
ISSN 1686-0209

Thai Journal of Mathematics

Volume 21 Number 4 (2023)

Pages 979–990

http://thaijmath.in.cmu.ac.th

Discrete and Computational Geometry, Graphs, and Games

Parallel Curve Detection Method based on Hough

Transform

Nattapol Chanpaisit and Pat Vatiwutipong∗

Kamnoetvidya Science Academy, Rayong, Thailand
e-mail: pat.v@kvis.ac.th (P. Vatiwutipong)

Abstract Hough transform is a widely used approach for recognizing straight lines and circles. Recently,

an extension was published, allowing us to detect a larger class of algebraic curves. The image with parallel

curves is the subject of this study. An incorrect curve may be detected using the standard approach. We

modify the accumulator function and introduce the concept of parallel curves into the detection method

to tackle this problem. Synthetic and real-world images are used to demonstrate the effectiveness of this

method.
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1. Introduction

The Hough transform was a technique used to detect curves in an image, which P.V.C.
Hough introduced in 1962, as seen in [1]. The early usages of this technique were only to
detect straight lines and circles from digital images, as in [2]. The method uses a voting
procedure where points in the image space are converted to the parameter space or Hough
space. This creates a set of possible parameters that are contained in a function called
the accumulator function. The corresponding lines were transformed from points lying
on the same curve in image space intersecting at the same point in Hough space. After
all possible iterations to transform all points, Hough space peaks at the parameter of the
corresponding curve that contain the most points in image space. A formal definition
of Hough Transform and its properties was provided in [3]. An extension of the Hough
transform to a more general algebraic curve was introduced by M.C. Beltrametti in [4]
and [5]. This allowed us to detect any irreducible plane curve which satisfied the Hough
regularity property using Hough Transform.

In this study, we focus on images consisting of parallel curves. If any points from
different curves are accidentally joined, the detection may fail because the accumulator
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function will reach a peak at a more prominent curve that was not parallel to the others.
Take the image of a banana leaf as shown in Figure 1 as an example. If we aim to
extract the direction of parallel veins, the Hough transform will mislead us to the midrib
because there were more points on that line than on each parallel vein. To avoid this
kind of detection of the unintended non-parallel curve, we add a parallel assumption to
our modified approach.

Figure 1. The input image of the real leaf (a); line detected directly
from Hough transform plotted in the edge map (b); the example of desired
parallel line plotted in the edge map (c).

This issue also occurs when the image of circles of different sizes with the same center,
which are parallel, such as annual rings of wood or a cross-section of an onion image.
The definition of parallel is extended from lines to any algebraic curves. Detecting the
parallel irreducible algebraic curve relies on the Hough Transform and the modification
of the accumulator function. We also introduce specific terms and definitions for the
property of a curve that enabled the curve to be detected with our proposed method.
The methodology’s performance is compared to the usual method by using synthetic
images containing a variety of shapes.

2. Preliminaries

Before introducing the definition of parallel, we begin with the notation of a curve and
a family of curves.

Definition 2.1. For t ∈ N tuples of independent parameters λ := (λ1, . . . , λt) ∈ Rt, let
fλ : Rn → R be a function parametrized by λ. Define a curve correspond with fλ by
Cλ = {(x1, . . . , xn) : fλ(x1, . . . , xn) = 0} and a family of curves F = {Cλ : λ ∈ Rt}.

For the algebraic plane curves in xy-Cartesian coordinates that this study focused on,
the indeterminates are x and y.

Generally, parallel curves are curves that do not intersect one another. However, we
extend the definition of the term parallel, which is redefined as L−parallel, to describe
the parameter that varied between the two curves while all remaining parameters that
were not parallel had to share the same value. The case of the parallel straight lines is one
example of L−parallel on the distance from the origin of the straight lines. The definition
of L−parallel of the curve on any parameter is as follows.
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Definition 2.2. Consider a set L ⊂ {1, . . . , t}. A curve Cλ is said to by L−parallel to a
curve Cλ′ if λi = λ′i for all i /∈ L. Moreover, we call the parameters corresponding to the
index in the set L as parallel parameters.

