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Abstract We study the uniform sampling of permutations without fixed points, i.e., derangements, that

can be decomposed into m disjoint cycles. Since the number of cycles in a random derangement tends

towards the standard distribution, rejection sampling may take exponential time when m largely deviates

from the mean of Θ(logn). We propose an algorithm for generating a uniformly random derangement of

n items with m cycles in O(n2.5 logn) time complexity using dynamic programming with an assumption

that all arithmetic operations can be done in time O(1). Taking into account the arithmetic operations

on large integers, the running time becomes O(n3.5 log3 n). Our algorithm uses permutation types to

structure our uniform generation of derangements.
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1. Introduction

A fixed point in a permutation is an element that maps to itself. A derangement is a
permutation without fixed points. The study of derangements can be traced back to 1708
when Pierre Rémond de Montmort proposed a problem for counting distinct derangements
given n unique items. Together with Nicolaus I Bernoulli, they solved the problem half a
decade after [1]. Using the inclusion-exclusion principle, they showed that the number of

derangements of n items, in its modern form, is d(n) = n!
∑n

i=0
(−1)i

i! .
Naturally, the problem of generating derangements follows. Since the probability that

a random permutation is a derangement is d(n)/n! ≈ 1/e, a simple rejection sampling
technique with a standard algorithm for generating random permutations works with an
expectation of O(1) trials until a derangement is generated. Recently, there have been
efforts to efficiently generate a random derangement with smaller numbers of trials [2–4].

A permutation can be decomposed into disjoint cycles by tracing the result of applying
the permutation repeatedly on each element. A cycle of length k is referred to as a k-cycle.

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2023 by TJM. All rights reserved.



900 Thai J. Math. Vol. 21 (2023) /N. Phetmak and J. Fakcharoenphol

From this definition, a derangement is a permutation with no 1-cycles. A permutation
with only one cycle is called a cyclic permutation. When the number of elements is larger
than one, a cyclic permutation is also a derangement.

In this paper, we are interested in generating derangements with exactly m cycles.
When m = 1, i.e., the goal is to generate a cyclic permutation; in this case, Sattolo [5]
gave an algorithm that runs in O(n) time. For other values of m, since the number of
cycles obeys Gaussian distributions [6], rejection sampling also works when m is close to
the expectation, which is Θ(log n). However, when m deviates badly from the expectation,
the number of feasible derangements can be tiny, and it may take exponentially many
trials to get the desired number of cycles. For example, when n is even and m = n/2,
there are only

1

(n/2)!

(
n

2

)(
n− 2

2

)
· · ·
(

2

2

)
=

1

(n/2)!

(
n

2, 2, · · · , 2

)
=

n!

(n/2)! · 2(n/2)

derangements. The probability of successfully obtaining one from a random derangement
is only O(1/

√
2n).

In this paper, we propose algorithms for uniformly generating a derangement of n items
with m cycles in time O(n2.5 log n), assuming that all arithmetic operations can be done
in O(1) time. When accounting for arithmetic operations of large integers, the algorithm
runs in time O(n3.5 log3 n).

For a set of possible permutations P, a ranking function for P is a bijection from P
to {0, 1, 2, . . . , |P|−1}, and an unranking function is its inverse. Notable algorithms for
ranking and unranking functions are Myrvold–Ruskey on permutations [7] and Mikawa–
Tanaka on derangements [8]. This paper focuses only on devising an unranking function
and uses it as a core routine to our algorithms.

While the Stirling number of the first kind [9, 10] gives the number of permutations
with m cycles, it does not give enough structure for reconstructing the i-th derangement
with m cycles. Our key ingredient is a permutation type t (see Section 6.2 in [9]) that
lists the number of cycles t(k) for every cycle length k in a permutation. Our algorithm
breaks down the random index i of the derangements into separate index i(k) for each
cycle length k. With these details information on i and t, we can reconstruct the required
random derangement with m cycles.

