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Abstract The (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation usually describes

the interaction of a Riemann wave propagating along the y-axis with a long wave propagating along the

x-axis. This equation can also be regarded as a generalization of a Kortewegde Vries (KdV) equation.

In this paper, we generalize the BLMP equation by using Atangana’s space and time beta-derivatives.

We then use the Sardar subequation method and an appropriate traveling wave transformation to derive

exact traveling wave solutions for the (2 + 1)-dimensional BLMP equation with fractional derivatives.

The exact solutions of the equation are expressed in terms of generalized trigonometric and hyperbolic

functions. These functions, which include both real- and complex-valued functions, are defined in this

paper for the first time. Exact solutions are derived for a range of values of fractional orders and 2D,

3D and contour plots of the solutions are shown. Solutions are obtained for a range of parameter values

to show some of the types of solution that can occur. As examples, we show solutions with physical

behaviors such as a singular bell-shaped solitary wave solution, a solitary wave soliton of kink type and a

periodic wave solution. We demonstrate that the proposed technique gives a straightforward and efficient

method for deriving new exact traveling wave solutions for nonlinear partial differential equations such

as the BLMP equation.
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1. Introduction

Nonlinear evolution equations (NLEEs) are of importance because they are useful
models for complex natural phenomena including, for example, behavior of shallow water
waves [1] and properties of optical fiber soliton solutions of the nonlinear Schrödinger
equation (NLSE) [2]. Recently, a variety of methods have been developed to derive exact
solutions of NLEEs. These methods include an extended generalized (G′/G)-expansion
method [3], the tanh-coth method [4], the F-expansion method [5], the Jacobi elliptic
function method [6] and the Sardar subequation method [7].

In this paper, we focus on using the Sardar subequation method because it is a novel,
powerful and productive approach for solving a range of NLEEs [7–10]. Two recent papers
on the method and its applications that are closely related to our proposed work are as
follows. Cina et al. [11] used the method to derive exact soliton solutions for the perturbed
Fokas-Lenells (pFL) equation. Rezazadeh et al. [12] used the method to solve a variety
of forms of (3 + 1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations.

In particular, we are interested in using the method to obtain exact solutions of the
(2+1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation [13–15] which can be
written in the form

byt + bxxxy − 3(bxbxy + bxxby) = 0, (1.1)

where b = b(x, y, t). Equation (1.1) was proposed by Gilson et al. [16] when they used the
bilinear method to study a (2 + 1)-dimensional generalization of the Ablowitz, Kaup,
Newell and Segur (AKNS) shallow-water wave equation. For this application, equa-
tion (1.1) shows the (2 + 1)-dimensional interaction of a shallow-water Riemann wave
propagated along the y-axis with a shallow-water long wave propagated along the x-axis
and b represents the vertical displacement of the water surface. Gilson et al. [16] showed
that by replacing y = x in equation (1.1) and integrating the resulting equation the
equation is reduced to a Kortewegde Vries (KdV) equation.

In this paper, we study a modified version of (1.1) in which the space and time partial
derivatives are replaced by fractional space and time partial derivatives of Atangana’s beta
type [17, 18]. As is well known, the main reasons for introducing fractional derivatives are
that they are expected to give improved models for systems with memory or hereditary
properties (see, e.g. [19]). The definitions and usefulness of fractional derivatives will
be explained in more detail in section 2. Then, the (2 + 1)-dimensional BLMP with
Atangana’s space and time beta-derivatives reads

∂α

∂tα

(
∂γb

∂yγ

)
+

∂γ

∂yγ

(
∂β

∂xβ

(
∂β

∂xβ

(
∂βb

∂xβ

)))
−3

(
∂βb

∂xβ

(
∂γ

∂yγ

(
∂βb

∂xβ

))
+

(
∂β

∂xβ

(
∂βb

∂xβ

)))(
∂γb

∂yγ

)
= 0, (1.2)

where, for a water wave, b usually represents a vertical surface displacement, ∂α

∂tα (·) ,
∂β

∂xβ (·) and ∂γ

∂yγ (·) denote Atangana’s partial beta-derivatives with respect to t of order

0 < α ≤ 1, to x of order 0 < β ≤ 1 and to y of order 0 < γ ≤ 1, respectively. The
purpose of this study is to extract exact traveling wave solutions of equation (1.2) using
the Sardar subequation method.
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In section 2, we first give a brief description of Atangana’s beta-derivative [17, 18] and
its important characteristics. We then discuss the algorithm of the Sardar subequation
method [7]. In section 3, we describe the application of the Sardar subequation method to
obtain exact solutions of Atangana’s beta-derivative BLMP equation (1.2). In section 4,
we display graphs of selected exact solutions with their physical descriptions. Finally, a
discussion of the results and conclusions are given in section 5.

