the Epidemic

The aim of this section is to study the effects of quarantine and isolation to the epi-
demic. Clearly, by introducing the quarantine measure, it is expected to reduce the final
size of infected individuals. However, it is not straightforward to justify the effect on the
duration of the epidemic. Since the basic reproduction number, the parameter values and
the initial distribution all play role in these two quantities, we shall fix the parameter
values and the initial condition as

• S (0) = 9, 995, I (0) = 5, and U(0) = Q(0) = H(0) = R(0) = 0.
• β = 5, α = 0.1, σ = 0.095 and γ = 1/14.

The simulation is done for 1,000 times. The values δ and θ, which reflects on the
isolation rate and hospitalized rate (if infected), are varied to make various reproduction
number. Note that the number of unsafe individuals who decide (or force) to quarantine
themselves in each day is q6 = 1−e−δ. It is more sensible to choose δ based on quarantine
rate. Hence, if we believe, for example, that 30% of unsafe individuals will be quarantined
on the next day, then the value of δ should be

δ = − ln (1− q6) = − ln (0.7) = 0.35667.

The value θ can assumed to be independent with quarantine rate, q6. However, we
would expect the value of θ to be greater than q6. The unsafe individuals who are con-
firmed patients should have more probability to get isolate from the community compare
to the unconfirmed ones.

The simulation results for various values of δ and θ are displayed on Table 4. Clearly,
by setting θ = q6 = 100% this is the best-case scenario and it will give the minimum values
for both expected duration of the epidemic and the final size of total infected population.
For q6 = 0%, 25%, 50%, 75% the best case is, obviously, still with θ = 100%. When θ
increase, the expected final size of total infected population decreases. However, when θ
increase, the expected duration of outbreak seems to increase until it reaches a certain
turning point and starts decreasing again. This implies that when the quarantine measure
is applied, the final size of total infected population will decrease, but the duration of
epidemic will increase. To confirm this conclusion, we provide another result when the
quarantine rate is set to be 10% and θ = 10%, 20%, . . . , 100%, as displayed in Table 5.
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Duration of Epidemic
Final size of total infected

population
Lower Expected Upper Lower Expected Upperq6 θ R0

95% C.I. 95% C.I. 95% C.I. 95% C.I.

0% 34.10 153 180.909 231.025 9,975 9,984.430 9,992
25% 25.57 154 182.455 232.025 9,966 9,976.410 9,986
50% 17.05 160 189.107 241 9,943.975 9,957.441 9,970.025
75% 8.52 173 204.981 260.025 9,839.975 9,873.246 9,903

0%

100% 0 65 102.333 153.025 67.975 179.073 354.05

25% 11.80 159 189.425 242.025 9,985 9,908.936 9,932
50% 7.89 167 198.140 251 9,790 9,831.607 9,868.025
75% 3.93 189 225.441 284.05 9,331 9,441.753 9,568

25%

100% 0 64 103.853 164 67.95 181.407 368

50% 4.63 174.975 211.487 273 9,573 9,469.464 9,719
75% 2.32 208.925 253.273 321.3 8,392.925 8,700.815 9,00150%
100% 0 62 103.217 157.05 61.975 181.77 360.225

75% 1.46 127.3 279.42 369 225.5 7,478.620 8,234.9
75%

100% 0 61.975 102.42 156 65 178.005 349.025

100% 100% 0 66 103.245 156 65.95 180.875 342.15

Table 4. The final size of total infected population and the expected du-
ration of the epidemic with 95% confidence intervals for SUQIHR model
for the different values of δ, θ and N = 10, 000, S (0) = 9, 995, I (0) = 5,
β = 5, α = 0.1, σ = 0.095 and γ = 1/14.

q6
θ R0

Duration of Epidemic
Final size of total infected

population
Lower

95% C.I.
Expected

Upper
95% C.I.

Lower
95% C.I.

Expected
Upper

95% C.I.

10%

10% 21.381 153.975 184.19 231.025 9,950 9,963.892 9,976.025
20% 19.005 156 184.105 234.025 9,942 9,957.341 9,972
30% 16.629 158.975 187.593 237.025 9,929 9,947.717 9,963
40% 14.254 159 189.098 241.025 9,915.975 9,935.005 9,952.025
50% 11.878 162 191.84 243 9,890 9,914.418 9,936
60% 9.503 166 197.276 249.025 9,850 9,879.46 9,910
70% 7.167 174 205.289 255 9,765 9,807.627 9,851
80% 4.751 187 223.945 290 9,524 9,610.902 9,688.025
90% 2.376 228 282.104 358 7,962 8,416.176 8,803.3
100% 0 65 102.488 156 61 175.698 351.125