Example 2.3. Let Cλ : r1 − x cos θ1 − y sin θ1 = 0 and Cλ′ : r2 − x cos θ2 − y sin θ2 = 0
be two straight lines, where λ = (r, θ) is a parameter. They are L−parallel for L = {1}
if θ1 = θ2, that is their angles to the x-axis are equal, see Figure 2(a). This is equivalent
to the usual parallel definition. In contrary, if r1 = r2, then we say that it is L−parallel
for L = {2} instead, see Figure 2(b). Notice that, in this case, these parallel lines may be
intersected.

Example 2.4. Let Cλ : (x−h1)2+(y−k1)2−r2
1 = 0 and Cλ′ : (x−h2)2+(y−k2)2−r2

2 = 0
be two circles, where λ denote the parameter vector (h, k, r). They are L−parallel for
L = {3} if h1 = h2 and k1 = k2, that is, their share the same center, see Figure 3(a). In
contrary, if r1 = r2, then we say that it is L = {1, 2} instead, see Figure 3(b).

Figure 2. (a) L-parallel lines for L = {1}; (b) L-parallel lines for L = {2}

Figure 3. (a) L-parallel circles for L = {1}; (b) L-parallel circles for
L = {2, 3}
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Let F be a family of curves parametrized by λ ∈ Rt. For L ⊂ {1, . . . , t} and fix
λ(0) ∈ Rt. We denoted a subfamily of all curves in F that are L−parallel to a curve
Cλ(0) by FL,λ(0) . To determine important properties of a family of curves that allow us to
detect parallel curves based on the Hough transform, we defined two other terms: cover
and partition.

Definition 2.5. Let FL,λ(0) be a family of curves.

(1) We say that it is a cover if:
⋃
Cλ∈FL,λ(0)

Cλ = Rn. This definition simply means

that for any point in Rn, there must be a curve in the family passing through.
(2) We say that it is a partition if: FL,λ(0) is a cover and for all distinct Cλ, Cλ′ ∈
FL,λ(0) , we have Cλ ∩ Cλ′ = ∅ or Cλ = Cλ′ . This is equivalent to the subfamily
being a partition if it is a cover and all curves do not intersect which one another.

Back to the subfamily of curves in Example 2.3 and 2.4, the following example demon-
strated the properties of curves for each combination of set L.

Example 2.6. For L = {1}, a subfamily FL,(r,θ0) is the set of all straight lines such
that the angle between it and the x-axis is equal to θ0. This subfamily is a partition; see
Figure 4(a). For L = {2}, a subfamily FL,(r0,θ) is the set of all straight lines such that
the distance between it and the origin is equal to r0. This subfamily is not a cover as all
curves cannot pass through the point where the distance from the origin is less than r0;
see Figure 4(b). Consequently, this subfamily is not a partition.

Figure 4. (a) Illustration of curves in the subfamily FL,(r,θ) as L = {1};
(b) illustration of curves in the subfamily FL,(r,θ) as L = {2}

Example 2.7. For L = {3}, a subfamily FL,(h0,k0,r) is the set of all circles with the
same center at (h0, k0). This subfamily is a cover and a partition; see Figure 5(a). For
L = {1, 2}, a subfamily FL,(h,k,r0) is the set of all circles with fixed radius r0. This
subfamily is a cover but not a partition; see Figure 5(b).

Next, we will state the definition of Hough transform, which is followed from [5–7].

Definition 2.8. For a family F of curve defined by fλ1,...,λt(x1, ..., xn) and P =(xP1
, ..., xPn)

be a point in Rn. Let ΓP (F) be the hyper-surface defined on a space Rt by

fΛ1,...,Λt(xP1 , . . . , xPn),

where Λ1, . . . ,Λt is the tuple of indeterminate. We say that ΓP (F) is the Hough transform
of point P with respect to family F and HF is the accumulator function.
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Figure 5. (a) Illustration of curves in the family FL,(h0,k0,r) as L = {3};
(b) illustration of curves in the family FL,(h,k,r0) as L = {1, 2}

As the indeterminate change from (λ1, . . . , λt) to (Λ1, . . . ,Λt), the accumulator func-
tion collected the value at the possible set of parameters of the curve passing through
a given point in the image space, and for points in the same curve in image space, the
corresponding curve in Hough space will intersect at exactly one point, see [6]. Moreover,
the distinct curves in the image space give different intersections of the curve in Hough
space, but the intersection will be at the exact value of the parallel parameter.