2. Preliminary Concepts

2.1. Atangana’s Beta-Derivative and Its Properties

For ease of writing, in the remainder of this paper we will abbreviate Atangana’s
beta-derivative to the commonly used beta fractional derivative or beta-derivative.

An advantage of fractional derivatives, such as the Caputo fractional derivative [19],
the Riemann Liouville fractional derivative [19], the conformable derivative [20] and the
beta-derivative [17, 18] is that they can be used to describe the properties of more gen-
eral types of system than integer-order derivatives, especially if the system has memory
or hereditary properties [19]. In this section, some important properties of the beta-
derivative are defined and discussed. This derivative was initially proposed by Atangana
et al. [17]. The beta-derivative can be studied as a natural extension of the classical
derivative to a fractional order and most of its elementary properties are related to the
elementary properties of classical derivatives.

Definition 2.1. Let f be a function such that f : [0,∞)→ R. Then, the beta-derivative
of f of order β, where 0 < β ≤ 1, is defined by [17, 21–23]

Dβ
t f(t) = lim

ε→0

f

(
t+ ε

(
t+ 1

Γ(β)

)1−β
)
− f(t)

ε
. (2.1)

The basic properties of the beta-derivative are as follows [17, 18, 21, 23]. Let f(t), g(t)
be β-differentiable functions for all t > 0 and β ∈ (0, 1]. Then

(1) Dβ
t (λ) = 0, ∀λ ∈ R.

(2) Dβ
t (af(t) + bg(t)) = aDβ

t f(t) + bDβ
t g(t), ∀a, b ∈ R.

(3) Dβ
t (f(t)g(t)) = f(t)Dβ

t g(t) + g(t)Dβ
t f(t).

(4) Dβ
t

(
f(t)

g(t)

)
=
g(t)Dβ

t f(t)− f(t)Dβ
t g(t)

(g(t))2
, where g(t) 6= 0.

(5) If f is differentiable, then Dβ
t (f(t)) =

(
t+ 1

Γ(β)

)1−β
df(t)
dt .

Theorem 2.2 ([17, 18, 21, 24]). Suppose f, g : (0,∞) → R are differentiable and also
beta-differentiable. Further assume that g is a function defined in the range of f . Then,
the beta-derivative of a composite function f ◦ g can be written as

Dβ
t (f ◦ g)(t) =

(
t+

1

Γ(β)

)1−β

f ′(g(t))g′(t), (2.2)

where the prime symbol (′) denotes the classical derivative.
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By Definition 2.1, the beta partial derivative of a function u = u(x, t) with respect to t
of order β ∈ (0, 1] can be defined by

∂βt u(x, t) =
∂β

∂tβ
u(x, t) = lim

ε→0

u

(
x, t+ ε

(
t+ 1

Γ(β)

)1−β
)
− u(x, t)

ε
, t > 0. (2.3)

In recent years, the beta-derivative has been used to solve a number of important
problems in nonlinear PDEs. In [18], the beta-derivative was applied to obtain a magnetic
soliton solution for periodic wave propagation of a Heisenberg ferromagnetic spin chain in
a (2+1)-dimensional nonlinear Schrödinger equation (NLSE). The paper shows that the
beta-derivative parameter significantly affects the rogue wave phenomena in this system
and that the amplitudes and widths of such rogue waves are enlarged with the increase
of β. The results are very helpful for analyzing the wave dynamics arising in many non-
local and non-conservative/conservative physical systems. Another physical application
of the β-derivative discussed in [22] involves the space-time fractional modified equal
width (FMEW) equation. This equation is related to the regularized long wave (RLW)
equation and has solitary wave solutions with both positive and negative amplitudes but
the same width. In this study, new traveling wave solutions for the FMEW equation
were constructed by using the unified method and varying the fractional-orders. The
new solutions were expressed in both polynomial and rational forms. Further recent
applications of the beta-derivative to physical systems include group velocity dispersion,
unidirectional propagation of long waves and monomode optical fibers [21, 23, 25].