Table 5. The final size of total infected population and the expected du-
ration of the epidemic with 95% confidence intervals for SUQIHR model
for q6 = 10%, θ = 10%, 20%, . . . , 100%, and N = 10, 000, S (0) = 9, 995,
I (0) = 5, β = 5, α = 0.1, σ = 0.095 and γ = 1/14.
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5.3. Effects of the Basic Reproduction Number to the Epidemic

From Section 5.2, it can be noticed that the final size of total infected individuals and
the duration of the outbreak may depend on the basic reproduction number of the model.
In this section, we shall verify the dependence between them. We fix the parameter values
and the initial condition as

• S (0) = 9, 995, I (0) = 5, and U(0) = Q(0) = H(0) = R(0) = 0
• β = 10, α = 0.1, σ = 0.095 and γ = 1/14.

The simulation is done for 1,000 times. To quarantine rate is set to be 10% and various
values of θ are chosen to make different values R0 from 0 to 20. Figure 4 provides the plot
between the expected final size of total infected individuals against the basic reproduction
number. Figure 5 provides the plot between the expected duration of the epidemic against
the basic reproduction number. From these figures and subject to the quarantine rate of
10%, it can be concluded that

1. The case R0 = 0, equivalent to θ = 1, is the best-case scenario which minimise
both the expected final size and the expected duration of the outbreak.
2. The expected final size of total infected individuals depends on R0. Higher
basic reproduction number implies higher expected final size.
3. The expected duration of epidemic is maximized when the basic reproduction
number is close to 1. For 0 < R0 < 1, smaller R0 implies smaller expected
duration, while for R0 > 1, higher R0 implies smaller expected duration. Also,
R0 → ∞ provide larger expected duration than the case R0 → 0, but smaller
expected duration than R0 = 1.

Figure 4. The plot between the expected final size of total infected
individuals against the basic reproduction number for SUQIHR model
for the quarantine rate 10% and N = 10000, S (0) = 9995, I (0) = 5,
β = 5, α = 0.1, σ = 0.095 and γ = 1/14.
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Figure 5. The plot between the expected duration of epidemic against
the basic reproduction number for SUQIHR model for the quarantine rate
10% and N = 10000, S (0) = 9995, I (0) = 5, β = 5, α = 0.1, σ = 0.095
and γ = 1/14.

6. Conclusion

In this article, we propose a new discrete-time stochastic epidemic compartment model
to study and analyze the spread of disease for the modern world. The proposed SUQIHR
model consists of six compartments; Susceptible (S), Unsafe (U), Quarantined (Q), In-
fected (I), Hospitalized (H) and Recovered (R). The numbers of individual transporta-
tions between compartments are assumed to follow certain probability distributions. The
model is introduced due to the development of modern worlds technology of tracking,
which help us to classify the unsafe individuals from the susceptible ones. This model
can be applied in technology-ready societies such as in the big cities or in animal farms.

The findings of this work are as follows. First, we examine the mathematical analysis
of the model such as long-term behavior, the basic reproduction number and sensitivity
analysis. The analysis show that the disease would extinct from the community with
probability 1, but may take a long time in some cases. The basic reproduction number
(R0) can be computed via the next generation matrix method displayed on Equation
(4.3). The sensitivity analysis of the parameters in the model provides that decreasing
the value of the contact rate (β), increasing the value of the quarantine rate (δ) and
increasing the probability that the unsafe individuals are admitted to hospital (θ) are
the best ways to control the transmission of the disease since these controls lead to the
reduction of the basic reproduction number.

Second, since the dynamic of the stochastic model is sophisticated, the analysis of the
model can be discussed via Monte Carlo simulation. The simulation can be used to obtain
the survival function of the outbreak, the final size of the total infected population, and
the expected duration of the epidemic for SUQIHR model.

Third, we study the effects of the basic reproduction number to the epidemic for
SUQIHR model. As a result, it can be seen that the final size of total infected individuals
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and the duration of the outbreak depends on the basic reproduction number. The large
R0 implies big spread of the disease, but the epidemic duration may be short. The small
R0 implies small spread of the disease, but the epidemic duration may take a long time
if R0 is close to 1. The model can be applied to forecast epidemics and help in making
decisions about the quarantine measure to mimimise the damage caused by in terms of
social, financial, economic and life losses.

Since the model is developed based on the assumptions that all the population in the
communities can be tracked, it is currently impossible to find the real data to fit the
model. Hence, the model analysis can only be done via mathematical modelling. For
further study, a real experiment that mimic the model situation can be conducted. The
experiment can be done, for example, in a small population community or in an animal
farm. The experimental data will enable us to make informed comparisons between the
results obtained in the experiment and the theoretical predictions, ultimately aiding us
in making more informed decisions regarding public health policy.
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