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Möbius Flowers

Jin Akiyama, Kiyoko Matsunaga and Sachiko Nakajima

Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, JAPAN
e-mail : ja@jin-akiyama.com (J. Akiyama); matsunaga@mathlab-jp.com (K. Matsunaga);

sachiko.nakajima@steam21.com (S. Nakajima)

Abstract If you bisect conjoined two Möbius bands along each centerline, some of them end in inter-

locking hearts, and the others end in two separate hearts. What makes the difference between the happy

outcome and the unhappy one? In this paper, we unravel this “Möbius Love-Fate problem” by using the

concept of knot theory, as well as generalizing this theorem in various ways.
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1. Introduction

Let us prepare an elongated strip of paper. By gluing together its two ends, we obtain
a band called an annulus as shown in FIGURE 1(a). If we give one end a half-twist (180
degree rotation) before gluing together its two ends, we obtain a twisted band called a
Möbius band as shown in FIGURE 1(b).

Figure 1. Annulus and Möbius band
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A Möbius band is known for a non-orientable surface with only one face and only one
boundary. Cutting a Möbius band along the center line yields one band twice as long
as the original length, and with two full-twists (2 360 twist). Here is a paper cross (see
FIGURE 2(a)). We make a half-twist on one strip, then glue the two ends together, i.e.,
we create a Möbius band as shown in FIGURE 2(b). Next, do the same with another
strip (see FIGURE 2(c)). The resulting FIGURE is called a conjoined Möbius.

Figure 2. Creating a conjoined Möbius

If we bisect conjoined Möbius bands along each centerline, some of them end up as
interlocking hearts, while the rest end up as two separated hearts as shown in FIGURE
3(a) and 3(b).

Figure 3. Separated hearts and interlocking hearts

The question now arises: What indicators allow us to differentiate between the two
cases? This problem is called Möbius Love-Fate problem. We will reveal the mystery
behind this problem and generalize the number of conjoined Möbius bands to an arbitrary
natural number greater than 2.

Remark 1.1. In this paper, we treat the problem basically with non-topological words or
ideas. We often use the rigid transformations so that the readers could easily understand
what is going on here, by trying to tinker with them by themselves.
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2. Preliminaries

2.1. ∆-Check and Möbius Flowers

There exist two types of Möbius bands depending on the direction of the twist. Here,
we provide a method called a ∆-check with which we can distinguish between the two
types of bands.

Definition 2.1. (∆-check and two types of Möbius bands). First, we collapse a Möbius
band into a triangle shape called a Möbius delta (∆) as shown in FIGURE 4. The Möbius
delta has three layers: the topmost layer (both ends are visible), the middle layer (only
one end is visible), and the bottom layer (both ends are invisible). Label the topmost
layer as I, the middle layer as II, and the bottom layer as III (See FIGURE 5). A Möbius
band is called Type α, denoted by ∆α, if the direction of I, II, and III is clockwise
(FIGURE 5(a)). On the other hand, a Möbius band is called Type β, denoted by ∆β, if
the direction of I, II and III is counter-clockwise (FIGURE 5(b)). Note that the direction
of I, II, and III in both types remains unchanged even if we flip or rotate a Möbius delta.

Figure 4. ∆-check
Figure 5. Two types of Möbius bands

Remark 2.2. Topologically, ∆α is called Möbius band with -1 half twist, ∆β is called
Möbius band with +1 half twist as in FIGURE 6 and 7.

Figure 6. +1 / -1 half twist and Möbius band with +1 / -1 half twist
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Figure 7. Transformation from Möbius band with +1 / -1 half twist to
∆α / ∆β

Definition 2.3. (An N-star and an N-flower). Let four vertices and the centerline of
a rectangle strip Si be Ai, Bi, Ai+N , Bi+N (labeled clockwisely), and li, respectively for
i = 0, · · · , N − 1 as shown in FIGURE 8(a). Arrange Sx (x = 0, · · · , N − 1) such that lx

coincides with the clockwisely-rotated l0 around its center by
xπ

N
, and joint overlapping

parts of Si as shown in FIGURE 8(b). Then, glue the overlapped center parts all together
as shown in FIGURE 8(c). The object generated by this procedure is called an N-star.
Make N Möbius bands Mxs from an N strips Sxs of an N -star by making a half-twist
and gluing together the ends of each strip (Note that Ax is attached to Ax+N and Bx is
attached to Bx+N ). We call the obtained object an N-flower (For example, 5-flower is
illustrated in FIGURE 9).