While we work only on uniform generation, permutations, as well as derangements, can
be weighted. One notable example of a weighting scheme is Ewens’s Sampling Formula [11]
in population genetics (see, e.g., the work by da Silva, Jamshidpey, and Tavaré [12]).
Our approach can be adapted to deal with weighted derangements if one can sample
permutation types correctly under the weighting scheme. Since our algorithm constructs
and maintains partial types iteratively, if the weight function can be decomposed nicely
with partially known types, we believe the approach here may be useful in that setting.

Section 2 gives definitions and related algorithms. Two extensions of the Stirling
number of the first kind that we need are also defined in this section. We present a
simpler O(n3) algorithm in Section 3 based on dynamic programming. Using binary
search, we obtain an improved algorithm with an O(n2.5 log n) running time described in
Section 4. We discuss the issues with algorithmic implementation with large integers in
Section 5, resulting in an overhead of O(n log2 n) time, primarily for computing factorials.
Finally, we present empirical data on the uniformity and running time of our algorithm
in Section 6.
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Preliminary version. A preliminary version of this paper [13], appeared in TJCD-
CGGG 2020+1, only had N. Phetmak as a single author and presented an O(n3)-time
algorithm. J. Fakcharoenphol, the second author added in this version, contributed to a
result in Section 4.

2. Preliminaries

In this section, we review definitions and results that we use. We also define two useful
extensions on the Stirling numbers of the first kind.

2.1. Counting Permutations

A permutation is an arrangement of items. It is a bijection of a set onto itself. Let
π denotes a permutation of set X, then π(x) denotes an arrangement of an item x for
x ∈ X. For convenience, when x 6∈ X, we let π(x) = x.

To write a permutation, we adopt Cauchy’s two-line notation. For example if σ(1) = 1,
σ(2) = 3, and σ(3) = 2, we write σ = ( 1 2 3

1 3 2 ).
It is natural to work with a sequence of permutation applications, e.g., applying a

permutation σ after applied a permutation π. A product of a pair of such permuta-
tions, denotes as σ·π, is a composition of them, i.e., (σ·π)(x) = σ(π(x)). For example,
( 2 4
4 2 ) · ( 1 2 3

1 3 2 ) = ( 1 2 3 4
1 3 4 2 ). Observe that for arbitrary permutations, the product does not

commute. However, when both permutations are disjoint, i.e., they move different sets of
items, the commutative property holds. We also write a product in a juxtaposition form
σπ. The notation πk denotes π composed onto itself for k times.

When we apply the same permutation repeatedly, the arrangement will eventually
return to the initial arrangement. A cycle of a permutation π that contains x is a cyclic
list (x, π(x), π2(x), · · · , πk−1(x)), where k is the smallest integer greater than zero such
that x = πk(x). We say that such a cycle has length k, or it is a k-cycle. A cycle of length
one is called a fixed point.

A permutation may consist of more than one cycle. A permutation of n items with
only one n-cycle is called a cyclic permutation, while a permutation that avoids creating
any fixed points is called a derangement.

Given n = kv distinct items, suppose that we would like to generate a permutation
with v cycles each of length k. We may start by generating a partition of items into v
disjoint sets, each of size k. We let B(n, k), be the number of partitions; thus,

B(n, k) =
1

(n/k)!

(
n

k, k, · · · , k

)
. (2.1)

To see this, note that
(

n
k,k,··· ,k

)
counts the number of ways one can choose a sequence of

v = n/k subsets of size k, so we divide it by (n/k)! to obtain B(n, k). We also note a
recurrence relation B(n, k) =

(
n−1
k−1
)
B(n−k, k). This sequence is useful in other contexts,

and it appears as sequence A060540 in [14].
Our algorithm is structured around permutation types [9]. We say that a permutation

is of type t = [t(1), t(2), . . . , t(n)], iff for 1 ≤ k ≤ n, the permutation contains t(k) cycles
of length k. Hence, the number of cycles m in a permutation is

∑
k t(k) = m. It is known

(see, e.g.,[9]) that the number of distinct permutations for n items of type t is

n!∏
k k

t(k)t(k)!
=

n!

