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Abstract In 1982, Ungar proved that the connecting lines of a set of n noncollinear points in the plane

determine at least 2bn/2c directions (slopes). Sets achieving this minimum for n odd (even) are called

direction-(near)-critical and their full classification is still open. To date, there are four known infinite

families and over 100 sporadic critical configurations. Jamison conjectured that any direction-critical

configuration with at least 50 points belongs to those four infinite families. Interestingly, except for a

handful of sporadic configurations, all these configurations are centrally symmetric. We prove Jamison’s

conjecture, and extend it to the near-critical case, for centrally symmetric configurations in noncentral

general position, where only the connecting lines through the center of symmetry may pass through more

than two points. As in Ungar’s proof, our results are proved in the more general setting of allowable

sequences. We show that, up to equivalence, the central signature of a set uniquely determines a centrally

symmetric direction-(near)-critical allowable sequence in noncentral general position, and classify such

allowable sequences that are geometrically realizable.

MSC: 52C30; 05C10; 05C35; 52C10

Keywords: slope-critical; direction-critical; generalized configuration of points; pseudoline arrangement;

allowable sequence; centrally symmetric; noncentral general position

Submission date: 29.01.2022 / Acceptance date: 11.04.2023

1. Introduction

In 1970, Scott [1] proposed the problem of finding the least number of directions (slopes)
determined by a set of n points in the plane, not all collinear. He conjectured that the
minimum number of different slopes determined by the connecting lines of a set of n
noncollinear points in the plane is 2bn/2c. This conjecture was completely settled by
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Ungar in 1982 [2]. Sets with n points and n− 1 directions are called direction-critical (or
slope-critical); and sets with n points and n directions are called direction-near-critical.
Hence, the sets achieving the minimum in Ungar’s Theorem are the direction-critical
configurations, which always have an odd number of points and so we call them odd-
critical ; and the direction near-critical configurations with an even number of points,
which we call even-near-critical.

After Ungar’s result, the focus naturally switched to the classification of direction-
(near)-critical configurations. In 1983, Jamison and Hill [3] described four infinite families
and over a hundred sporadic odd-critical configurations (details in Section 4). They
noted that the four infinite families and all but four sporadic configurations are centrally
symmetric. Jamison conjectured that any odd-critical configuration with at least 50 points
belongs to those four families [4]. He also proved that any near-critical set of points in
general position is an affine copy of the vertices of a regular polygon[4, 5]. In his analysis,
Jamison defines a dividing line of a set of points P as a line connecting points of P that
divides the rest of P in half. These lines are best known as halving lines of P . The cyclic
sequence of positive integers corresponding to half the number of points per halving line
of P minus its center, read in counterclockwise order, is the central signature of P .

Inspired by this work, we study centrally symmetric configurations. We extend the
notion of general position to sets in noncentral general position, where the only lines pos-
sibly passing through more than two points of the set are its halving lines. We completely
classify the centrally symmetric configurations in noncentral general position that achieve
the minimum in Ungar’s Theorem. More precisely, in Theorem 4.3, we prove that all but
one centrally symmetric odd-critical configuration of points in noncentral general position
belongs to one of the 4 families described in Jamison’s Conjecture. All even-near-critical
configurations are obtained from the odd-critical by removing their center of symmetry.

Moreover, as in Ungar’s Theorem, our analysis extends to the setting of allowable
sequences [6, 7] (definition and more details is Section 2). Goodman and Pollack [8]
showed that any allowable sequence corresponds to a generalized configuration of points,
that is, a set of points together with a pseudoline arrangement so that every pair of points
is contained in a unique pseudoline. Note that the set of configurations of points is then
a proper subset of the set of generalized configurations of points/allowable sequences. In
contrast to our geometric classification, we prove in Theorem 3.4 that, up to combinatorial
equivalence, any cyclic sequence of positive integers is the central signature of a unique
even-near-critical and (by adding the center of symmetry) a unique odd-critical centrally
symmetric allowable sequence in noncentral general position. Only a few of these allowable
sequences are geometrically realizable, as shown by Theorem 4.3.

The paper is organized as follows. In Section 2, we present the definition of allowable
sequence, related notation and results. In Section 3, we determine the structure of any
even-near-critical centrally symmetric allowable sequence in noncentral general position
in terms of its central signature, Theorem 3.1 and Corollary 3.2; and show their existence
in Theorem 3.3. In Section 4, we describe some known results about the classification of
odd-critical and even-near critical geometric configurations and state Theorem 4.3, which
fully determines the even-near critical, and thus the odd-critical, allowable sequences
from Theorem 3.4 that are geometrically realizable. The proof of this result follows from
Theorems 4.6-4.9, that we present in Section 4.1.
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2. Allowable Sequences

Let P be a set of n points in the plane. The circular sequence Π(P ) associated with
P is a doubly-infinite sequence of permutations of the points in P determined by the
projections of P onto a line that rotates around a circle enclosing P . As an abtract
generalization of a circular sequence, an allowable sequence of n points is a doubly-infinite
periodic sequence of permutations Π = {πi}∞i=−∞ of the set of points [n] := {1, 2, 3, . . . , n},
satisfying the following properties:

(1) By relabeling the points, it can be assumed that π0 = (1, 2, 3, . . . , n).
(2) There is h ∈ Z+ such that πi+h is the reversal of πi for every i ∈ Z. Then Π

has period 2h and {π0, π1, . . . , πh} is a halfperiod of Π of length h = h(Π).
(3) πi is obtained from πi−1 by the reversal of one or more disjoint substrings,

each involving consecutive elements of πi−1. These reversals are called switches,
and the set of switches occuring from πi−1 to πi is the ith move of Π.

(4) Any pair of points participates in a switch exactly once within a halfperiod.

If Π is an allowable sequence on the set of points [n] and S ⊆ [n], then the allowable
sequence induced by S, denoted by Π|S , is obtained from Π by deleting the points not in
S from each permutation and removing repeated permutations.

Allowable sequences were used by Goodman and Pollack to approach combinatorial
problems of sets of points in the 1980s [6, 7]. Since circular sequences are especial cases
of allowable sequences, every set of points corresponds to an allowable sequence but not
every allowable sequence is the circular sequence of a set of points. In fact, Goodman and
Pollack [8] showed that up to combinatorial equivalence, there is a one-to-one correspon-
dence between the set of allowable sequences and the set of generalized configurations of
points. In this new setting, all switches occurring between consecutive permutations of
an allowable sequence correspond to pseudolines determining the same direction. That
is, the number of directions determined by an allowable sequence Π is the length h(Π)
of its halfperiod. Ungar proved that if Π is an allowable sequence with n points, then
h(Π) ≥ 2bn/2c. In other words, the odd-critical and even-near-critical allowable sequences
are those with n points and half-period of length 2bn/2c.

Since odd centrally symmetric configurations are precisely those obtained from even
ones by adding their center of symmetry, we only consider even configurations. All rel-
evant concepts are naturally extended to allowable sequences. Let Π be an allowable
sequence of 2n points. For a permutation π and a point p of Π, the position of p in π
is denoted by π(p). Π is centrally symmetric if for every point p there is a point p such
that π(p) + π(p) = 2n + 1 for any permutation π ∈ Π. The points p and p are centrally
symmetric and they are said to be conjugates. So p is the conjugate of p, and p = p is the
conjugate of p. The switches reversing a centered substring of a permutation are called
crossing switches. They correspond to the halving lines of a set of points and they all pass
through the center of symmetry of the set. The sequence (d1, d2, . . . , dt), where 2di is the
number of points reversed by the ith crossing switch in the halfperiod π0, π1 . . . , πh of Π,
is the central signature of Π and t is its central degree. Allowable sequences all whose
switches are transpositions (switches of two points) are said to be in general position.
Allowable sequences in which all switches, except perhaps for the crossing switches, are
transpositions are said to be in noncentral general position. (The central signature of an
allowable sequence is also called a crossing distance partition [9]).
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We consider the following questions: Which cyclic positive integer sequences are the
central signature of an odd-critical or even-near-critical centrally symmetric allowable
sequence in noncentral general position? Which of such allowable sequences are geomet-
rically realizable, that is, they are the circular sequence of a set of points?