Figure 8. Strip Sx, N -rectangles and an N -star
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Figure 9. A 5-flower created from a 5-star

Note that these N Möbius bands of N -flowers are layered (from bottom to top) accord-
ing to the order of gluing the rectangular strips into Möbius bands, or what we will refer to
as gluing order. Let (p0, p1, p2, ..., pN−1) be a permutation of (0, 1, 2, ..., N−1). The gluing
order Sp0

→ Sp1
→ Sp2

→ · · · → SpN−1
can be denoted simply by p0 → p1 → p2 → · · · →

pN−1. The N -flower created according to the gluing order p0 → p1 → p2 → · · · → pN−1 is
referred to as an N -flower with p0 → p1 → p2 → · · · → pN−1. FIGURE 10 shows two dis-
tinct 3-flowers created from a 3-star (FIGURE 10(a)); one is a 3-flower with 0 → 1 → 2
(FIGURE 10(b)) and the other is a 3-flower with 1 → 0 → 2 (FIGURE 10(c)). Note
that from bottom to top, 1st layer → 2nd layer → 3rd layer of each of these 3-flowers is
M0 → M1 → M2, M1 → M0 → M2 which coincides with its gluing order 0 → 1 → 2,
1→ 0→ 2, respectively.

Figure 10. Two distinct 3-flowers created from a 3-star
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Let the map f : {Mi} → {α, β}, which indicates the type of Möbius band Mi. The
flower type of anN -flower is defined by its gluing order and S = (f(M0)f(M1) · · · f(MN−1)).
That is, N -flowers can be classified depending on the gluing order and S. Then, the
N -flower created according to the gluing order p0 → p1 → p2 → · · · → pN−1 and
S = (f(M0)f(M1) · · · f(MN−1)) is referred to as an N -flower with p0 → p1 → p2 →
· · · → pN−1 for (f(M0)f(M1) · · · f(MN−1)).

2.2. Linking Number

Definition 2.4. A knot is an embedding of the circle S1 into three-dimensional Euclidean
space, R3. Generally two knots are considered equivalent if there exists a continuous
deformation of R3 which takes one knot to the other. A link is a collection of knots
which do not intersect, but which may be linked (or knotted) together. A knot can be
described as a link with one component.

A link diagram is basically a picture of a projection of a link onto a plane, in which
only a finite number of overlapped points appear, and at each overlapped point (which
we call a crossing point), just two curves cross each other transversally. Here below is
the way to draw the diagram around the crossing point. At the crossing point on the
projection of a link onto a plane, the branch lying above it is called an overpass and the
branch lying below it an underpass. In the link diagram, you should create a break in the
underpass. The resulting diagram is an immersed plane curve with the additional data
of which curve is over and which is under at each crossing point.

Definition 2.5. At a crossing point, c, of an oriented link diagram, as shown in FIGURE
11, we have two possible configurations. In the left case, we assign sign(c) = +1 to the
crossing point c, while in the right case, we assign sign(c) = −1. The left crossing point
is said to be positive, while the right one is said to be negative.

Figure 11. Signs at crossings

Let L be the link with 2 components K1, K2, say, L = (K1,K2). Suppose that
the crossing points of D at which the projection of K1 and K2 intersect are: D =
{c1, c2, . . . , cm}.

Remark 2.6. We ignore the crossing points of the projections of K1, and K2, which are
self intersections of the knot component.

Then,
1

2
(sign(c1) + sign(c2) + . . .+ sign(cm)) is called the linking number of K1 and

K2, which we shall denote by lk(L) or lk(K1,K2). Indeed, it is an invariant of the link
L, for a proof, see [4].
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Theorem 2.7. (Linking Number Theorem). Let L = (K1,K2) be the link with two knot
components K1 and K2. If lk(L) = lk(K1,K2) 6= 0, K1 and K2 are interlocked. If
the knot components K1 and K2 are separated, lk(L) = lk(K1,K2) = 0. However, the
converse is not always true (ref. Whitehead Link).