3. Parallelism Detection Algorithm for Curves

We utilize properties of curves that can be defined by an irreducible polynomial as in
the definition 3.1.

Definition 3.1. For t ∈ N tuples of independent parameters λ := (λ1, . . . , λt) ∈ Rt and
some constant degrees d ∈ N, let

fλ(x1, . . . , xn) =
∑

k1+···+kn≤d

xk11 · · ·xknn gk1,...,kn(λ1, . . . , λt) (3.1)

be a family of irreducible polynomials characterized by the indeterminate x1, . . . , xn. We
will call the curve Cλ = {(x1, . . . , xn) : fλ(x1, . . . , xn) = 0} as irreducible curve when
fλ(x1, . . . , xn) is a irreducible polynomial.

After observing the value of the accumulator function on irreducible curves, we found
that if there are parallel curves in the image, then the accumulator function in that
direction will contain peaks at each position of the curves. On the other hand, there is
only one very high rise in the accidentally lined-up direction. The following theorem is
the conceptual idea for our proposed parallel curve recognition method.

Theorem 3.2. Let F be a family of irreducible curves parametrized by t dimensional
tuple. For L ⊂ {1, . . . , t}, then the following hold.

(1) Fix λ(0). For each λ such that Cλ ∈ FL,λ(0) , the Hough transform ΓP (λ) of
the pairs (Cλ, P ) when P varies on Cλ all pass through a point on set EL,λ(0) =

{Λ ∈ Rt : Λi = λ
(0)
i for all i /∈ L}.

(2) Fix λ(0). If the Hough transform ΓP (λ) of the pairs (Cλ, P ) when P varies on
curves Cλ and the Hough transform ΓP ′(λ) of the pairs (Cλ′ , P ′) when P ′ varies
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on curves Cλ′ in F are all intersected at two points in the set EL,λ(0) , then Cλ is
L−parallel to Cλ′ .

Proof. Without loss of generality, suppose that L = {1, . . . , `}. Let λ ∈ Rt such that
Cλ ∈ FL,λ(0) . So, for each fλ, define

fL,λ(x1, . . . , xn) =
∑

k1+···+kn≤d

xk11 · · ·xknn gk1,...,kn(λ1, . . . , λ`, λ
(0)
`+1, . . . , λ

(0)
n ). (3.2)

parametrized by only ` parameters. Then, its Hough transform ΓP (λ1, . . . , λ`) is defined
by ∑

k1+···+kn≤d

xk1P1
· · ·xknPngk1,...,kn(Λ1, . . . ,Λ`, λ

(0)
`+1, . . . , λ

(0)
n ) = 0, (3.3)

in the ` indeterminate Λ1, . . . ,Λ`. By Theorem 2.2.1 of [5], ΓP (λ1, . . . , λ`) all pass through
the point (λ1, . . . , λ`). This leads to our first result. To prove the second statement, the

fact that ΓP (λ) are all intersect the set {Λ ∈ Rt : Λi = λ
(1)
i for all i /∈ L} implies that

ΓP (λ) pass through some point (λ′1, . . . , λ
′
`, λ

(1)
` , . . . , λ

(1)
n ). By Theorem 2.2.2 of [5], we

have C
λ1,...,λ`,λ

(0)
`+1,...,λ

(0)
t

= C
λ′
1,...,λ

′
`,λ

(1)
`+1,...,λ

(1)
t

. Hence, the result is obtained.

The prior procedure of preventing this false detection is to integrate over all directions
in L, that is∫

R
· · ·
∫
R
HF |EL,λ(0)

(Λ)dΛ1 . . . dΛ` (3.4)

where HF is an accumulator function. However, we can show that the integration (as
a function of parallel parameter or array with parallel parameters as its axis) will be
constant for a partition subfamily FL,λ(0) .

Lemma 3.3. If the subfamily FL,λ(0) is a partition,
∫
R· · ·

∫
RHF |EL,λ(0)

(Λ)dΛ1 . . . dΛ` is

a constant function.