In the rest of the paper, Π = {πi}i∈Z is an even-near-critical centrally symmetric al-
lowable sequence with 2n points in noncentral general position and with central signature
(d1, d2, . . . , dt) for some t ≥ 2. We assume that π0 = (1, 2, . . . , n− 1, n, n, n− 1, . . . , 2, 1)
and that the first crossing switch occurs in the first move (from π0 to π1). The ith crossing
switch in the halfperiod starting at π0 reverses a centered substring si of 2di points, which
we call a crossing substring. Before reversing,

si = (si(1), si(2), . . . , si(di), si(di + 1), si(di + 2), . . . , si(2di))

= (si(1), si(2), . . . , si(di), si(di), si(di − 1), . . . , si(2di)).

Figure 1 shows an example of a halfperiod of an even-near-critical centrally symmet-
ric allowable sequence in noncentral general position with 2n = 12 points and central
signature (3, 2, 1). Its reversed crossing substrings are highlighted to easily identify the
crossing switches. This sequence is not geometrically realizable.

{πi}12i=0 =



1 2 3 4 5 6 6 5 4 3 2 1

1 3 2 4 5 6 6 5 4 2 3 1

3 1 4 2 5 6 6 5 2 4 1 3

3 4 1 5 2 6 6 2 5 1 4 3
4 3 5 1 6 2 2 6 1 5 3 4

4 5 3 6 1 2 2 1 6 3 5 4

4 5 6 3 1 2 2 1 3 6 5 4

4 5 6 1 3 2 2 3 1 6 5 4
4 5 1 6 2 3 3 2 6 1 5 4

4 1 5 2 6 3 3 6 2 5 1 4

1 4 2 5 3 6 6 3 5 2 4 1
1 2 4 3 5 6 6 5 3 4 2 1
1 2 3 4 5 6 6 5 4 3 2 1



Figure 1. An even-near-critical centrally symmetric allowable in non-
central general position and sequence with central signature (3, 2, 1).

3. Direction-Critical Allowable Sequences

As a consequence of Ungar’s proof [2], a centrally symmetric allowable sequence Π is
even-near-critical if and only if between the ith and (i+ 1)th crossing switches, there are
exactly di + di+1 − 1 permutations. In this case, n = d1 + d2 + · · ·+ dt.

In order to understand the structure of the allowable sequences at hand, we define
the path of the point p in Π, denoted by γ(p), as a sequence of letters c, p, r and l of
length 2n that tracks the movement of p through the halfperiod of Π starting at π0. More
precisely, the ith entry of γ(p) is

• c if p participates in a crossing switch from πi−1 to πi, this is a central jump;
• p if p does not participate in any switch from πi−1 to πi, this is a passive jump;
• r if the position of p in πi is to the right of that in πi−1, this is a right jump;
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• l if the position of p in πi is to the left of that πi−1, this is a left jump.

Similar notation was used by Jamison [5]. Now we are ready to state our first result.

Theorem 3.1. Let Π be an even-near-critical centrally symmetric allowable sequence of
n points in noncentral general position and with central signature (d1, d2, . . . , dt). If the
first move contains a crossing switch, then for 1 ≤ k ≤ d1,

γ(s1(k)) = cp · · ·p︸ ︷︷ ︸
k−1

r · · ·r︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
2(d1−k)+1

l · · · l︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
k−1

, and so

γ(s1(k)) = cp · · ·p︸ ︷︷ ︸
k−1

l · · · l︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
2(d1−k)+1

r · · ·r︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
k−1

.

Proof. Consider the point s1(d1) (see the Appendix for some examples). After participat-
ing in the first crossing switch, s1(d1) can only change its position using transpositions
(due to noncentral general position). Also s1(d1) cannot participate in a switch again
until all other points in s1 that are to the right of s1(d1) in π1 have moved. Since each
of these points do not switch with each other in the rest of the halfperiod, they move
one at a time and so s1(d1) does not move in the next d1 − 1 permutations. In other
words, after the central jump, there must be d1 − 1 passive jumps. Similarly, at the end
of the halfperiod s1(d1) moves back to the symmetric of its original position. Right after
this happens, the rest of the points in s1 must return to the symmetric of their original
positions, which takes at least d1 − 1 passive jumps for s1(d1). Because there is only 2n
permutations and s1(d1) participates in 1 crossing switch and 2n − 2d1 transpositions,
then s1(d1) participates in exactly 2d1 − 1 passive jumps. That is, besides the d1 − 1
passive jumps at the beginning and d1 − 1 at the end of the halfperiod, there is only one
more passive jump of s1(d1). Note that a passive jump needs to take place before any
change of direction of s1(d1). This means that s1(d1) only changes direction once and so
all of its n − d1 right jumps (one transposition with each of the points 1, 2, . . . , n− d1)
are consecutive followed by a passive jump and then all of its n − d1 left jumps (one
transposition with each of the points 1, 2, . . . , n− d1). Therefore,

γ(s1(d1)) = cp · · ·p︸ ︷︷ ︸
d1−1

r · · ·r︸ ︷︷ ︸
n−d1

p︸︷︷︸
1

l · · · l︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
d1−1

.

Note that this means that πn+1(s(d1)) = n+1+(n−d1) = 2n−d1+1. Since s1(d1), s1(d1−
1), . . . , s1(2), s1(1) remain in this order after the first crossing switch, then s1(1) is in
position 2n in πn+1. Then s1(k) participates in d1−k passive jumps right after getting to
position 2n+ 1− k while waiting for s1(d1 − k+ 1), . . . , s1(d1 − 1), s1(d1) to get to boxes
2n+ 1− (k + 1), . . . , 2n+ 1− (d1 − 1), 2n+ 1− d1, respectively; one more passive jump
waiting for s1(d1) to change directions; and another d1 − k passive jumps while waiting
for s1(d1), s1(d1 − 1), . . . , s1(d1 − k + 1) to get out of boxes 2n + 1 − d1, 2n + 1 − (d1 −
1), . . . 2n+ 1− (k + 1), respectively. Thus

γ(s1(k)) = cp · · ·p︸ ︷︷ ︸
k−1

r · · ·r︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
2(d1−k)+1

l · · · l︸ ︷︷ ︸
n−d1

p · · ·p︸ ︷︷ ︸
k−1

.

By central symmetry and periodicity of Π, Theorem 3.1 generalizes to paths of points
in other crossing switches as follows.
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Corollary 3.2. Let Π be an even-near-critical centrally symmetric centrally symmetric
allowable sequence of 2n points in noncentral general position and with central signature
(d1, d2, . . . , dt), and assume that the first move contains a crossing switch. Let δ1 = 0,
δ2 = d1 + d2, and for 3 ≤ i ≤ t let δi = d1 + 2d2 + · · ·+ 2di−1 + di so that si is reversed
from πδi to πδi+1. Then for 1 ≤ i ≤ t and 1 ≤ k ≤ di, we have

γ(si(k)) =



r . . .r︸ ︷︷ ︸
δi−k+1

p · · ·p︸ ︷︷ ︸
k−1

cp · · ·p︸ ︷︷ ︸
k−1

r · · ·r︸ ︷︷ ︸
n−di

p · · ·p︸ ︷︷ ︸
2(di−k)+1

l . . . l︸ ︷︷ ︸
n−di
−δi+k−1

if di − k < n− δi,

p . . .p︸ ︷︷ ︸
di−k

+δi−n+1

r . . .r︸ ︷︷ ︸
n−di

p · · ·p︸ ︷︷ ︸
k−1

cp · · ·p︸ ︷︷ ︸
k−1

r · · ·r︸ ︷︷ ︸
n−di

p · · ·p︸ ︷︷ ︸
di−k
−δi+n

if di − k ≥ |δi − n|,

l . . . l︸ ︷︷ ︸
δi−n
−di+k

p · · ·p︸ ︷︷ ︸
2(di−k)+1

r · · ·r︸ ︷︷ ︸
n−di

p · · ·p︸ ︷︷ ︸
k−1

cp · · ·p︸ ︷︷ ︸
k−1

r · · ·r︸ ︷︷ ︸
2n−δi−k

if di − k < δi − n.