2.2. The Sardar Subequation Method

In order to apply the Sardar subequation method [7] to obtain solutions of nonlinear
space-time partial differential equations with partial beta-derivatives, we must first trans-
form the original problem into an ordinary differential equation (ODE) in a new variable
ξ. The method is as follows. Consider the following nonlinear partial differential equation
containing the partial beta-derivatives of a dependent variable u = u(x, y, t) with respect
to independent variables x, y and t:

F1

(
u, ∂αt u, ∂

β
xu, ∂

γ
yu, ∂

α
t

(
∂βxu

)
, ∂αt

(
∂γyu

)
, ∂βx

(
∂γyu

)
, ...
)

= 0, 0 < α, β, γ ≤ 1, (2.4)

where ∂γvu = ∂γ

∂vγ u is a generic term for the partial beta-derivative of the dependent
variable u with respect to an independent variable v of order γ ∈ (0, 1]. The function F1 in
equation (2.4) is assumed to be a polynomial of u and its various partial beta-derivatives.
Then, applying the following fractional complex traveling wave transformation in a new
variable ξ to equation (2.4), we obtain

u(x, y, t) = U(ξ), ξ =
k1

β

(
x+

1

Γ(β)

)β
+
k2

γ

(
y +

1

Γ(γ)

)γ
+
k3

α

(
t+

1

Γ(α)

)α
, (2.5)

where k1, k2 and k3 are nonzero constants which will be found at a later step. Then
integrating the resulting equation with respect to ξ as many times as possible, we obtain
an ODE in U = U(ξ) as

F2(U,U ′, U ′′, U ′′′, ...) = 0, (2.6)

where F2 is a polynomial function of U and its various integer-order derivatives. The
prime notation (′) denotes the ordinary derivative with respect to ξ.
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Next, the Sardar subequation method [7–10] has the following main steps.
STEP 1: Assume that the exact solution of equation (2.6) is of the form

U(ξ) =

N∑
i=0

ωiφ
i(ξ), (2.7)

where ωi, i = 0, 1, 2, ..., N with ωN 6= 0 are coefficients to be determined at a later step,
and where the function φ(ξ) satisfies the auxiliary equation

φ′(ξ) =
√
ρ+ aφ2(ξ) + φ4(ξ), (2.8)

with a and ρ being real constants to be determined at a later step.
The solutions of equation (2.8) are as follows:
Case 1: If a < 0 and ρ = 0, then

φ±1 (ξ) = ±
√
−mna secmn

(√
−aξ

)
,

φ±2 (ξ) = ±
√
−mna cscmn

(√
−aξ

)
.

(2.9)

Case 2: If a > 0 and ρ = 0, then

φ±3 (ξ) = ±
√
−mna sechmn

(√
aξ
)
,

φ±4 (ξ) = ±
√
−mna cschmn

(√
aξ
)
.

(2.10)

Case 3: If a < 0 and ρ = a2

4 , then

φ±5 (ξ) = ±
√
−a

2
tanhmn

(√
−a

2
ξ

)
,

φ±6 (ξ) = ±
√
−a

2
cothmn

(√
−a

2
ξ

)
,

φ±7 (ξ) = ±
√
−a

2

(
tanhmn

(√
−2aξ

)
± i
√
mn sechmn

(√
−2aξ

))
,

φ±8 (ξ) = ±
√
−a

2

(
cothmn

(√
−2aξ

)
±
√
mn cschmn

(√
−2aξ

))
,

φ±9 (ξ) = ±
√
−a

8

(
tanhmn

(√
−a

8
ξ

)
+ cothmn

(√
−a

8
ξ

))
.