3. Möbius Love-Fate Problem

The mixed-conjoined Möbius is a conjoined Möbius composed of two different types
of bands, i.e., one is ∆α (with -1 half twist) and the other is ∆β (with +1 half twist)
after the ∆-check. On the other hand, single-conjoined Möbius is a conjoined Möbius
composed of two bands that are of the same type, i.e., both ∆α or both ∆β after the
∆-check.

Theorem 3.1. (Möbius Love-Fate Theorem). If a mixed-conjoined Möbius is bisected,
two bands (which we call petals) produced when bisecting 2-flower are interlocked (FIG-
URE 12(a)). If a single-conjoined Möbius is bisected, two bands(petals) produced when
bisecting 2-flower are separated (FIGURE 12(b)).

Figure 12. Möbius Love-Fate Theorem

Remark 3.2. From now on, we identify the closed ribbons (e.g. annulus, Möbius bands)
or the collection of ribbons with the center of the ribbons, which are the knots or the
links. By then, we ignore the twists of the ribbons.

Proof. Case 1: Mixed-conjoined Möbius
Collapse each Möbius band of a mixed-conjoined Möbius into Möbius delta. Without

loss of generality, any conjoined Möbius can be turned into the conjoined ∆s where the
layer I of one delta and the layer III of the other delta are jointed (FIGURE 13(a)). The
intersection between two bands of a conjoined Möbius forms a square. We divide it into
four quadrants 1,2,3,4 labeled clockwise (FIGURE 13(a)). Bisect this conjoined ∆s, and
then one band (we name this a petal P0) consists of two strips with a half width derived
from quadrants 1 and 3, and the other band or petal P1 consists of two strips with a half
width derived from the quadrants 2 and 4 (FIGURE 13(b)(c)). We name the link of the
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two petals P0 and P1 the petal link (P0, P1). Next, give the direction to the link diagram
of this petal link (P0, P1) as shown in FIGURE 13(d). Computing the linking number of

(P0, P1), we have
1

2
(−1 + 1 + 1 + 1) = 1. By theorem 2.7, these two petals P0 and P1 are

interlocked (FIGURE 13(d)).

Figure 13. An illustrative proof for αβ-conjoined ∆s

Case 2: Single-conjoined Möbius In the same manner as case 1, any single-
conjoined Möbius can be turned into a conjoined deltas where the layer I of one and
the layer III of the other are joined (FIGURE 14(a), FIGURE 15(a)). Bisect it and
transform them in R3 as shown (FIGURE 14(b)-(d), FIGURE 15(b)-(d)). As you can see
below in FIGURE14(d)(/FIGURE15(d)), these two petals P0 and P1 are separated.

Figure 14. An illustrative proof for αα-conjoined ∆s
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Figure 15. An illustrative proof for ββ-conjoined ∆s

4. Main Results

Next, consider bisecting N -flowers. Now, assume N = 3 and take a 3-star and a 3-
flower as an example (FIGURE 16(a)), since the same thing holds for N ≥ 4. Then,
arrange N -rectangles S0, S1, . . . , SN−1 so that they meet at the center with each other
as shown in (a). Then, glue the overlapped part so that you can get an N -star as shown
in (b)-1. By connecting AxBx with Ax+NBx+N with -1 or +1 half twist to make the
Möbius band Mx (x = 0, 1, . . . , N − 1) whose type is α or β , as shown in (b)-2. If you
bisect one Mx (one of the Möbius band) in (b)-2 along its centerline, it would be like
(c)-2. Then, you can see the green knot with one self-crossing as shown in (c)-3, which
we call the petal Px (derived from Sx−1 and Sx). Note that, we can get the link diagram
of any petal Px with one self-crossing and we can further see that for any y 6= z, there is
a link diagram of the petal link (Py, Pz) with 4 crossing points, as shown in FIGURE 16
(d). Here below, the subscripts are the numbers module N . For example, S0 = SN and
P−1 = PN−1.

FIGURE 17 shows the part of the resulting objects of bisection of 4-flowers for (αααβ).
In general, the following three theorems uniquely determine the resulting petal link with
all the petals Px (x = 0, 1, . . . , N − 1) from a bisection of an N -flower.

In the following theorems, Sx−1, Sx and Sx+1 are three clockwisely-consecutive strips
in an N -star. And let x − 1, x and x + 1 be the ith, jth and kth numbers in the gluing
order of an N -flower with p0 → p1 → · · · → pN−1, that is, pi = x− 1, pj = x, pk = x+ 1.