1t(1)2t(2) · · ·nt(n)t(1)!t(2)! · · · t(n)!
. (2.2)
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While permutation types give us insight on how cycles are formed, enumerating all
types takes exponential time. The Stirling number of the first kind [10], denoted by
s(n,m), is the number of distinct permutation of n items with m cycles, which can be
defined recursively as

s(n,m) =


1 if n = 0 and m = 0,

0 if n ≤ 0 or m ≤ 0,

(n−1)s(n−1,m) + s(n−1,m−1) otherwise.

(2.3)

We shall define two related extensions of the Stirling number of the first kind. The
first additionally takes the lower bound for the cycle length.

Definition 2.1. The r-associated Stirling number of the first kind [15, Chapter 12],
denoted by sr(n,m), is the number of permutations of n items with m cycles, where each
cycle has length at least r.

The following lemma states its recurrence.

Lemma 2.2.

sr(n,m) =


1 if n = 0 and m = 0,

0 if n ≤ 0 or m ≤ 0,

(n−1)sr(n−1,m) + (n−1)!
(n−r)!sr(n−r,m−1) otherwise.

(2.4)

Proof. Similar to (2.3), this lemma can be proved by considering the last case. The first
term is when we add a new item to a permutation of size n−1 with m cycles each of
length at least r, resulting in a permutation where item n belongs to a cycle of length
greater than r. The second term chooses a cycle of length exactly r that contains n.

By definition, s1(n,m) is the original Stirling number of the first kind, while s2(n,m)
only counts derangements with m cycles.

We can compute sr(n,m) using dynamic programming for a fixed r. Assuming that
all factorials have been precomputed, since a single entry for sr(n,m) only looks up O(1)
other entries with smaller indices, the running time is O(mn) ≤ O(n2)

Another extension considers the number of occurrences of the shortest cycles. Note that
this partial-type Stirling number of the first kind basically gives recurrence for computing
the number of derangements based on permutation types.

Definition 2.3. The partial-type Stirling number of the first kind, denoted by svk(n,m),
is the number of permutations of n items with m cycles, where the smallest cycles have
length exactly k and appear exactly v times.

The following lemma states the formula for svk(n,m), which is essentially an unpack of
the analysis of (2.2).

Lemma 2.4.

svk(n,m) =
n!

kvv!(n−kv)!
sk+1(n−kv,m−v). (2.5)

Proof. The coefficient n!
kvv!(n−kv)! counts the number of ways one can choose v cycles of

length exactly k, and sk+1(n−kv,m−v) counts the number of ways for choosing the rest
of the permutation.
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Note that when one have already computed sk+1(n,m) and all the necessary factorials,
it only takes O(1) to find svk(n,m). With all intermediate values of sk+1(·, ·) from the
computation of sk+1(n,m), one can also compute a list of svk(n,m) for all 0 ≤ v ≤ bnk c
under the same time limit.

2.2. Permutation Algorithms

We introduce 3 subroutines for permutation and partition generation. The first two
functions UnrankChoose and UnrankPeriodicChoose are related to partition gen-
eration based on B(n, k) shown in (2.1). The third function is fundamentally the cyclic
permutation algorithm of Sattolo [5]. All three subroutines are essentially unranking
functions that map integers to their corresponding permutations. We remark that these
functions are discussed in [16, 17]. Throughout the paper, we use zero-based numbering
when referring to the i-th item in some ordering and also when referring to items in lists
or arrays.

We refer to a subset of size k as a k-subset. The first function chooses the i-th k-
subset from a list of n items. Algorithm 1 describes function UnrankChoose(X, k, i)
that takes array X with n unique items, the number k of items to choose, and index i,
and returns the i-th k-subset Y of X as a list of items. If array X is sorted, subset Y is
the i-th lexicographically smallest subset. For example, let X be an array [A,B,C,D,E].
Choosing k = 3 items at index i = 0 yields [A,B,C], choosing at index i = 1 yields
[A,B,D], and choosing at the last index i =

(
5
3

)
−1 yields [C,D,E].