Theorem 3.3. Any positive integer sequence (d1, ..., dt) with t > 1 is the central signature
of an even-near-critical centrally symmetric allowable sequence Π in noncentral general
position.

Proof. We prove the result by induction on d1 + d2 + · · · + dt. First note that if di = 1
for all 1 ≤ i ≤ t, then (d1, ..., dt) is the central signature of the circular sequence of the
vertices of a regular polygon, and this is the only possible partition when the sequence’s
sum is 2. Let n ≥ 2 and assume that there is a desired allowable sequence for any
sequence with total sum at most n. Consider the sequence d = (d1, d2, . . . , dt) of positive
integers with d1 + d2 + · · · + dt = n + 1. We argued that the result holds if all entries
of d are equal to 1, so assume without loss of generality that d1 ≥ 2. By induction,
the sequence d′ = (d1 − 1, d2, d3, . . . , dt) is the central signature of an even-near-critical
centrally symmetric allowable sequence Π′ = {πi}i∈Z in noncentral general position. We
construct the allowable sequence Π from Π′ by adding a point p′ and its conjugate as
follows.

Since Π′ is even-near-critical, then {π′0, π′1, . . . , π′2n} is a halfperiod. Assume that π′0 =
(1, 2, . . . , n, n, . . . , 2, 1) and let s′1, s

′
2, . . . , s

′
t be the crossing substrings of Π′. Let p =

s′1(1) = n − d1 + 1. Let π[a, b] be the substring of π consisting of all the elements in
positions a, a+ 1, . . . , b. For 0 ≤ i ≤ 2, let πi[1, n+ 1] =



π′i[1, p] ∗ p′ ∗ πi[p+ 1, n] if i = 0,

π′i[1, p] ∗ p′ ∗ πi[p+ 1, n] if i = 1, 2,

π′i[1, πi(p) + 1] ∗ p′ ∗ πi−1[πi−1(p) + 1, n] if 3 ≤ i ≤ p,
p ∗ p′ ∗ π′i−1[2, n] if p+ 1 ≤ i ≤ p+ 2d1,

π′i−2[1, π′i−2(p) + 1] ∗ p′ ∗ π′i−1[π′i−1(p) + 1, n] if p+ 2d1 + 1 ≤ i ≤ 2n+ 1,

π′2n[1, p] ∗ p′ ∗ π′2n[p+ 1, n] if i = 2(n+ 1)

where ∗ denotes the concatenation of strings. Finally, in order to guarantee central
symmetry, let πi = πi[1, n+1]∗πi[1, n+ 1], where πi[1, n+ 1] is the string whose elements
are the conjugates of πi[1, n+ 1] in reversed order.
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We first verify that Π is an allowable sequence on 2(n + 1) points with halfperiod
{π0, π1, . . . , π2(n+1)}. By Theorem 3.1, the paths of p and p in Π′ are given by

γ(p) = γ(s1(1)) = cr . . .r︸ ︷︷ ︸
n−d1

p . . .p︸ ︷︷ ︸
2d1−1

l . . . l︸ ︷︷ ︸
n−d1

,

γ(p) = γ(s1(1)) = c l . . . l︸ ︷︷ ︸
n−d1

p . . .p︸ ︷︷ ︸
2d1−1

r . . .r︸ ︷︷ ︸
n−d1

.

This means that π′i(p) = p− i+ 1 for each 2 ≤ i ≤ p and p transposes with some point qi
to obtain π′i from π′i−1; π′i(p) = 1 for each p ≤ i ≤ p+ 2d1− 1; and π′i(p) = i− p− 2d1 + 2
for each p+ 2d1 ≤ i ≤ 2n and p transposes with some point qi to obtain π′i from πi−1.

First, π0[1, n+ 1] is obtained from π′0[1, n] by inserting the new point p′ right after the
point p, so that π0 is in fact a permutation of 2(n+ 1) points. Then π1 is obtained from
π0 by the reversal of s1 = (p, p′, p+ 1, . . . , n, n, . . . , p+ 1, p′, p), which is a crossing switch
of n− p+ 2 = d1 points. The permutation π2 is obtained from π1 by the same switches
needed to obtain π′i from π′i−1. In other words, π1[1, n + 1] is obtained from π′1[1, n] by
inserting the point p′ right after the point q1. For 3 ≤ i ≤ p, πi[1, n + 1] is obtained
from πi−1[1, n+ 1] by all the switches needed to obtain π′i[1, n] from π′i−1[1, n] that occur
to the left of p, the transposition (p, qi) (which is also needed to go from π′i−1[1, n] to
π′i[1, n]), the transposition (p′, qi−1), and all the switches needed to obtained π′i−1[1, n]
from π′i−2[1, n] that occur to the right of p. For p+1 ≤ i ≤ p+2d1, πi[1, n+1] is obtained
from πi−1[1, n + 1] by all the switches needed to obtain π′i−1[1, n] from π′i−2[1, n] that
occur to the right of p. For p + 2d1 + 1 ≤ i ≤ 2(n + 1), πi[1, n + 1] is obtained from
πi−1[1, n + 1] by all the switches needed to obtain π′i−2[1, n] from π′i−3[1, n] that occur
to the left of p, the transposition (p, qi−2) (which is also needed to go from π′i−3[1, n] to
π′i−2[1, n]), the transposition (p′, qi−1), and all the switches needed to obtained π′i−1[1, n]
from π′i−2[1, n] that occur to the right of p.

Note that all the switches described above are actually possible because in the (i−1)th

and ith moves of Π′ all the switches of Π′ occurring to the left of p are independent of all the
switches to the right of p. Moreover, each switch required in the halfperiod {π′0, π′1, ..., π′2n}
of Π′, other than the first crossing switch that reverses s′1 = (p, p+1, . . . , n, n, . . . , p+ 1, p),
is used exactly once in Π; the first crossing switch of Π′ reversing s′1 is replaced by the first
crossing switch of Π which reverses s1 and so it takes care of all reversals of elements in s′1
plus all reversals of p′ with each element of s′1; and since {qi : 2 6= i 6= p} = {1, 2, . . . , p−1}
and {qi : p+ 2d1 ≤ i ≤ 2n} = {1, 2, . . . , p− 1}, then p′ transposes exactly once with each
of the points of Π that are not in s1. Therefore, Π is a centrally symmetric allowable
sequence. Moreover, Π is in noncentral general position because all switches required by
the halfperiod {π0, π1, . . . , π2(n+1)} are transpositions except for t crossing switches: all
the crossing switches of Π′ except for the reversal of s′1 which is replaced by the reversal
of s1. That is, 2(n + 1) = d1 + d2 + · · · + dt is the central signature of Π. Finally, since
Π has 2(n+ 1) points and {π0, π1, . . . , π2(n+1)} is a halfperiod of Π consisting of exactly
2(n+ 1) permutations plus the initial permutation π0, then Π is even-near-critical.

Theorem 3.3 shows the existence of an allowable sequence for any cyclic sequence
(d1, d2, . . . , dt) and Theorem 3.1 shows the uniqueness, up to combinatorial equivalence,
of such a sequence proving the following theorem.
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Theorem 3.4. Let d = (d1, ..., dt) with t > 1 be a sequence of positive integers. Then,
up to combinatorial equivalence, d is the central signature of a unique even-near-critical
centrally symmetric allowable sequence Π in noncentral general position.

Let DC cs
ncgen(d1, d2, . . . , dt) be the unique allowable sequence guaranteed by Theorem

3.4 with π0 = (12 . . . n n . . . 2 1) and whose first move includes a crossing switch. The
following result on the structure of DC cs

ncgen(d1, d2, . . . , dt) is a direct consequence of
Theorem 3.1.