Theorem 4.1. Suppose Mx is a Type α Möbius band (with -1 half twist) in an N -flower,
which is created from a strip Sx in an N -star. The two petals Px and Px+1 derived from
Mx are interlocked if i < j < k or j < k < i or k < i < j. Otherwise, the two petals Px

and Px+1 are separated.

Theorem 4.2. Suppose Mx is a Type β Möbius band (with +1 half twist) in an N -flower,
which is created from a strip Sx in an N -star. The two petals Px and Px+1 derived from
Mx are interlocked if k < j < i or j < i < k or i < k < j. Otherwise, the two petals Px

and Px+1 are separated.
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Figure 16. Petals obtained from a bisection of a 3-flower and the link
diagram of the petal link (Py, Pz) (y 6= z)

Figure 17. The part of resulting objects of bisected 4-flowers for (αααβ)
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Theorem 4.3. Assume that the two petals Py and Pz (0 ≤ y < z ≤ N − 1) are not
derived from a common Möbius band in an N -flower (i.e. y+ 1 < z, (y, z) 6= (0, N − 1)).
Let y − 1, y, z − 1 and z be i-th, j-th, k-th and l-th numbers in the gluing order of the
N -flower with p0 → p1 → p2 → · · · → pN−1, that is, pi = y− 1, pj = y, pk = z− 1, pl = z.
The two petals Py and Pz are interlocked if i < k < j < l or i < l < j < k or j < k < i < l
or j < l < i < k or k < i < l < j or l < i < k < j or k < j < l < i or l < j < k < i.
That is, if you call the pair (i, j) as A and the pair (k, l) as B, and if A and B show
up alternatively when you put i, j, k, l in order, the two petals Py and Pz are interlocked.
Otherwise, the two petals Py and Pz are separated.

Proof of Theorem 4.1.
The petals Px and Px+1 are formed using three clockwise-consecutive (half) strips

Sx−1, Sx and Sx+1 in an N -star. As shown in FIGURE 16, the diagram of the petal
link (Px(red), Px+1 (green)) can have four crossing points : Cjj , Cik, Cjk and Cij . Give
orientations to the petal link (Px, Px+1) in the diagram as shown in FIGURE 18. In this
oriented link diagram of the two petals Px and Px+1, note that Ax+N goes to Ax and Bx

goes to Bx+N , as well as Ax+1+N goes to Ax+1 and Bx−1 goes to Bx−1+N .

Figure 18. A link diagram of the petals Px and Px+1

Remark 4.4. Note that in FIGURE 19, we fix the vertices Ax, Bx, Ax+N , Bx+N on the
ground where Sx was originally laid, and glue -1 half twist on it to make the Type α
Möbius strip Mx as shown in FIGURE 19. AxAx+N lies over BxBx+N when Mx is Type
α.

The crossing point Cjj is on the bisected Type α Möbius strip Mx, so its sign is inde-
pendent from the values i, j, and k (orders of making Mx−1,Mx, and Mx+1). However,
the three other crossing points, Cik (intersection of Ax+1+NAx+1 in Mx+1 and Px+1 and
Bx−1Bx−1+N in Mx−1 and Px), Cjk (intersection of Bx−1Bx−1+N in Mx−1 and Px and
Ax+1+NAx+1 in Mx+1 and Px+1), and Cij (intersection of Bx−1Bx−1+N in Mx−1 and Px

and BxBx+N in Mx and Px+1), all depend on the value of i, m and j.
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Figure 19. An α-type Möbius strip Mx

Back to the link diagram of the petal link Px and Px+1, and just focus on the crossing
point Cjj as shown in FIGURE 18(b). When Mx is Type α, AxAx+N lies over BxBx+N

and you can see that the sign of the crossing point Cjj is +1. It means that if, sign(Cjj) =
+1 regardless of the order of i, j, k when Mx is Type α .

Remark 4.5. If Mx is Type α (Möbius strip with -1 half twist), the sign of Cjj (j is the
order of Mx in this generalized N -flower) is +1. Similarly, if Mx is Type β (Möbius strip
with +1 half twist), the sign of Cjj is -1.