Algorithm 1 The i-th k-subset from X with n items

function UnrankChoose(X, k, i)
if k = 0 then

return [ ]
end if
x← X[0] . Let x be the first item
X ′ ← X[1, . . .] . Let X ′ be the rest of the array
j ← i−

(
n−1
k−1
)

if j ≥ 0 then
return UnrankChoose(X ′, k, j) . Skip x

end if
return [ x ] + UnrankChoose(X ′, k−1, i) . Choose x

end function

Function UnrankChoose(X, k, i) works in O(n) time, since it recurses for at most
O(n) times and each call runs in O(1) time. The term

(
n−1
k−1
)

can be computed in O(1)
time, provided that all factorials have been precomputed. We remark that this function
can be improved to run in time O(k log n) using binary search.

The next function UnrankPeriodicChoose(X, k, i), shown as algorithm 2, essen-
tially generates the i-th partition of X into v subsets of size k using function Unrank-
Choose. It takes array X with n unique items, the size of subsets k, where n = kv,
and an index i such that 0 ≤ i < B(n, k). It returns the i-th partition of X into an
unordered list v subsets of size k. Again if array X is sorted, the partition returned is
the i-th lexicographically smallest partition. The function works by repeatedly calling
UnrankChoose with appropriate indices.
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Algorithm 2 i-th partition of X into n/k sets, each with k items

function UnrankPeriodicChoose(X, k, i)
if X = ∅ then

return [ ]
end if
(j, i′)← DivMod(i,

(
n−1
k−1
)
) . (q, r) = DivMod(a, b) ⇐⇒ a = qb+ r

Y ← UnrankChoose(X, k, i′)
return [ Y ] + UnrankPeriodicChoose(X\Y, k, j)

end function

Function UnrankPeriodicChoose runs in O(n2/k) time, because there are O(n/k)
recursive steps and each step runs in time O(n). However, if we use the O(k log n)
implementation of UnrankChoose, this function may takes O(n log n) running time
instead. Note that since items in X and Y are stored in ascending order, finding the
array X \ Y takes O(n) time.

In each recursive call to UnrankPeriodicChoose, it chooses one k-subset from X.
Recalled the relation for B(n, k) from (2.1), there are

(
n−1
k−1
)

ways to partition k-subset in

this level, leaving n−k items with B(n−k, k) ways to generate the rest of the partition.
Therefore to generate the i-th partition, we write i as

(
n−1
k−1
)
·j+i′ and find the i′-th subset

of size k at this level and recursively find the j-th partition of the rest of the array. This is
essentially the implementation of the recursive form of B(n, k) in (2.1). Note that index
i′ ensures that UnrankChoose would choose the first item of X; thus, the subsets in
the partition generated is unordered as claimed.

The last subroutine generates the i-th cyclic permutation based on Sattolo’s ran-
dom cyclic permutation algorithm [5]. Function UnrankCyclicPermute(X, i) in algo-
rithm 3, takes array X of n unique items and an index i. It permutes the given items into
the i-th cyclic permutation. Unlike previous subroutines, this function does not preserve
lexicographical order property. This is a trade-off for ease of implementation, which result
in a simple algorithm with O(n) time complexity.