(2.11)

Case 4: If a > 0 and ρ = a2

4 , then

φ±10 (ξ) = ±
√
a

2
tanmn

(√
a

2
ξ

)
,

φ±11 (ξ) = ±
√
a

2
cotmn

(√
a

2
ξ

)
,

φ±12 (ξ) = ±
√
a

2

(
tanmn

(√
2aξ
)
±
√
mn secmn

(√
2aξ
))

,

φ±13 (ξ) = ±
√
a

2

(
cotmn

(√
2aξ
)
±
√
mn cscmn

(√
2aξ
))

,

φ±14 (ξ) = ±
√
a

8

(
tanmn

(√
a

8
ξ

)
− cotmn

(√
a

8
ξ

))
,

(2.12)
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where

secmn (ξ) =
2

meiξ + ne−iξ
, cscmn (ξ) =

2i

meiξ − ne−iξ
,

sechmn (ξ) =
2

meξ + ne−ξ
, cschmn (ξ) =

2i

meξ − ne−ξ
,

tanhmn (ξ) =
meξ − ne−ξ

meξ + ne−ξ
, cothmn (ξ) =

meξ + ne−ξ

meξ − ne−ξ
,

tanmn (ξ) = −ime
iξ − ne−iξ

meiξ + ne−iξ
, cotmn (ξ) = i

meiξ + ne−iξ

meiξ − ne−iξ

(2.13)

are special generalized trigonometric and hyperbolic functions. For more details, one can
refer to [26–28].

STEP 2: Calculate the postitive integer N in (2.7) using the homogeneous balance
principle between the nonlinear terms and the highest order derivative appearing in equa-
tion (2.6). If we denote the degree of U(ξ) by Deg[U(ξ)] = N , then the degree of other
terms in the equation can be calculated by using the following formulas

Deg

[
dqU(ξ)

dξq

]
= N + q, Deg

[
(U(ξ))p

(
dqU(ξ)

dξq

)s]
= Np+ s(N + q). (2.14)

STEP 3: Subsituting equation (2.7) along with its required derivatives with the help of
(2.8) into equation (2.6) and equating the coefficients of φi (ξ) of the resulting polynomial
to zero, we use the Maple software package to obtain a system of algebraic equations in
ωi (i = 0, 1, ..., N) , k1, k2 and k3 .

STEP 4: The exact solutions of equation (2.4) can then be obtained by inserting the
wave transformation (2.5) into the solution sets of equation (2.6).

3. Application of the Method

In this section, we apply the Sardar subequation method described in section 2 to
obtain exact traveling wave solutions of equation (1.2). As explained in section 2, we
must first convert equation (1.2) into an ordinary differential equation using the following
transformation

b(x, y, t) = B(ξ), ξ =
p

β

(
x+

1

Γ(β)

)β
+
q

γ

(
y +

1

Γ(γ)

)γ
+
r

α

(
t+

1

Γ(α)

)α
, (3.1)

where p, q and r are nonzero constants which will be found at a later step. Substituting
equation (3.1) into equation (1.2) and integrating the resulting equation with respect to
ξ once, we obtain the following ODE in the variable B = B(ξ):

p3qB′′′ − 3p2q(B′)2 + qrB′ +K = 0, (3.2)

where the prime notation (′) represents the ordinary derivative with respect to ξ and K
is a constant of integration. Based on equation (2.7), we assume that the solution form
of (3.2) is

B(ξ) =

N∑
i=0

ωiφ
i(ξ), (3.3)

where ωi, i = 1, 2, ..., N , are constant coefficients and the function φ(ξ) satisfies equa-
tion (2.8). Using the solution form (3.3) and the homogeneous balance principle, we
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obtain N = 1 and hence the solution of (3.2) is of the form

B(ξ) = ω0 + ω1φ(ξ), (3.4)

where ω0 and ω1 will be determined through steps of the Sardar subequation method.
Inserting (3.4) along with its required derivatives with the help of (2.8) into equation (3.2)
and then equating the coefficients of φi (ξ) (where i = 0, 1, 2, ..., 8) of the resulting poly-
nomial to zero, we obtain the system of nonlinear algebraic equations in ωi (i = 0, 1) , p, q
and r with the help of the Maple software package as follows:

φ0 : q2ω2
1a

2p6ρ− 9 p4q2ω4
1ρ

2 + 2 q2ω2
1ap

3rρ+ 6 p2qω2
1ρK + q2ω2

1r
2ρ−K2 = 0,

φ2 : a3p6q2ω2
1 + 12 ap6q2ρω2

1 − 18 ap4q2ρω4
1 + 2 a2p3q2rω2

1 + 12 p3q2rρ ω2
1

+ 6Kap2qω1
2 + aq2r2ω2

1 = 0,

φ4 : 13 a2p6q2ω2
1 − 9 a2p4q2ω4

1 + 36 p6q2ρω2
1 − 18 p4q2ρω4

1 + 14 ap3q2rω2
1

+ 6Kp2qω2
1 + q2r2ω2

1 = 0,

φ6 : 48 ap6q2ω2
1 − 18 ap4q2ω4

1 + 12 p3q2rω2
1 = 0,

φ8 : 36 p6q2ω2
1 − 9 p4q2ω4

1 = 0.

(3.5)

Unfortunately, the coefficients of φi (ξ) are zero when i is odd, so their equations are not
shown in system (3.5). Using the Maple 17 software package to solve system (3.5), we
obtain only one set of solutions as follows:

ω0 = ω0, ω1 = ±2p, K = 0, p = p, q = q, r = 2p3a, ρ =
a2

4
, (3.6)

where ω0, p, q and a are arbitrary constants with p, q 6= 0. In consequence, the exact
solutions of equation (3.4) corresponding to equation (3.6) along with equations (2.9)-
(2.12) are as follows.

Case 1: If a < 0 and ρ = 0, then there are no exact solutions b±1,2(x, y, t) because, by

(3.6), if ρ = 0, then a must be zero, which contradicts the condition that a < 0.
Case 2: If a > 0 and ρ = 0, then there are no exact solutions b±3,4(x, y, t) because, by

(3.6), if ρ = 0, then a must be zero, which contradicts the condition that a > 0.

From (3.6), we have ρ = a2

4 . Therefore, by the Sardar subequation method and
algebraic manipulations, we have that the only solutions of (3.4) are as follows.

Case 3: If a < 0 and ρ = a2

4 , then the exact traveling wave solutions are

b5(x, y, t) = ω0 − 2p

√
−a

2
tanhmn

(√
−a

2
ξ

)
, (3.7)

b6(x, y, t) = ω0 − 2p

√
−a

2
cothmn

(√
−a

2
ξ

)
, (3.8)

b±7 (x, y, t) = ω0 − 2p

√
−a

2

(
tanhmn

(√
−2aξ

)
± i
√
mn sechmn

(√
−2aξ

))
, (3.9)

b±8 (x, y, t) = ω0 − 2p

√
−a

2

(
cothmn

(√
−2aξ

)
±
√
mn cschmn

(√
−2aξ

))
, (3.10)
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b9(x, y, t) = ω0 − 2p

√
−a

8

(
tanhmn

(√
−a

8
ξ

)
+ cothmn

(√
−a

8
ξ

))
, (3.11)

where

ξ =
p

β

(
x+

1

Γ(β)

)β
+
q

γ

(
y +

1

Γ(γ)

)γ
+

2p3a

α

(
t+

1

Γ(α)

)α
. (3.12)

Case 4: If a > 0 and ρ = a2

4 , then the exact traveling wave solutions are

b10(x, y, t) = ω0 + 2p

√
a

2
tanmn

(√
a

2
ξ

)
, (3.13)

b11(x, y, t) = ω0 − 2p

√
a

2
cotmn

(√
a

2
ξ

)
, (3.14)

b±12(x, y, t) = ω0 + 2p

√
a

2

(
tanmn

(√
2aξ
)
±
√
mn secmn

(√
2aξ
))

, (3.15)

b±13(x, y, t) = ω0 − 2p

√
a

2

(
cotmn

(√
2aξ
)
±
√
mn cscmn

(√
2aξ
))

, (3.16)

b14(x, y, t) = ω0 + 2p

√
a

8

(
tanmn

(√
a

8
ξ

)
− cotmn

(√
a

8
ξ

))
, (3.17)

where

ξ =
p

β

(
x+

1

Γ(β)

)β
+
q

γ

(
y +

1

Γ(γ)

)γ
+

2p3a

α

(
t+

1

Γ(α)

)α
. (3.18)

We have checked that the functions in equations (3.7) to (3.17) are exact solutions of
the original equation (1.2) by substituting them in Maple 17 and finding that they satisfy
equation (1.2).