The signs of the other three crossing points Cik, Cjk and Cij depend on the relationships
between i, j and k. For instance if i < j, then the ith band (from Mx−1) is under the jth
band (from Mx), and so forth. Based on FIGURE 18, TABLE 1 summarizes the signs of
each crossing point relative to the all possible scenarios between i, j and k.

Table 1.

i < j < k j < k < i k < i < j i < k < j k < j < i j < i < k
Cik -1 +1 +1 -1 +1 -1
Cjk +1 +1 -1 -1 -1 +1
Cij +1 -1 +1 +1 -1 -1

sum of them +1 +1 +1 -1 -1 -1

Another way to compute the signs of Cik, Cjk, Cij is as below: sign(Cik) = +1 if
and only if Bx−1Bx−1+N is over Ax+1+NAx+1, i.e. i > k sign(Cjk) = +1 if and only if
Ax+1+NAx+1 is over Ax+NAx, i.e. k > j sign(Cij) = +1 if and only if BxBx+N is over
Bx−1Bx−1+N , i.e. j > i.
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Therefore, the linking number of the petal link (Px, Px+1) is

lk(Px, Px+1) =
1

2
(Cjj + Cik + Cjk + Cij)

=
1

2
(1 + Cik + Cjk + Cij)

=

{
0 if i < k < j or k < j < i or j < i < k · · · (∗), and
1 if i < j < k or k < i < j or j < k < i · · · (∗∗).

If the condition (∗∗) holds, the petals Px and Px+1 are interlocked by Theorem 2.7.
If the condition (∗) holds (i.e., their linking number is 0), for example, if i < k < j, the
link diagram of the petal link (Px, Px+1) is as shown in FIGURE 20. Here, at Cik and
Cij , the green petal Px+1 lies over the red petal Px, while at Cjj and Cjk, the green petal
Px+1 lies below the red petal Px. Using Lemma 4.6 (or by the natural transformations of
the space), you can show that the petals Px and Px+1 are separated. The case j < i < k
is similarly shown. If k < j < i, the link diagram of the petal link Px and Px+1 is as
below. Here, the green petal Px+1 lies always below the red petal Px, which means that
the petals Px and Px+1 are separated as shown in FIGURE 20. The other cases are also
similarly shown.

Figure 20. The separated two petals

Lemma 4.6. If the following two conditions (i) (ii) hold in a link diagram of an oriented
link (L1, L2), then L1 and L2 are separated.

(i) Each Li has at most one self-crossing.
(ii) L1 crosses L2 at four points, and when we trace L1 in a direction, the signs

+1 and -1 appear alternately at these four crossings.

(Proof is easy: If (ii) holds, then there is a pair of crossings between L1 and L2 with
different signs that are also consecutive when we trace L2 in a direction. Then these two
crossings can be eliminated by Reidemeister moves.)

Proof of Theorem 4.2
In the same way as proof of Theorem 4.1, the petals Px and Px+1 are formed using

three clockwise-consecutive (half) strips Sx−1, Sx and Sx+1 in an N -star. All the settings
are the same except for the sign of Cjj , which is -1 when Mx is the Type β Möbius band
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(with +1 half twist). sign(Cjj) = −1 , while the signs of the remaining three crossing
points are the same as the ones listed in TABLE 1.

Therefore, the linking number lk(Px, Px+1) of the petals Px and Px+1 is

lk(Px, Px+1) =
1

2
(Cjj + Cik + Cjk + Cij)

=
1

2
(−1 + Cik + Cjk + Cij)

=

{
−1 if i < k < j or k < j < i or j < i < k · · · (∗), and
0 if i < j < k or k < i < j or j < k < i · · · (∗∗).

If the condition (∗) holds, the petals Px and Px+1 are interlocked by Theorem 2.7. If the
condition (∗∗) holds (i.e., their linking number is 0), it is similarly shown that the petals
Px and Px+1 are separated as in Theorem 4.1.

Proof of Theorem 4.3.
In this case, Py is formed using two adjacent strips Sy−1 and Sy and Pz is formed using

two adjacent strips Sz−1 and Sz. In addition, we fix y+ 1 < z, and (y, z) 6= (0, N − 1) to
ensure that Py and Pz are not derived from the same strip.

Let y − 1, y, z − 1, z be the ith, jth, kth and lth numbers in the gluing order of an
N -flower with p0 → p1 → · · · → pN−1, i.e. pi = y − 1, pj = y, pk = z − 1, pl = z. Draw
a link diagram of the petal link Py (red) and Pz (green), with the orientation given in
FIGURE 21.