Corollary 3.5. The allowable sequence Π = DC cs
ncgen(d1, d2, . . . , dt) satisfies:

(1) For 1 ≤ i ≤ t, 1 ≤ k ≤ di, and 1 ≤ j ≤ n, we have that

πδi+j(si(k)) =



n− di + k if j = 0,

n+ di − k + 1 if 1 ≤ j ≤ k,
n+ di − 2k + j + 1 if k + 1 ≤ j ≤ k + n− di,
2n− k + 1 if k + n− di ≤ j ≤ n+ di − k + 1,

3n− 2k + di + 2 if n+ di − k + 1 ≤ j ≤ 2n− k + 1,

n+ di − k + 1 if 2n− k + 1 ≤ j ≤ 2n.

(3.1)

(2) The crossing switch of si is part of move δi.

(3) The transpositions si(k)sj(l) and si(k)sj(l) with 1 ≤ i < j ≤ t are part of the
move (δi + di+1 + di+2 + · · ·+ dj + k − l)) mod 2n.

(4) The transpositions si(k)sj(l) and si(k) sj(l) with 1 ≤ i < j ≤ t are part of the
move (n+ δi + di + di+1 + · · ·+ dj−1 + l − k) mod 2n.

4. On the Classification of Geometric Configurations

We start by defining a few families of geometric configurations introduced in [4]. A
bipencil is a centrally symmetric configuration all but two of whose points are collinear.
An exponential cross is an affine copy of the following set of 2(s + t + 2) + 1 points for
some integers s, t ≥ 1, λ > 1:

EXλ(s, t) =
{

(0, 0), (±λi, 0), (0,±λj) : 0 ≤ i ≤ s, 0 ≤ j ≤ t
}
.

A tricolumnar array is an affine copy of the following set of 2(r + s + t) + 3 points for
some integers r, s, t ≥ 2:

TC(r, s; t)=
{

(±1, k),
(
0, r2 ± i

)
,
(
0, r2 ±

(
j − 1

2

))
: 0 ≤ k ≤ r, 0 ≤ i ≤ s, j ∈ [t]

}
.

Note that these configurations are centrally symmetric with an odd number of points. By
removing their center, we obtain EX∗λ(s, t) and TC∗(r, s; t), which extends these families to
even configurations. Jamison [4] conjectured that, besides some sporadic configurations,
any odd-critical configuration belongs to one of the following four infinite families: (1)
even regular polygons with their center, (2) centrally symmetric bipencils, (3) exponential
crosses, and (4) tricolumnar arrays.

Furthermore, Jamison and Hill [3] provided a catalogue of 102 sporadic odd-critical con-
figurations which do not belong to any of the four infinite families above. Only 4 of them
are not centrally symmetric, see Figure 2. Only one of the other sporadic configurations
is in noncentral general position, see Figure 3. Jamison conjectured that each odd-critical
configuration of n ≥ 50 points must belong to one of the four infinite families above. This
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conjecture remains open (see [10] for a survey of similar open problems and conjectures)
but there are some partial results supporting it. Here are some examples relevant to our
work.

(a) Fano triangle (b) Golden kite (c) Pentagram (d) Spike

Figure 2. The four known odd-critical configurations that are not cen-
trally symmetric. The coordinates for the spike are x : 0,±1,±

√
2 and

y : −2−
√

2,−1, 0, 1/
√

2,
√

2, 2(1 +
√

2).

Theorem 4.1 (Jamison [4, 5]). Let P be a configuration of points. Then

(1) If P is a near-critical configuration of points in general position, then P is
affinely equivalent to the set of vertices of a regular polygon.

(2) If P is odd-critical and contained in two lines, then P is affinely equivalent to
a bipencil or to an exponential cross.

(3) If P is odd-critical and contained in three parallel lines, then P is affinely
equivalent to a bipencil or to a tricolumnar array.

The rest of the paper is dedicated to the geometric realizability of the even-near-critical
centrally symmetric allowable sequences in noncentral general position characterized by
Theorem 3.4. Our main result, Theorem 4.2, completely classifies these configurations.
We prove it in Section 4.1, it follows from Theorems 4.6-4.9.

Theorem 4.2. The allowable sequence DC cs
ncgen(d1, d2, . . . , dt) is geometrically realizable,

if and only if,

(1) d1 = d2 = · · · = dt = 1,
(2) t = 2,
(3) t = 3 and two entries of (d1, d2, d3) are equal to 1, or
(4) t = 3 and (d1, d2, d3) = (2, 2, 2).

Theorem 4.2 allows us to prove Jamison’s conjecture when restricted to centrally sym-
metric configurations in noncentral general position, and in fact extend it to even config-
urations in this case.

Theorem 4.3. Any centrally symmetric odd-critical or even-near-critical set of points
in noncentral general position is affinely equivalent to one of the following sets, with or
without its center of symmetry:

(1) the set of vertices of a regular polygon with an even number of sides,
(2) a centrally symmetric bipencil,
(3) an exponential cross,
(4) a tricolumnar array with r = 1 and t− s = 0 or 1.
(5) the configurations (Z 5, 12, 6) and (Z 5, 13, 6) in Figure 3.
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Figure 3. The direction-(near)-critical configurations (Z5, 13, 6) and
(Z5, 12, 6). Their coordinates are x : 0,±1,±τ ,±2,±2τ and y : 0,±1,±τ ,

where τ = (1 +
√

5)/2 is the golden ratio.

(b) (4,4)(a) (1,1,1,1,1,1,1,1)

(c) (5,3)

(d) (6,2)

(e) (7,1)

(f) (6,1,1)

Figure 4. Even-near-critical centrally symmetric geometric realizations
with 16 points: (a) regular polygon, (b-d) exponential crosses, (e) bipen-
cil, and (f) tricolumnar array. Their circular sequences are included in
the Appendix.
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Proof. Let P be a centrally symmetric odd-critical or even-near-critical set of points in
noncentral general position. Since adding or removing the center of symmetry from P
preserves the central symmetry, criticality, and noncentral general position; we assume
that P has an even number of points. Then the circular sequence of P is combinatorially
equivalent to Π = DC cs

ncgen(d1, d2, . . . , dt) for some of the cases listed in Theorem 4.3.
If d1 = d2 = · · · = dt = 1, then Π corresponds to a configuration in general position

and so, by Theorem 4.1(1), P is affinely equivalent to the set of vertices of a regular
polygon with an even number of sides; see Figure 4(a). If t = 2, then Π corresponds
to a configuration contained in two lines and so P is a centrally symmetric bipencil
when d2 = 1, see Figure 4(e); or by Theorem 4.1(2) P (technically P plus its center)
is affinely equivalent to an exponential cross when d2 ≥ 2; see Figures 4(b-d). The
allowable sequence DC cs

ncgen(d1, 1, 1) is geometrically realized by the tricolumnar array
TC∗(1, bd1/2c, dd1/2e), see Figure 4(d). Among other things, Theorem 4.7 proves that
any geometric realization is affinely equivalent to this tricolumnar array. The uniqueness
up to affine equivalence also follows from Theorem 4.1(3) by realizing that the first move of
DC cs

ncgen(d1, 1, 1) consists of three switches reversing all points. Finally, DC cs
ncgen(2, 2, 2) is

combinatorially equivalent to the circular sequence of the sporadic configuration (Z5, 12, 6)
(defined in [3] and shown in Figure 3) without its center, which we denote by (Z5, 12, 6).
In Theorem 4.8, we show that any geometric realization of DC cs

ncgen(2, 2, 2) is affinely
equivalent to (Z5, 12, 6).

4.1. Geometric Realizations

Theorem 4.2 follows from Theorems 4.6-4.9 in this section. We start with a result for
centrally symmetric even-near-critical allowable sequences in noncentral general position.

Proposition 4.4. Let Π be an even-near-critical centrally symmetric allowable sequence
of n points in noncentral general position and with central signature (d1, d2, . . . , dt). Then

(1) The extreme points of each crossing line are extreme points of the configuration.
(2) The sequence Π|si∪si+1

is combinatorially equivalent to DC cs
ncgen(di, di+1).