Algorithm 3 i-th cyclic permutation of X with n items

function UnrankCyclicPermute(X, i)
X ′ ← a copy of array X
for k ∈ [n−1, n−2, · · · , 1] do

(i, j)← DivMod(i, k)
swap X ′[j] with X ′[k]

end for
return X ′

end function

3. The O(n3) Algorithm

In this section, we describe our O(n3)-time algorithm to find the i-th derangement
with m cycles. To find the required random derangement with this algorithm, one first
compute s2(n,m) in time O(n2), then choose a random index 0 ≤ i < s2(n,m) as an
input to the unranking function.
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We briefly describe our approach based on dynamic programming. Typically, if one
could count the number of objects with some property, one could follow the step backward
to regenerate the i-th object. Our algorithm follows the same principle. While the 2-
associated Stirling number of the first kind s2(n,m) counts the number of derangements
with m cycles, it does not give us enough structure for reconstruction. Our key ingredient
is a permutation type t (see Section 6.2 in [9]). Instead of using recurrence for s2(n,m)
to count derangements, we use recurrences for permutation types, more specifically the
partial-type svk(·, ·), to do so, and by reconstructing backward from the smallest cycles,
one can reconstruct the complete i-th derangement. To see this, consider the topmost
level of the recursion where we compute s2(n,m) as

s2(n,m) = s02(n,m) + s12(n,m) + s22(n,m) + · · ·+ sm2 (n,m). (3.1)

Suppose that we want to find the i-th derangement. Since it is one of the s2(n,m)
derangements, it is counted in one of the term sv2(n,m) in the summation above. If we
find v such that

v−1∑
j=0

sj2(n,m) ≤ i <
v∑

j=0

sj2(n,m), (3.2)

we know partially that the type t of the i-th derangements is t(2) = v. We also know
that the i-th derangement is the i′-th derangement with t(2) = v, where

i′ = i−

v−1∑
j=0

sj2(n,m)

 . (3.3)

We define i(2) of this derangement to be i′. The formal definition of i will be given in the
following subsection.

Using the same idea, recursively, we can find t(3), t(4), and so on, together with
corresponding indices i(3), i(4). This is the first phase, the decomposition phase, of our
algorithm described in Subsection 3.1.

The second phase, the reconstruction phase, described in 3.2 actually reconstructs the
i-th derangement from the type t and index i.

0 s5(n,m) s4(n,m) s3(n,m) s2(n,m)

· · · 4-associated 3-associated 2-associated

s13(n,m) s23(n,m) s33(n,m) · · · sm3 (n,m)

Figure 1. Type structure of the derangement

3.1. The Decomposition Phase

In this phase, we use i to find a type signature t. We also decompose the given index i
into a subindex i(k) for the corresponding t(k). To define i of a derangement formally, we
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first have to define how one would order derangements. The derangements are ordered,
first, by the lexicographical ordering of their types. For the derangements of the same
types, they are ordered lexicographically by the cycles of each length, with priority given
to shorter cycles.

Intuitively, the index i(k) of a derangement π, is the index for choosing and arranging
cycles of length k. Let X ′ be the set of items in π such that its cycles are of length at
least k. If we construct a derangement by choosing cycles from the shorter ones, we may
choose items from X ′ to form t(k) cycles of length k. Thus, i(k) is the index for the

chosen cycles, each of length k, for π among all possible
( |X′|
kt(k)

)
B(kt(k), k) choices.

For the given n, m, and i, we would like to recursively find t for the corresponding
i-th derangement. The recursive problem also include parameter r, the lower bound of
the length of the smallest cycle; at the top-most call r = 2. More specifically, a function
ReconstructType takes n,m,r, and i, where i is the index of a derangement on n items
with m cycles, with the restriction that the minimum length of each cycle is at least r.
It returns the type t with subindices i of the corresponding derangement.