There are four crossing points Cik (intersection of the line on the ith My−1 and the
line on the k th Mz−1) , Cil (intersection of the line on the ith My−1 and the line on
the lth Mz) Cjk(intersection of the line on the jth My and the line on the kth Mz) and
Cjl(intersection of the line on the jth My and the line on the lth Mz).

Figure 21. A link diagram of the petal link Py(red) and Pz (green)
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Based on FIGURE 21, the signs of Cik, Cil, Cjk and Cjl under each possible scenario
are given in TABLE 2 and TABLE 3.

Table 2.

i < k < l i < l < k l < i < k l < k < i k < i < l k < l < i
Cik +1 +1 +1 −1 −1 −1
Cil −1 −1 +1 +1 −1 +1

Table 3.

j < k < l j < l < k l < j < k l < k < j k < j < l k < l < j
Cjk −1 −1 −1 +1 +1 +1
Cjl +1 +1 −1 −1 +1 −1

Another way to compute the signs of Cik, Cil, Cjk, Cjl is as below:

sign(Cik) = +1 if and only if i < k

sign(Cil) = +1 if and only if i > l

sign(Cjk) = +1 if and only if j > k

sign(Cjl) = +1 if and only if j < l

Therefore the linking number of two petals Py and Pz is

lk(Px, Px+1) = 1
2 (Cik + Cil + Cjk + Cjl)

=



−1 if i < l < j < k or j < k < i < l or k < i < l < j or l < j < k < i · · · (∗),
0 if i < j < k < l or j < k < l < i or k < l < i < j or l < i < j < k

or i < j < l < k or j < l < k < i or k < i < j < l or l < k < i < j
or i < k < l < j or j < i < k < l or k < l < j < i or l < j < i < k
or i < l < k < j or j < i < l < k or k < j < i < l or l < k < j < i · · · (∗∗), and

+1 if i < k < j < l or j < l < i < k or k < j < l < i or l < i < k < j · · · (∗ ∗ ∗)

If the condition (∗) or (∗∗∗) holds, the petals Py and Pz are interlocked by Theorem 2.7.
If (∗∗) holds (i.e., their linking number is 0), you can see that four crossing points between
the petal Py and Pz in all cases can be eliminated by Reidemeister moves similarly in
Theorem 4.1 and 4.2. Therefore, the petals Py and Pz are separated.

We can summarize the procedure for finding the resulting object of a bisection of an
arbitrary N -flower with p0 → p1 → · · · → pN−1 for S into the following flow chart
(FIGURE 22).

Flowchart: How to find whether or not
N(N − 1)

2
pairs of two petals from an N -flower

are interlocked. Check all pairs of petals of a bisection of an N -flower.
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Figure 22. Flowchart

Example 4.7. A heart ring is obtained from an N -flower with 0 → 1 → · · · → N − 1
for S = (αα · · ·α) (FIGURE 23), while a heart chain is obtained from the flower with
0 → 1 → · · · → N − 1 for S = (αα · · ·αβ). If the flower with 0 → 1 → · · · → N − 1 for
S = (ββ · · ·β), the mutually-separated N hearts are obtained (FIGURE 24).

Figure 23. N hearts ring
Figure 24. Separated
N hearts

Example 4.8. A heart chain is obtained from a 5-flower with 0 → 1 → · · · → 4 for
S = (βαααα) as shown in FIGURE 25. All quadruplets of four distinct strips in this case
satisfies the condition (∗∗) in Theorem 4.3.
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Figure 25. Five heart chain

Example 4.9. The resulting objects of a 5-flower with 0 → 2 → 4 → 1 → 3, 0 → 2 →
1 → 3 → 4 for S = (αβαβα) are as shown in FIGURE 26(a), (b), respectively. Some
pairs of two loops (yellow & green, yellow & red, black & red and black & blue), which
are derived from no common strips, are interlocked. All these quadruplets of strips satisfy
the conditions (∗) or (∗ ∗ ∗) in Theorem 4.3.

Figure 26. Two examples of bisections of 5-flowers

Remark 4.10. In the Examples above, the twists of the petals are not sometimes cor-
rectly shown.
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