Proof. (1) We need to check that, for 1 ≤ i ≤ t, the end points si(1) and si(1) = si(2d1)
of the crossing substring si visit the first or last position in a permutation of Π. By
Identity 3.1, πδi+n mod 2n(si(1)) = 2n and πδi+n mod 2n(si(1)) = 1.
(2) The central symmetry and noncentral general position of Π|si∪si+1

are clearly inherited
from Π. We only need to show that Π|si∪sj is even-near-critical, that is, it has a halfperiod
of length 2(di + di+1). This is equivalent to proving that there are 2(di + dj) moves of Π
that involve points of si ∪ sj .

Suppose without loss of generality that i < j. The string si is switched in the move δi
and sj is switched in the move δj . By Corollary 3.5(3), each transposition involving a point
of si[1, di] and a point of sj [dj +1, 2dj ], or a point of si[di+1, 2di] and a point of sj [1, dj ],
is part of the move (δi + d2 + d3 + · · ·+ dj−1 − 1 +m) mod 2n for some 2 ≤ m ≤ di + dj .
This is because for 1 ≤ k ≤ di and 1 ≤ l ≤ dj , we have that δi+d2 +d3 + · · ·+dj +k− l =
δi+d2 +d3 + · · ·+dj−1−1+k+(dj+1− l) and k+(dj+1− l) can take any value between
2 and di+dj . Similarly, Corollary 3.5(4) implies that each transposition involving a point
of si[1, di] and a point of sj [1, dj ], or a point of si[di+1, 2di] and a point of sj [dj +1, 2dj ],
is part of the move (n+ δi + d1 + d2 + · · ·+ dj−1 +m) mod 2n for some 2 ≤ m ≤ di + dj .
This time n+δi+d1 +d2 + · · ·+dj−1 + l−k = n+δi+d2 + · · ·+dj−1 +(di+1−k)+ l and
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(di + 1−k) + l can take any value between 2 and di +dj when 1 ≤ k ≤ di and 1 ≤ l ≤ dj .
Therefore, all switches involving only points of si ∪ sj are part of the 2(di + dj) moves
δi, δj , (δi+d2+d3+· · ·+dj−1−1+m) mod 2n, (n+δi+d2+d3+· · ·+dj−1−1+m) mod 2n
for 2 ≤ m ≤ di + dj .

Corollary 4.5. Suppose that the allowable sequence Π = DC cs
ncgen(d1, d2, . . . , dt) with

di ≥ 2 and dj ≥ 1 for some distinct subindices i, j ∈ [t] is geometrically realizable.
Then in any geometric realization of Π, the set of points corresponding to Π|si∪sj is a
centrally symmetric bipencil if dj = 1 and affinely equivalent to the exponential cross
EX∗λ(di − 1, dj − 1) if dj ≥ 2.

Proof. Suppose that P is a geometric realization of Π. By Proposition 4.4(2), the induced
allowable sequence Π|si∪sj is also even-near-critical. Note that all points of Π|si∪sj are
contained in two lines: the line containing the string si (with 2di points) and the line
containing sj (with 2dj points). Then, by Theorem 4.1(2), the subset of P corresponding
to Π|si∪sj is a centrally symmetric bipencil of 2di + 2 points when dj = 1, and affinely
equivalent to the exponential cross EX∗λ(di − 1, dj − 1) for some λ > 1 with 2(di + dj)
points when dj ≥ 2.

In the following proofs, Π is an allowable sequence with central signature (d1, d2, · · · , dt)
and P is a potential geometric realization of Π. We use the same labels for the points of
Π and their realizations in P . Also, the subindices of the dis are taken modulo t.

Theorem 4.6. The allowable sequence Π = DC cs
ncgen(d1, d2, . . . , dt) with t ≥ 3, di ≥ 3,

and dj ≥ 2 for some distinct subindices i, j ∈ [t] is not geometrically realizable.

Proof. Without loss of generality, assume that d1 ≥ 3 and di ≥ dj ≥ 2 for some 2 ≤ j < t.
Suppose by contradiction that there is a geometric realization P of Π. By Corollary 4.5
(and applying an affine transformation to P if necessary), we can assume that the subset
of P corresponding to Π|s1∪sj is precisely EX∗λ(d1 − 1, dj − 1) for some λ > 1, that is,

`1 : s1(k) = (0, λd1−k) and s1(k) = (0,−λd1−k) for 0 ≤ k < d1

`j : sj(l) = (−λdj−l, 0) and sj(l) = (λdj−l, 0) for 0 ≤ l < dj .

By Corollary 3.5(3), the transposition s1(1)sj+1(dj+1) occurs in move δ1 +d2 +d3 + · · ·+
dj+1 + 1− dj+1 = d2 + d3 + · · ·+ dj + 1 and the transposition s1(2)sj(1) occurs in move

δ1 + d2 + d3 + · · · + dj + 1 − 1 = d2 + d3 + · · · + dj + 1. Thus the lines s1(1)sj+1(dj+1)

and s1(2)sj(1) are parallel. Similarly, the transposition s1(2)sj+1(dj+1) occurs in move

δ1 +d2 +d3 + · · ·+dj+1 +2−dj+1 = d2 +d3 + · · ·+dj +2 and the transposition s1(3)sj(1)
occurs in move δ1 + d2 + d3 + · · · + dj + 3 − 1 = d2 + d3 + · · · + dj + 2. Thus the lines

s1(2)sj+1(dj+1) and s1(3)sj(1) are parallel.
Since sj+1 is reversed after sj , sj+1 is in the third quadrant and so it has coordinates

(−x,−y) for some x, y > 0. Equaling the slopes of each pair of parallel lines, we have

λd1−2

λdj−1
=
λd1−1 − y

x
and

λd1−3

λdj−1
=
λd1−2 − y

x
.

Multiplying the second identity by λ, the identities imply that y = yλ. This is impossible
because y > 0 and λ > 1.
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Theorem 4.7. The allowable sequence Π = DC cs
ncgen(d1, d2, . . . , dt) with t ≥ 3, di ≥ 2,

and di+1 = di+2 = 1 for some i ∈ [t] is geometrically realizable if and only if t = 3.
Moreover, any realization of Π is affinely equivalent to TC ∗(1, bdi/2c, ddi/2e).

Proof. Without loss of generality, assume that d1 ≥ 2 and d2 = d3 = 1. Suppose by
contradiction that there is a geometric realization P of Π. By Corollary 4.5, we can
assume that the subset of P corresponding to Π|s1∪s2 is the centrally symmetric bipencil

`1 : s1(d1 + 1− k) = (0, λk) and s1(d1 + 1− k) = (0,−λk)

for k ∈ [d1], 1 = λ1 < λ2 < · · · < λd1 ,

`2 : s2(1) = (−1, 0) and s2(1) = (1, 0).

Consider k ∈ [d1]. By Corollary 3.5(4), the transposition s1(d1 + 1− k)s3(1) occurs in
move n+δ1+d1+d2+1−d1−1+k = n+1+k, and the transposition s1(d1−k)s2(1) occurs in
move n+δ1+d1+1−d1+k = n+1+k. Thus the lines s1(d1+1−k)s3(1) and s1(d1−k)s2(1)

are parallel. By Corollary 3.5(3), the transposition s1(d1 − k − 1)s3(1) occurs in move

δ1 +d2 +d3 +d1−k−1−1 = d1−k and the transposition s1(d1 − k)s2(1) occurs in move

δ1 + d2 + d1 − k− 1 = d1 − k. Thus the lines s1(d1 − k − 1)s3(1) and s1(d1 − k)s2(1) are

parallel. Similarly, the transposition s1(d1)s3(1) occurs in move δ1+d2+d3+d1−1 = d1+1.
Also, by Corollary 3.5(2), s2 reverses in move δ2 = d1 + d2 = d1 + 1. Thus the lines

s1(d1)s3(1) and `2 are parallel. This means that s3(1) = (−a,−1). Moreover, since s3 is
reversed after s1 and s2, then s3(1) is in the third quadrant and so a > 0. Equaling the
slopes of each pair of parallel lines, we obtain

λk + 1

a
=
λk+1

1
and

1− λk+1

a
=
−λk

1
.