Proof. Since FL,λ(0) is a partition, for each P ∈ Rn there is exactly one Cλ ∈ FL,λ(0) such

that P ∈ Cλ. Then ΓP [F ] is intersected with EL,λ(0) = {Λ ∈ Rt : Λi = λ
(0)
i for all i /∈ L}

at exactly one point. Since

HF [P ]|EL,λ(0)
(Λ) =

{
m(P ) ; Λ ∈ ΓP (H) ∩ EL,λ(0)

0 ; otherwises
(3.5)

we have

HF [m]|EL,λ(0)
(Λ) =

∑
P∈Cλ∈FL,λ(0)

m(P ). (3.6)

We integrate both sides of the equation (3.6) over the image space. The right-hand side
of the equation will become the integration of the whole image m, which is a constant.
This leads to the result.

As a result, we shall first apply some function F to the integrand rather than integrating
directly. The function should be convex and increasing. Otherwise, the order of the
accumulator function will be lost. We recommend using a simple function such as the
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square function, soft thresholding, or hard thresholding function. Our proposed method
is, instead of seeking the maximum of the accumulator function, we seek the peak of∫

R
· · ·
∫
R
F
(
HF |EL,λ(0)

(Λ)
)
dΛ1 . . . dΛ` (3.7)

where F was an accumulator function. That provides us with the direction of the parallel
curves. After that, we project the accumulator function on R` and consider its peaks to
obtain the positions on those parallel curves.

We utilize the property of the convex function. Let ϕ be a convex function, then for
any number real number x1, x2, . . . , xn the following inequality hold.

nϕ

(∑
xi
n

)
≤
∑

ϕ(xi). (3.8)

Consider the integral of the accumulator function over parallel parameters (the inte-
gral as a function of non-parallel parameters) so that the corresponding parallel curves
do not exist in the image. The value of the accumulator function along this parallel
parameter is random and distributed almost equally. The integral of the accumulator
function along these parallel parameters is a lower bound of the inequality 3.8. Conse-
quently, when we apply a convex increasing function ϕ to an accumulator function, the
integration

∫
R· · ·

∫
R ϕ
(
HF |EL,λ(0)

(Λ)
)
dΛ1 . . . dΛ` reach a peak at a certain non-parallel

parameter corresponding to the prominent parallel curves in the image.

The flow for our proposed algorithm for detecting the parallelism of curves is as follows:
Step 1. Converting the image into an edge map using edge Detection algorithm (e.g.,

Canny edge detector [8] and Laplacian of Gaussian (LoG)).
Step 2. Applying Hough transform to the edge map. After we get an edge map, the

accumulator function can be derived as a sum of the Hough transform. The process of
Hough transform can be referred to [5].

Step 3. Applying some convex function to the accumulator function.
Step 4. Identifying the non-parallel parameter that produces the maximum value of the

integral of the accumulator function.
Step 5. Applying the peak finding algorithm to the accumulator function along with the

maximum non-parallel parameter in step 4 to find parallel parameters of multiple parallel
curves in the image.

4. Experimental Results and Discussion

This section presents several examples involving both synthetic and real-world images.
For the first example, we consider the perceptually parallel straight-line binary image as
shown in Figure 6(a).

The irreducible polynomial form for straight lines can be parametrized by λ = (m, c)
where m is the slope of the straight line, and c is the Y−intercept of the line. The curve
can be expressed as Cλ : y−mx− c = 0. However, since the slope cannot be bounded by
constant, straight lines are usually parametrized by Cλ : r − x cos θ − y sin θ = 0 instead,
where (r, θ) is the parameter. The properties in 3.2 still hold for this parameterization;
see [9].
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Figure 6. (a) The synthetic input image; (b) detected parallel lines

In Figure 6(a), we intend to detect the parallel straight lines that lie vertically, and in
this example, our proposed method shows the results as intended, the red dash lines in
Figure 6(b). We parameterize the straight lines with r = x cosθ + y sinθ, where (x, y) is
our coordinate in real vector space R2, and (r, θ) is our parameter. After we apply the
Hough transform to the image to get a 2-dimensional accumulator function (as a function
of r and θ), see Figure 7(a).