4. Graphical Representations of Some Solutions

In this section, we show graphs of some interesting exact traveling wave solutions of
the beta-derivative (2 + 1)-dimensional BLMP equation (1.2). In particular, the exact
traveling wave solutions b5(x, y, t) in equation (3.7), b+7 (x, y, t) in equation (3.9), and
b14(x, y, t) in equation (3.17) have been selected to show the type of solution and how
their physical behavior changes when values of the fractional-orders α, β, γ are varied.
For each solution, the magnitudes of the exact solutions are shown as 3D, 2D and contour
plots for the following range of fractional-order values: α = 1, 0.8, 0.6, β = 1, 0.9, 0.6
and γ = 1, 0.8. In all cases, the 3D, 2D graphs and the contour plots representing a 3D
surface by plotting (x, t) contours for a range of fixed magnitude values of the selected
solutions are portrayed using the Maple software package.

In Figures 1–3, magnitudes of the exact solution b5(x, y, t) in (3.7) are plotted as 3D
on the domain D1 = {(x, y, t) | 0 6 x 6 1, y = 1 and − 1 6 t 6 1}, 2D on the domain
D2 = {(x, y, t) |x = y = 1, −1 6 t 6 1} and contour plots for the following parameter
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values: a = −1, m = 1.2, n = 1.4, p = 2, q = 3, ω0 = 0.5, K = 0. Figures 1 (a)-(c) show
the 3D, 2D and contour plots for the magnitude of the exact solution b5(x, y, t) calculated
at the following set of integer orders: {α = 1, β = 1, γ = 1}. Figures 2 (a)-(c), (d)-(f)
and (g)-(i) show the 3D, 2D and contour plots for the magnitude of the exact solution
b5(x, y, t) calculated at the following sets of fractional orders {α = 1, β = 0.9, γ = 0.8},
{α = 0.8, β = 0.9, γ = 0.8} and {α = 0.6, β = 0.9, γ = 0.8}, respectively. Figures 3
(a)-(c), (d)-(f) and (g)-(i) show the 3D, 2D and contour plots for the magnitude of the
exact solution b5(x, y, t) calculated at the following sets {α = 1, β = 0.6, γ = 0.8}, {α =
0.8, β = 0.6, γ = 0.8} and {α = 0.6, β = 0.6, γ = 0.8}, respectively. As can be seen from
the 3D graphs of Figures 1–3, the physical behavior of |b5(x, y, t)| can be classified as a
singular bell-shaped solitary wave. It can also be seen that the main effect of changing
the fractional orders is to move the positions of the singularities in the solitary waves.

In Figures 4–6, magnitudes of the exact solution b+7 (x, y, t) in (3.9) are plotted as 3D
on the domain D3 = {(x, y, t) | 0 6 x 6 10, y = 1 and − 3 6 t 6 3}, 2D on the domain
D4 = {(x, y, t) |x = y = 1, −3 6 t 6 3} and contour plots for the following parameter
values: a = −1, m = 1.2, n = 1.4, p = 2, q = 3, ω0 = 0.5, K = 0. Figures 4 (a)-(c) show
the 3D, 2D and contour plots for the magnitude of the exact solution b+7 (x, y, t) calculated
at the following set of integer orders: {α = 1, β = 1, γ = 1}. Figures 5 (a)-(c), (d)-(f)
and (g)-(i) show the 3D, 2D and contour plots for the magnitude of the exact solution
b+7 (x, y, t) calculated at the following sets of fractional orders {α = 1, β = 0.9, γ = 0.8},
{α = 0.8, β = 0.9, γ = 0.8} and {α = 0.6, β = 0.9, γ = 0.8}, respectively. Figures 6
(a)-(c), (d)-(f) and (g)-(i) show the 3D, 2D and contour plots for the magnitude of the
exact solution b+7 (x, y, t) calculated at the following sets {α = 1, β = 0.6, γ = 0.8},
{α = 0.8, β = 0.6, γ = 0.8} and {α = 0.6, β = 0.6, γ = 0.8}, respectively. As can be seen
from the 3D and 2D graphs of Figures 4–6, the physical behavior of |b+7 (x, y, t)| can be
characterized as a solitary wave soliton of kink type. It can also be seen that the main
effect of changing the fractional orders is to move the position of the kink in the solitary
wave soliton.