This means that a = (λk+1)/λk+1 = (λk+1−1)/λk for any k ∈ [d1] with λ1 = 1. Solving
this recursion gives a = 1 and λk = k for any k ∈ [d1]. Note that the subconfiguration of
2(d1 + 2) points determined by s1, s2, and s3 corresponds to the points

`1 : (0,±k) for k ∈ [d1],

`2 : (±1, 0),

`3 : ±(1, 1).

This configuration is actually direction-critical. It is similar to the tricolumnar array
TC∗(bd1/2c, dd1/2e), see Figure 4. This means that any realization of DC cs

ncgen(d1, 1, 1)
with d1 ≥ 2 is affinely equivalent to TC∗(1, bd1/2c, dd1/2e).

Now assume by contradiction that t ≥ 4 and consider the point s4(d4). By Corollary
3.5(2), s3 reverses in move δ3 = d1 + 2d2 + d3 = d1 + 3. By Corollary 3.5(3), the

transposition s3(1)s4(d4) occurs in move δ3 + d4 + 1 − d4 = d1 + 2d2 + d3 + 1 = d1 + 3.

Thus the lines `3 and s3(1)s4(d4) are parallel. But s3(1) is on `3 and so the lines are
actually equal. This means that s4(d4) ∈ `3, which is impossible.

Theorem 4.8. The allowable sequence Π = DC cs
ncgen(d1, d2, . . . , dt) with t ≥ 3 and di =

di+1 = di+2 = 2 for some i ∈ [t] is geometrically realizable if and only if t = 3. Moreover,
any realization of DC cs

ncgen(2, 2, 2) is affinely equivalent to (Z 5, 12, 6).

Proof. Without loss of generality, assume that d1 = d2 = d3 = 2. Suppose that there is
a geometric realization P of Π. By Corollary 4.5, we can assume that the subset of P
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corresponding to Π|s1∪s2 is the exponential cross

`1 : s1(1) = (0, λ), s1(2) = (0, 1), s1(2) = (0,−1), s1(1) = (0,−λ),

`2 : s2(1) = (λ, 0), s2(2) = (1, 0), s2(2) = (−1, 0), s2(1) = (−λ, 0).

By Corollary 3.5(4), the transposition s1(1)s2(2) occurs in move n+δ1+d1+2−1 = n+3
and the transposition s1(2)s3(1) occurs in move n+ δ1 + d1 + d2 + 1− 2 = n+ 3. Thus
the lines s1(1)s2(2) and s1(2)s3(1) are parallel. Similarly, the transposition s1(1)s3(1)
occurs in move n+ δ1 + d1 + d2 + 1− 1 = n+ 4 and the transposition s1(2)s3(2) occurs
in move n + δ1 + d1 + d2 + 2 − 2 = n + 4. Thus the lines s1(1)s3(1) and s1(2)s3(2) are

parallel. By Corollary 3.5(3), the transposition s1(2)s2(1) occurs in move δ1+d2+2−1 =

3 and the transposition s1(1)s3(2) occurs in move δ1 + d2 + d3 + 1 − 2 = 3. Thus

the lines s1(2)s2(1) and s1(1)s3(2) are parallel. Similarly, the transposition s1(2)s3(2)

occurs in move δ1 + d2 + d3 + 2− 2 = 4 and the transposition s1(1)s3(1) occurs in move
δ1 + d2 + d3 + 1− 1 = 4. Also, by Corollary 3.5(2), s2 reverses in move δ2 = d1 + d2 = 4.

Thus the lines s1(2)s3(2), s1(1)s3(1), and `2 are parallel. Thus s3(1) = (−a,−λ) and
s3(2) = (−b,−1) for some a and b. Moreover, since s3 is reversed after s2, s3(1) and s3(2)
are in the third quadrant and so a, b > 0. Equaling the slopes of each pair of parallel
lines, we have

λ

1
=
λ+ 1

a
,
λ

1
=

b

λ− 1
, and

2λ

a
=

2

b
.

Hence, λ = a/b = (λ + 1)(λ − 1)/λ2, that is, λ = (1 +
√

5)/2, a = λ, and b = 1. Then

s3(1) = (−λ,−λ), s3(2) = (−1,−1), s3(1) = (λ, λ) and s3(2) = (1, 1). Note that the
subconfiguration of 12 points determined by s1, s2, and s3 corresponds to the points

`1 : ±

(
0,

1 +
√

5

2

)
,±(0, 1),

`2 : ±

(
1 +
√

5

2
, 0

)
,±(1, 0),

`3 : ±

(
1 +
√

5

2
,

1 +
√

5

2

)
,±(1, 1).

This configuration is actually direction-critical. It is a similar copy of (Z5, 12, 6) shown
in Figure 3, which means that any realization of DC cs

ncgen(2, 2, 2) is affinely equivalent to
(Z5, 12, 6).

Now assume by contradiction that t ≥ 4 and consider the point s4(d4). By Corollary
3.5(2), s3 reverses in move δ3 = d1 + 2d2 + d3 = 8. By Corollary 3.5(3), the transposition

s2(2)s4(d4) occurs in move δ2 + d3 + d4 + 2 − d4 = d1 + 2d2 + d3 + 2 = 8. Thus the

lines `3 and s2(2)s4(d4) are parallel. Since `3 has slope 1 and the line s2(2)s4(d4) passes

through s2(2) = (1, 0), then s4(d4) = (−c,−1−c) and c > 0 because s4(d4) must be in the
third quadrant due to s4 reversing after s1 and s2. By Corollary 3.5(3), the transposition

s2(2)s3(1) occurs in move δ2 + d3 + 2− 1 = d1 + d2 + d3 − 1 = 5, and the transposition

s2(1)s4(d4) occurs in move δ2 + d3 + d4 + 1 − d4 = d1 + d2 + d3 − 1 = 5. Thus the
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lines s2(2)s3(1) and s2(1)s4(d4) are parallel and so λ/(1 + λ) = (1 + c)/(λ + c). Since

λ = (1 +
√

5)/2, then c = λ2 − λ− 1 = 0, getting a contradiction.

Theorem 4.9. The allowable sequence Π = DC cs
ncgen(d1, d2, . . . , dt) with t ≥ 3 and di =

di+2 = 2 and di+1 = 1 for some i ∈ [t] is not geometrically realizable.

Proof. Without loss of generality, assume that d1 = d3 = 2 and d1 = 1. Suppose that
there is a geometric realization P of Π. By Corollary 4.5, we can assume that the subset
of P corresponding to Π|s1∪s3 is the exponential cross

`1 : s1(1) = (0, λ), s1(2) = (0, 1), s1(2) = (0,−1), s1(1) = (0,−λ),

`3 : s3(1) = (λ, 0), s3(2) = (1, 0), s3(2) = (−1, 0), s3(1) = (−λ, 0).

By Corollary 3.5(4), the transposition s1(2)s3(1) occurs in move n+δ1 +d1 +d2 +1−2 =
n+ 2 and the transposition s1(1)s2(1) occurs in move n+ δ1 + d1 + 1− 1 = n+ 2. Thus
the lines s1(2)s3(1) and s1(1)s2(1) are parallel. By Corollary 3.5(3), the transposition

s1(2)s3(1) occurs in move δ1 +d2 +d3 + 2−1 = 4 and the transposition s2(1)s3(2) occurs

in move δ2 +d3 +1−2 = d1 +d2 +d3−1 = 4. Thus the lines s1(2)s3(1) and s2(1)s3(2) are

parallel. Similarly, the transposition s1(2)s3(2) occurs in move δ1 + d2 + d3 + 2− 2 = 3.