To do so, we first find (1) the minimum k ≥ r such that t(k) > 0 and also (2) the value
of t(k). To find k, we write sr(n,m) as

sr(n,m) =
(
sr(n,m)− sr+1(n,m)

)
+
(
sr+1(n,m)− sr+2(n,m)

)
+ · · · +(

sn−1(n,m)− sn(n,m)
)
. (3.4)

Each term sk(n,m) − sk+1(n,m) counts the number of derangements whose minimum
cycle length is exactly k. One can thus find k such that

sr(n,m)− sk(n,m) ≤ i < sr(n,m)− sk+1(n,m). (3.5)

Let i′ = i − (sr(n,m) − sk(n,m)) be the ordering of the i-th derangement among the
derangements whose type t′ is such that t′(j) = 0 for j < k and t′(k) > 0, i.e., the required
i-th derangement is the i′-th derangement in these sk(n,m)− sk+1(n,m) derangements.
To find the number of cycles of length k in the i-th derangement, we turn to partial-type
Stirling number of the first kind and note that

sk(n,m)− sk+1(n,m) = s1k(n,m) + s2k(n,m) + · · ·+ smk (n,m). (3.6)

Therefor, the number of cycles of length k is the index ` such that

`−1∑
j=1

sjk(n,m) ≤ i′ <
∑̀
j=1

sjk(n,m). (3.7)

We let i′′ = i′ −
∑`−1

j=1 s
j
k(n,m).

From the above discussion, we see that to find the minimum cycle length k and the
number of cycles of that particular length t(k) can be done simply by searching the values
of sk and s`k. Algorithm 4 describes the process, where function FindSmallestCycle-
Length searches for the index k and the offset i′ and function FindNumSmallestCy-
cles finds the value for t(k). Given k and t(k), during the reconstruction phase we would
choose kt(k) items from the item set and create t(k) random cycles from them, and the
rest of the items should belong to longer cycles. Note that for each choice for choosing
these t(k) cycles, there are

sk+1(n−kt(k),m−t(k)) (3.8)
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choices for the rest of the permutation. Therefore, to continue the process for longer
cycles, we can write the index i′′ as

i′′ = i(k) · sk+1(n− kt(k),m− t(k)) + j, (3.9)

where j < sk+1(n−kt(k),m−t(k)). The index i(k) is used to construct t(k) cycles and j
is the ordering for the rest of the construction where we build a permutation containing
longer cycles by recursively invoking ReconstructType(n−kt(k),m−t(k), k+1, j).

Algorithm 4 Reconstruction of type and subindices given an index of a permutation

function FindSmallestCycleLength(n,m, r, i)
if i < sr(n,m) then

return FindSmallestCycleLength(n,m, r+1, i)
end if
return (r−1, i−sr(n,m))

end function
function FindNumSmallestCycles(n,m, k, i)

for v ∈ [1, 2, · · · , bnk c] do
if i < svk(n,m) then

return (v, i)
end if
i← i− svk(n,m)

end for
end function
function ReconstructType(n,m, r, i)

if m = 0 then
return ∅

end if
(k, i′)← FindSmallestCycleLength(n,m, r, i)
(t(k), i′′)← FindNumSmallestCycles(n,m, k, i′)
(i(k), j)← DivMod(i′′, sk+1(n−kt(k),m−t(k)))
return [ (k, t(k), i(k)) ] + ReconstructType(n−kt(k),m−t(k), k+1, j)

end function

The next lemma considers the running time of ReconstructType.

Lemma 3.1. ReconstructType in algorithm 4 runs in O(n3) time.

Proof. We first deal with the running time for computing all Stirling numbers and their
extensions needed. First of all we can compute sr(·, ·) for every r in time O(n3) since
computing sr(n,m) for a particular r takes O(n2) as discussed in Section 2. Therefore
we assume that we have all values of the r-associated Stirling number of the first kinds
available when running the recursive procedure. From this, we have that functions Find-
SmallestCycleLength runs in time O(n).

After knowing k, Function FindNumSmallestCycles only needs svk(n,m) for every
v, which can be computed in time O(1) based on available sk+1(·, ·). Thus FindNumS-
mallestCycles also works in O(n) time.

Since we spend O(n) time for each recursion level and there can be at most n levels of
the recursion, we have that the running time for ReconstructType is O(n2), without
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the preprocessing for sk(·, ·). Combining with the preprocessing time, we have that the
whole algorithm runs in O(n3) time.