In Figures 7–9, magnitudes of the exact solution b14(x, y, t) in (3.17) are plotted
as 3D on the domain D5 = {(x, y, t) | 0 6 x 6 1, y = 1 and 0 6 t 6 1}, 2D on D6 =
{(x, y, t) |x = y = 1, 0 6 t 6 1} and contour plots for the following parameter values:
a = −1, m = 1.2, n = 1.4, p = 2, q = 3, ω0 = 0.5, K = 0. Figures 7 (a)-(c) show
the 3D, 2D and contour plots for the magnitude of the exact solution b14(x, y, t) calcu-
lated at the following set of integer orders: {α = 1, β = 1, γ = 1}. Figures 8 (a)-(c), (d)-(f)
and (g)-(i) show the 3D, 2D and contour plots for the magnitude of the exact solution
b14(x, y, t) calculated at the following sets of fractional orders {α = 1, β = 0.9, γ = 0.8},
{α = 0.8, β = 0.9, γ = 0.8} and {α = 0.6, β = 0.9, γ = 0.8}, respectively. Figures 9
(a)-(c), (d)-(f) and (g)-(i) show the 3D, 2D and contour plots for the magnitude of the
exact solution b14(x, y, t) calculated at the following sets {α = 1, β = 0.6, γ = 0.8},
{α = 0.8, β = 0.6, γ = 0.8} and {α = 0.6, β = 0.6, γ = 0.8}, respectively. From the
3D graphs of Figures 7–9, the physical behavior of |b14(x, y, t)| can be characterized as a
periodic wave solution. It can also be seen that the main effect of changing the fractional
orders is to change the periods of the solution.
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(a) 3D (b) 2D (c) contour

Figure 1. Graphs of magnitudes for b5(x, y, t) in (3.7) obtained utilizing
the Sardar subequation method: (a)-(c) α = 1, β = 1, γ = 1.

(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Figure 2. Graphs of magnitudes for b5(x, y, t) in (3.7) obtained utilizing
the Sardar subequation method: (a)-(c) α = 1, β = 0.9, γ = 0.8; (d)-(f)
α = 0.8, β = 0.9, γ = 0.8; (g)-(i) α = 0.6, β = 0.9, γ = 0.8.
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(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Figure 3. Graphs of magnitudes for b5(x, y, t) in (3.7) obtained utilizing
the Sardar subequation method: (a)-(c) α = 1, β = 0.6, γ = 0.8; (d)-(f)
α = 0.8, β = 0.6, γ = 0.8; (g)-(i) α = 0.6, β = 0.6, γ = 0.8.

(a) 3D (b) 2D (c) contour

Figure 4. Graphs of magnitudes for b+7 (x, y, t) in (3.9) obtained utilizing
the Sardar subequation method: (a)-(c) α = 1, β = 1, γ = 1.
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(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Figure 5. Graphs for magnitudes of b+7 (x, y, t) in (3.9) obtained using
the Sardar subequation method: (a)-(c) α = 1, β = 0.9, γ = 0.8; (d)-(f)
α = 0.8, β = 0.9, γ = 0.8; (g)-(i) α = 0.6, β = 0.9, γ = 0.8.
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(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Figure 6. Graphs of magnitudes for b+7 (x, y, t) in (3.9) obtained utilizing
the Sardar subequation method: (a)-(c) α = 1, β = 0.6, γ = 0.8; (d)-(f)
α = 0.8, β = 0.6, γ = 0.8; (g)-(i) α = 0.6, β = 0.6, γ = 0.8.