Also, by Corollary 3.5(2), s2 reverses in move δ2 = d1 + d2 = 3. Thus the lines s1(2)s3(2)
and `2 are parallel, both with slope −1. Thus s2(1) = (−a, a) and since s2 is reversed
after s1 and before s3, then s3(1) is in the second quadrant and so a > 0. Equaling the
slopes of each pair of parallel lines, we have

1

λ
=
λ− a
a

and
−1

λ
=
−a
a+ 1

.

Hence, a = 1/(λ − 1) = λ2/(λ + 1). This has a unique real solution for λ, and this
solution satisfies 1 < λ < 2. We separately analyze the cases t = 3 and t ≥ 4. When
t = 3, the transposition s3(2)s2(1) occurs in move n+ δ2 +d2 + 2−1 = n+d1 + 2d2 + 1 =
5 + 2 + 2 + 1 = 10 ≡ 0 (mod 10) by Corollary 3.5(4). This means that s3(2)s2(1) is
parallel to `1, which is vertical. Since s3(2) = (−1, 0) and s2(1) = (−a, a), then a = 1.
But a = 1/(λ − 1) = 1 implies λ = 2 contradicting 1 < λ < 2. If t ≥ 4, consider the
point s4(d4). By Corollary 3.5(2), s3 reverses in move δ3 = d1 + 2d2 + d3 = 6. By

Corollary 3.5(3), the transposition s2(1)s4(d4) occurs in move δ2 + d3 + d4 + 1 − d4 =

d1 + d2 + d3 + 1 = 6. Thus the lines `3 and s2(1)s4(d4) are parallel. Then s2(1)s4(d4) is

horizontal with s2(1) = (a,−a). So s4(d4) = (b,−a) for some b > 0 as it should be in the
4th quadrant due to s4 reversing after s1 and s3. By Corollary 3.5(3), the transposition

s1(1)s4(d4) occurs in move δ1+d2+d3+d4+1−d4 = d2+d3+1 = 4 and so it is parallel to

the line s1(2)s3(1) (see above). Thus −1/λ = a/(c−λ). This implies c = λ(λ−2)/(λ−1),
which is negative because 1 < λ < 2, getting a contradiction.

We are finally ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let d = (d1, d2, . . . , dt) and Π = DC cs
ncgen(d). When all entries

of d are 1s, Π is geometrically realizable by the regular polygon with 2t sides. When
t = 2, Π is geometrically realizable by an exponential cross if d1, d2 ≥ 2 or by a centrally
symmetric bipencil otherwise. Suppose that Π is geometrically realizable for some t ≥ 3
and some di ≥ 2. Without loss of generality, assume that d1 ≥ 2 is the largest entry
of d. If d1 ≥ 3, then Theorem 4.6 implies that d2 = d3 = · · · = dt = 1. By Theorem
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4.7, t = 3 and so d = (d1, 1, 1). Moreover, any realization of Π is affinely equivalent to
TC∗(1, bd1/2c, dd1/2e).

Now assume that each entry of d is 1 or 2. By Theorem 4.8, either d = (2, 2, 2), which
is realized by (Z5, 12, 6); or there are no more than two consecutive 2s in d. By Theorem
4.7, either d = (2, 1, 1), which is realized by the tricolumnar array TC∗(1, 1, 1); or there
are no consecutive 1s in d. Thus (2, 1, 2) must be a substring of consecutive elements of
d. But by Theorem 4.9, Π is not geometrically realizable in this case.

5. Future Work

Our classification results in Theorems 4.2 and 4.3 imply that any other odd-critical
or even-near-critical centrally symmetric configuration must contain a connecting line of
three or more points not passing through its center. Even though this does not completely
settles Jamison’s conjectures on large enough direction-critical configurations [3, 10], we
hope that our techniques bring us a step closer to understanding the structure of all
direction-(near)-critical configurations that are centrally symmetric. A structural result
for even-near-critical allowable sequences similar to Theorem 3.1, when the noncentral
general position hypothesis is removed, is still needed.



1 2 3 4 5 6 6 5 4 3 2 1

2 1 4 3 5 6 6 5 3 4 1 2

2 4 1 5 3 6 6 3 5 1 4 2

2 4 5 1 6 3 3 6 1 5 4 2

2 5 4 6 1 3 3 1 6 4 5 2

5 2 6 4 1 3 3 1 4 6 2 5

5 6 2 1 4 3 3 4 1 2 6 5

5 6 1 2 3 4 4 3 2 1 6 5

5 1 6 3 2 4 4 2 3 6 1 5

1 5 3 6 2 4 4 2 6 3 5 1

1 3 5 2 6 4 4 6 2 5 3 1

1 3 2 5 4 6 6 4 5 2 3 1

1 2 3 4 5 6 6 5 4 3 2 1





1 2 3 4 5 5 4 3 2 1

1 3 2 4 5 5 4 2 3 1

1 3 4 2 5 5 2 4 3 1

1 4 3 5 2 2 5 3 4 1

4 1 5 3 2 2 3 5 1 4

4 5 1 2 3 3 2 1 5 4

4 5 2 1 3 3 1 2 5 4

4 2 5 1 3 3 1 5 2 4

2 4 1 5 3 3 5 1 4 2

2 1 4 3 5 5 3 4 1 2

1 2 3 4 5 5 4 3 2 1



Figure 5. The sequences Π=DC cs
ncgen(2, 2, 2) and Π′=DC cs

ncgen(2, 1, 2).

Furthermore, understanding which induced subsequences of an even-near-critical cen-
trally symmetric allowable sequence are also even-near-critical seems to be key to the
full understanding of direction-(near)-critical configurations. For example, Proposition
4.4(2) shows that a subsequence induced by two full crossing substrings remains even-
near-critical. In contrast, even when the sequence Π = DC cs

ncgen(2, 2, 2) is geometrically
realizable by (Z5, 12, 6), the sequence Π′ = DC cs

ncgen(2, 1, 2) is not by Theorem 4.9. Fig-
ure 5 shows these two allowable sequences and Figure 6 shows the subsequences of Π
obtained by removing one point and its conjugate. More precisely, if S = [6] ∪ [6], then
the allowable sequences Π1 := Π|S\{1,1} and Π3 := Π|S\{3,3} are not even-near-critical as

their halfperiods have length 12. Comparing them to the sequence Π′, which actually has
a halfperiod of length 10, we can see that they are quite similar. In fact, Π1 and Π3 are
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both semispace equivalent to Π′ as defined in [8]. While Π1 and Π3 are geometrically real-
izable, Π′ requires a couple of extra pairs of parallel lines making a geometric realization
impossible.

2 3 4 5 6 6 5 4 3 2

2 4 3 5 6 6 5 3 4 2

2 4 5 3 6 6 3 5 4 2

2 4 5 6 3 3 6 5 4 2

2 5 4 6 3 3 6 4 5 2

5 2 6 4 3 3 4 6 2 5

5 6 2 4 3 3 4 2 6 5

5 6 2 3 4 4 3 2 6 5

5 6 3 2 4 4 2 3 6 5

5 3 6 2 4 4 2 6 3 5

3 5 2 6 4 4 6 2 5 3

3 2 5 4 6 6 4 5 2 3

2 3 4 5 6 6 5 4 3 2





1 2 4 5 6 6 5 4 2 1

2 1 4 5 6 6 5 4 1 2

2 4 1 5 6 6 5 1 4 2

2 4 5 1 6 6 1 5 4 2

2 5 4 6 1 1 6 4 5 2

5 2 6 4 1 1 4 6 2 5

5 6 2 1 4 4 1 2 6 5

5 6 1 2 4 4 2 1 6 5

5 1 6 2 4 4 2 6 1 5

1 5 6 2 4 4 2 6 5 1

1 5 2 6 4 4 6 2 5 1

1 2 5 4 6 6 4 5 2 1

1 2 4 5 6 6 5 4 2 1



Figure 6. The subsequences Π1 and Π3 of DC cs
ncgen(2, 2, 2) induced by

removing the points {1, 1} or {3, 3}, respectively.
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Appendix

Examples of allowable sequences of the geometrically realizable centrally symmetric
direction-critical allowable sequences in noncentral general position, see Figure 4.