It is useful to have a sharper bound on the number of levels of recursion and consider the
running time of ReconstructType without the preprocessing needed for the Stirling
numbers. The following Lemma will be very useful when deriving a faster algorithm.

Lemma 3.2. Suppose that we can access to all sr(·, ·) for every r in time O(1). Recon-
structType runs in time O(n1.5). More specifically, ReconstructType only makes
at most O(

√
n) recursive calls.

Proof. For the running time, we only need to bound the number of levels of recursion.
Note that each recursive call involves a different value of cycle lowerbound r. Since the
sum of cycle lengths in a permutation is at most n and they are all different, there can
be no more than 1 + d2

√
ne cycle lengths since

1+d2
√
ne∑

i=1

i > n. (3.10)

We conclude that the algorithm never makes more than 1 + d2
√
ne = O(

√
n) recursive

calls.

3.2. The Reconstruction Phase

In this phase, we take the output type signature t and subindices i from the previous
phase to build up the final result derangement of desired number of cycles.

Based on the analysis of (2.2), each of i(k) corresponding to choosing kt(k) items from
nk items, the number of remaining items after done arranging all of cycles of length less
than k. Then partition selected items and make many cycles of length k. Thus, we must
break down i(k) furthermore, which are i′(k) index for choosing items; i′′(k) index for
partitioning into base cycles; and i′′′` (k) index for cyclic permutation on each cycle of
0 ≤ ` < t(k). Function UnrankDerangementCycles in algorithm 5 describes the
details of this assembling process. Also refer to Figure 2 for an example.

We have the following lemma.

Theorem 3.3. UnrankDerangementCycles in algorithm 5 runs in time O(n3).
Therefore, there exists an algorithm for uniformly generating a random derangement of
n items with m cycles in O(n3) time.

Proof. First consider UnrankDerangementCycles. The function Reconstruct-
Type runs in time O(n3) and returns a type signature t with at most O(

√
n) different

cycle lengths. Each loop of the main function is dominated by the call to UnrankPeri-
odicChoose which runs in time O(n2/k) = O(n2); thus given the type information, it
takes O(n2

√
n) = O(n2.5) to reconstruct the derangement.

To randomly generate a derangement, consider function RandomDerangementCy-
cles in algorithm 5 that first chooses a random index i and then calls UnrankDerange-
mentCycles to find the i-th derangement.
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Algorithm 5 i-th derangement of n items with m cycles, and its random counterpart

function UnrankDerangementCycles(X,m, i)
π ← ∅
T ← ReconstructType(|X|,m, 1, i)
for (k, t(k), i(k)) ∈ T do

(i(k), i′(k))← DivMod(i(k),
( |X|
kt(k)

)
)

X∗ ← UnrankChoose(X, kt(k), i′(k))
(i(k), i′′(k))← DivMod(i(k), B(kt(k), k))
for X† ∈ UnrankPeriodicChoose(X∗, k, i′′(k)) do

(i(k), i′′′(k))← DivMod(i(k), (k−1)!)
π ← π ·UnrankCyclicPermute(X†, i′′′(k))

end for
X ← X \X∗

end for
return π

end function
function RandomDerangementCycles(n,m)

X ← [0, 1, 2, · · · , n−1]
i← uniform random an integer such that 0 ≤ i < s2(n,m).
return UnrankDerangementCycles(X,m, i)

end function

ABCDEFGHIJKL

ABFHIK

AHK,BFI

(AHK)

i′′′0 (3) = 0

(BFI)

i′′′1 (3) = 0

i′′(3) = 8

i′(3) = 186

CDEGJL

CDEGJL

(CGLJED)

i′′′0 (6) = 114

i′′(6) = 0

i′(6) = 0

Figure 2. Example reconstruction given type signature and subindices

4. The O(n2.5 log n) Algorithm

In this section, we make an improvement on the algorithm shown in Section 3 to obtain
an O(n2.5 log n)-time algorithm.