The integral without applying a convex function in Figure 7(b) turns out to be constant.
This agrees with the theorem 3.3. In Figure 7(c), we use the square function as our convex
function. The integral as a function of θ (our non-parallel parameter) peaks at θ = 90
degrees. When we plot the accumulator function along with θ = 90 degrees, we obtained
different peaks corresponding to the distance from origin r of different parallel curves in
the image (see Figure 7(d)). Then, we plot these curves back in Figure 6(b).

We notice that the horizontal distraction line is the longest line in the image, so the
corresponding value in the accumulator function is greater than the shorter vertical lines.
We notice in Figure 7(c) that the peak at θ = 0 degrees is only slightly less than the peak
at θ = 90 degrees, and if this distraction line is more prominent than the parallel line,
our detection method may fail.

Next, we apply the proposed method to the synthetic image containing parallel circles
as shown in Figure 8(a). We parameterize the circle as Cλ : (x− h)2 + (y − k)2 − r2 = 0.
Then the accumulator function is a discrete multivariate function of (h, k, r). Since we
wish to detect the parallel circles that share the same center, this is a case for L−parallel
for L = 3, varying radius r. After we get the accumulator function, we integrate it along
the radius r (parallel parameter) to get the integral as a function of (h, k). Then the
maximum in the integral, as illustrated by the blackest point in the integral heat map in
Figure 9(b), is at the center, non-parallel parameters, of the parallel circle. We consider
the accumulator function again to find peaks along with this maximum center point. The
peaks correspond to a different parallel parameter of different curves, see Figure 9(c), and
we plot the detected curves back into the input image, see Figure 8(b).
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Figure 7. (a) Accumulator function heat map; (b) integral of accu-
mulator function; (c) integral of accumulator function after applying the
square function; (d) accumulator function along the detected non-parallel
parameter

Figure 8. (a) Synthetic Input image; (b) Detected parallel circles
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Figure 9. (a) Integral heat map without applying any convex function;
(b) integral heat map after applying the square function; (c) accumulator
function along the detected non-parallel parameter

In the following example, we demonstrate the detection of parallel veins of the plant
leaf, where the noises are more prominent than in previous synthetic image examples; see
Figure 10(a).

In this section, an application of their method to a colored close-up image of a leaf is
described. The image is first converted into an edge map using the Canny edge detector.
Then the Hough transform is applied to calculate the accumulator function as a function
of (r, θ) from all the salient points in the edge map. The integral of the accumulator
function as a function of θ is plotted in Figure 11(b), and the integral of the squared
accumulator function is plotted in Figure 11(c). The detected lines are at θ = 60 degrees,
and the accumulator function is along θ = 60 degrees is illustrated in Figure 11(d). Note
that their method could detect not only the midrib of the leaf but also the parallel veins
in the lower part of the leaf at θ = 102 degrees. However, the parallel lines for the midrib
are more sensitive to their detection method than the parallel veins because the midribs
were significantly longer.

Figure 10. (a) Input image; (b) edge map; (c) detected lines

As the Hough transform process varies for different types of curves, our computational
complexity varies from curve to curve. The complexity of our proposed algorithm could
be separated into three parts: edge detection, Hough transform, and integration. The
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resolution of our input image is n × n. Edge detection involves the convolution filter
going through each block of pixels for a total of n2 times, so the fastest time complexity
for the edge detection algorithm is in O(n2), regardless of the type of curves. Next, the
discretized unit of parameters was all equal to m, the number of salient points in the edge
map was N , and the number of parameters was t. For the Hough transform, we need to
iterate over all the salient points in the image. Then, for each point, we need to couple
it with each pixel for t− 1 parameters. Taking all these processes into consideration, the
complexity for the Hough transform is O(Nn2mt−1). The complexity of integration is
O(mt) since we needed to iterate over all combinations of parameters in the accumulator
function. Accordingly, the complexity of our method is O(Nn2mt−1 +Nmt).

Figure 11. (a) Accumulator function heat map; (b) integral plot with-
out applying any convex function; (c) integral plot after applying square
function; (d) accumulator plot along detected non-parallel parameter
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