(a) 3D (b) 2D (c) contour

Figure 7. Graphs of magnitudes for b14(x, y, t) in (3.17) obtained uti-
lizing the Sardar subequation method: (a)-(c) α = 1, β = 1, γ = 1.
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(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Figure 8. Graphs for magnitudes of b14(x, y, t) in (3.17) obtained using
the Sardar subequation method: (a)-(c) α = 1, β = 0.9, γ = 0.8; (d)-(f)
α = 0.8, β = 0.9, γ = 0.8; (g)-(i) α = 0.6, β = 0.9, γ = 0.8.
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(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Figure 9. Graphs of magnitudes for b14(x, y, t) in (3.17) obtained uti-
lizing the Sardar subequation method: (a)-(c) α = 1, β = 0.6, γ = 0.8;
(d)-(f) α = 0.8, β = 0.6, γ = 0.8; (g)-(i) α = 0.6, β = 0.6, γ = 0.8.

5. Conclusions

In this research, the Sardar subequation method has been used to obtain exact traveling
wave solutions of the (2 + 1)-dimensional BLMP equation (1.2) with Atangana’s space
and time beta-derivatives. Using this method, and with the aid of the Maple 17 software
package, we have successfully found exact solutions of the equation in terms of the special
generalized trigonometric and hyperbolic functions defined in (2.13). The exact solutions
obtained in this paper have not been reported by any previous authors. Further, the
Maple package has been used to plot 3D, 2D and contour plots of the magnitude of
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selected solutions for a range of values of fractional-orders α, β and γ in order to explore
their effects on the physical behavior of selected solutions. From the results, we have
selected three of the exact solutions of equation (1.2) with different physical behaviors,
namely, a singular bell-shaped solitary wave solution, a solitary wave soliton of kink type,
and a periodic wave solution. As stated at the end of section 3, we have verified that all
of the solutions in section 3 are exact solutions of equation (1.2) by substituting them
back into the original equation with the assistance of Maple. In conclusion, we believe
that the Sardar subequation method is a powerful and reliable technique for obtaining
exact traveling wave solutions of integer-order and fractional order nonlinear evolution
equations of the BLMP type. The aim of this paper has been to show that the Sardar
subequation method is a useful method for obtaining exact solutions of nonlinear evolution
equations of the BLMP type with fractional order beta-derivatives. Possible future work
would be to compare the fractional model and solutions obtained in this paper with data
from real physical systems.

Acknowledgements

The authors are grateful to anonymous referees for the valuable comments which have
significantly improved this article. In addition, the first and second authors are finan-
cially supported by the Department of Mathematics, Faculty of Science and Technology,
Rambhai Barni Rajabhat University, Chanthaburi.

References

[1] Y. Gu, S.M. Zia, M. Isam, J. Manafian, A. Hajar, M. Abotaleb, Bilinear method
and semi-inverse variational principle approach to the generalized (2+1)-dimensional
shallow water wave equation, Results in Physics 45 (2023) 106213.

[2] H.A. Mardi, N. Nasaruddin, M. Ikhwan, N. Nurmaulidar, M. Ramli, Soliton dynam-
ics in optical fiber based on nonlinear Schrödinger equation, Heliyon 9 (3) (2023)
1–15.

[3] S.K. Mohanty, O.V. Kravchenko, M.K. Deka, A.N. Dev, D.V. Churikov, The exact
solutions of the (2+1)-dimensional Kadomtsev–Petviashvili equation with variable
coefficients by extended generalized (G′/G)-expansion method, Journal of King Saud
University-Science 35 (1) (2023) 102358.

[4] S. Naowarat, S. Saifullah, S. Ahmad, M. De la Sen, Periodic, singular and dark
solitons of a generalized geophysical KdV equation by using the tanh-coth method,
Symmetry 15 (1) (2023) 1–10.

[5] M. Ozisik, A. Secer, M. Bayram, On solitary wave solutions for the extended nonlin-
ear Schrödinger equation via the modified F-expansion method, Optical and Quan-
tum Electronics 55 (3) (2023) 1–23.

[6] T.A. Khalil, N. Badra, H.M. Ahmed, W.B. Rabie, Optical solitons and other solu-
tions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law
of refractive index by Jacobi elliptic function expansion method, Optik 253 (2022)
168540.

[7] R. Hussain, A. Imtiaz, T. Rasool, H. Rezazadeh, M. İnç, Novel exact and solitary
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