(1) The sequence (1, 1, 1, 1, 1, 1, 1, 1) in Figure 4(a) as an example for the type
(1, 1, . . . , 1) which corresponds to a regular polygon.



1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 3 2 5 4 7 6 8 8 6 7 4 5 2 3 1

3 1 5 2 7 4 8 6 6 8 4 7 2 5 1 3

3 5 1 7 2 8 4 6 6 4 8 2 7 1 5 3

5 3 7 1 8 2 6 4 4 6 2 8 1 7 3 5

5 7 3 8 1 6 2 4 4 2 6 1 8 3 7 5

7 5 8 3 6 1 4 2 2 4 1 6 3 8 5 7

7 8 5 6 3 4 1 2 2 1 4 3 6 5 8 7

8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

8 6 7 4 5 2 3 1 1 3 2 5 4 7 6 8

6 8 4 7 2 5 1 3 3 1 5 2 7 4 8 6

6 4 8 2 7 1 5 3 3 5 1 7 2 8 4 6

4 6 2 8 1 7 3 5 5 3 7 1 8 2 6 4

4 2 6 1 8 3 7 5 5 7 3 8 1 6 2 4

2 4 1 6 3 8 5 7 7 5 8 3 6 1 4 2

2 1 4 3 6 5 8 7 7 8 5 6 3 4 1 2

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1



(2) The sequence d = (4, 4) in Figure 4(b) as an example for the type (d1, d2) with
d1, d2 ≥ 2, which corresponds to an exponential cross.



1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 2 3 5 4 6 7 8 8 7 6 4 5 3 2 1

1 2 5 3 6 4 7 8 8 7 4 6 3 5 2 1

1 5 2 6 3 7 4 8 8 4 7 3 6 2 5 1

5 1 6 2 7 3 8 4 4 8 3 7 2 6 1 5

5 6 1 7 2 8 3 4 4 3 8 2 7 1 6 5

5 6 7 1 8 2 3 4 4 3 2 8 1 7 6 5

5 6 7 8 1 2 3 4 4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4 4 3 2 1 8 7 6 5

5 6 7 1 8 2 3 4 4 3 2 8 1 7 6 5

5 6 1 7 2 8 3 4 4 3 8 2 7 1 6 5

5 1 6 2 7 3 8 4 4 8 3 7 2 6 1 5

1 5 2 6 3 7 4 8 8 4 7 3 6 2 5 1

1 2 5 3 6 4 7 8 8 7 4 6 3 5 2 1

1 2 3 5 4 6 7 8 8 7 6 4 5 3 2 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
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(3) The sequence d = (5, 3) in Figure 4(c) as an example for the type (d1, d2) with
d1, d2 ≥ 2, which corresponds to an exponential cross.



1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 2 4 3 5 6 7 8 8 7 6 5 3 4 2 1

1 4 2 5 3 6 7 8 8 7 6 3 5 2 4 1

4 1 5 2 6 3 7 8 8 7 3 6 2 5 1 4

4 5 1 6 2 7 3 8 8 3 7 2 6 1 5 4

4 5 6 1 7 2 8 3 3 8 2 7 1 6 5 4

4 5 6 7 1 8 2 3 3 2 8 1 7 6 5 4

4 5 6 7 8 1 2 3 3 2 1 8 7 6 5 4

4 5 6 7 8 1 2 3 3 2 1 8 7 6 5 4

4 5 6 7 1 8 2 3 3 2 8 1 7 6 5 4

4 5 6 1 7 2 8 3 3 8 2 7 1 6 5 4

4 5 1 6 2 7 3 8 8 3 7 2 6 1 5 4

4 1 5 2 6 3 7 8 8 7 3 6 2 5 1 4

1 4 2 5 3 6 7 8 8 7 6 3 5 2 4 1

1 2 4 3 5 6 7 8 8 7 6 5 3 4 2 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1



(4) The sequence d = (6, 2) in Figure 4(d) as an example for the type (d1, d2) with
d1, d2 ≥ 2, which corresponds to an exponential cross.

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 3 2 4 5 6 7 8 8 7 6 5 4 2 3 1

3 1 4 2 5 6 7 8 8 7 6 5 2 4 1 3

3 4 1 5 2 6 7 8 8 7 6 2 5 1 4 3

3 4 5 1 6 2 7 8 8 7 2 6 1 5 4 3

3 4 5 6 1 7 2 8 8 2 7 1 6 5 4 3

3 4 5 6 7 1 8 2 2 8 1 7 6 5 4 3

3 4 5 6 7 8 1 2 2 1 8 7 6 5 4 3

3 4 5 6 7 8 1 2 2 1 8 7 6 5 4 3

3 4 5 6 7 1 8 2 2 8 1 7 6 5 4 3

3 4 5 6 1 7 2 8 8 2 7 1 6 5 4 3

3 4 5 1 6 2 7 8 8 7 2 6 1 5 4 3

3 4 1 5 2 6 7 8 8 7 6 2 5 1 4 3

3 1 4 2 5 6 7 8 8 7 6 5 2 4 1 3

1 3 2 4 5 6 7 8 8 7 6 5 4 2 3 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
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(5) The sequence (7, 1) in Figure 4(e) as an example for the type (d1, 1) with
d1 ≥ 2, which corresponds to a biplencil:



1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

2 1 3 4 5 6 7 8 8 7 6 5 4 3 1 2

2 3 1 4 5 6 7 8 8 7 6 5 4 1 3 2

2 3 4 1 5 6 7 8 8 7 6 5 1 4 3 2

2 3 4 5 1 6 7 8 8 7 6 1 5 4 3 2

2 3 4 5 6 1 7 8 8 7 1 6 5 4 3 2

2 3 4 5 6 7 1 8 8 1 7 6 5 4 3 2

2 3 4 5 6 7 8 1 1 8 7 6 5 4 3 2

2 3 4 5 6 7 8 1 1 8 7 6 5 4 3 2

2 3 4 5 6 7 1 8 8 1 7 6 5 4 3 2

2 3 4 5 6 1 7 8 8 7 1 6 5 4 3 2

2 3 4 5 1 6 7 8 8 7 6 1 5 4 3 2

2 3 4 1 5 6 7 8 8 7 6 5 1 4 3 2

2 3 1 4 5 6 7 8 8 7 6 5 4 1 3 2

2 1 3 4 5 6 7 8 8 7 6 5 4 3 1 2

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1



(6) The sequence (6, 1, 1) in Figure 4(f) as an example for the type (d1, 1, 1) with
d1 ≥ 2, which corresponds to a tricolumnar arrangement:

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

2 1 3 4 5 6 7 8 8 7 6 5 4 3 1 2

2 3 1 4 5 6 7 8 8 7 6 5 4 1 3 2

3 2 4 1 5 6 7 8 8 7 6 5 1 4 2 3

3 4 2 5 1 6 7 8 8 7 6 1 5 2 4 3

3 4 5 2 6 1 7 8 8 7 1 6 2 5 4 3

3 4 5 6 2 7 1 8 8 1 7 2 6 5 4 3

3 4 5 6 7 2 8 1 1 8 2 7 6 5 4 3

3 4 5 6 7 8 2 1 1 2 8 7 6 5 4 3

3 4 5 6 7 8 1 2 2 1 8 7 6 5 4 3

3 4 5 6 7 1 8 2 2 8 1 7 6 5 4 3

3 4 5 6 1 7 2 8 8 2 7 1 6 5 4 3

3 4 5 1 6 2 7 8 8 7 2 6 1 5 4 3

3 4 1 5 2 6 7 8 8 7 6 2 5 1 4 3

3 1 4 2 5 6 7 8 8 7 6 5 2 4 1 3

1 3 2 4 5 6 7 8 8 7 6 5 4 2 3 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1




	Introduction
	Allowable Sequences
	Direction-Critical Allowable Sequences
	On the Classification of Geometric Configurations
	Geometric Realizations

	Future Work