Consider the search loop in FindSmallestCycleLength. Since there are at most n
possible values for k, we can use binary search to speed up the search to only O(log n)
iterations. Not only that this implies a faster running time for this specific function, it
implies that we only look at O(log n) values of k for sk(n,m). (Figure 3 illustrates the
idea.) Function FindSmallestCycleLength in algorithm 6 gives the implementation.
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The same idea can be applied to function FindNumSmallestCycles to reduce the
running time down to O(log n), provided that values of svk(·, ·)’s are available. This implies
the total running time for a binary-search ReconstructType of O(

√
n log n), without

preprocessing time.

n-assocd. · · · k-assocd. · · · 4-assocd. 3-assocd. 2-assocd.

lo mid hi

Figure 3. Binary search for k over the type structure

Algorithm 6 Improvement by binary search

function FindSmallestCycleLength(n,m, r, i)
(lo, hi)← (r, b nmc+ 1)
while lo < hi do

mid← b lo+hi
2 c

if i < smid(n,m) then
lo← mid+ 1

else
hi← mid

end if
end while
k ← lo− 1
return (k, i− sk+1(n,m))

end function

We account for the preprocessing time by noting that when considering the r-associated
Stirling numbers of the first kind, we only look at O(log n) values of k’s for each level,
with the total of O(

√
n log n) values across all recursion levels. Computing those entries,

only when needed, takes O(n2
√
n log n) time as each sk(n,m) requires O(n2) time.

Since the function for the second phase only runs in time O(n2.5), the total running
time for UnrankDerangementCycles is O(n2.5 log n) as stated below.

Theorem 4.1. Given an index i of the derangement, there is an algorithm to find the i-th
derangement with m cycles in time O(n2.5 log n). This algorithm can be used to uniformly
generate a random derangement of n items with m cycles in the same running time.

We can a have a simple extension where we want to find a derangement with n items
with m cycles whose cycle lengths are lower bounded by r.

Corollary 4.2. There exists an algorithm for generating a uniform permutation of n
items with m cycles, where each cycle have length at least r, in O(n2.5 log n) time.
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5. Dealing with Large Numbers

Previously we work under the RAM model of computation where we can perform simple
arithmetic operations in constant time. All running time analysis in previous sections
make this assumption when dealing with large integers, especially with factorials.

This is unrealistic as the values of factorials can be very large. For a given n, we note
that n! ≤ nn; therefore, it requires an O(n log n)-bit integer. To take this into account, we
let M(N) be the running time for an algorithm for multiplying N -bit integers; thus, our
algorithm runs in time O(n2.5 log n ·M(n log n)) if all factorials are available. Computing
all factorials takes only O(n ·M(n log n)), which is dominated by the running time of the
algorithm.

If one employs a straightforward multiplication algorithm, where M(N) = N2, one
would get an algorithm with running time O(n4.5 log3 n), factor of O(n2 log2 n) slowdown
in the running time. However, with a more efficient multiplication algorithm such as the
one by Harvey and van der Hoven [18] where M(N) = O(N logN), one would obtain an
O(n3.5 log3 n)-time algorithm, as claimed.

6. Experiments

In this section, we present empirical data for the uniformity and the claimed running
time of the proposed algorithm in Section 4. The laptop used for this task runs on
Intel Core i5-10210U with 16GB RAM. The operating system is Ubuntu 22.04 LTS on
Windows 10 WSL2. We implemented the algorithm in Python 3.10 since it uses big-integer
as a default, playing a vital role for precise factorial computations. Python also comes
with the standard library random for generating pseudo-random number, implementing
MT19937 [19] as a randomizer. The actual python implementation of the algorithm can
be found at https://github.com/neizod/derangement.

6.1. Uniform Generation

We first demonstrate that the generated derangements are uniformly distributed. Since
the number of distinct permutations is very large (i.e., n!), we restrict the values of n and
m to small numbers. In each case, we run the algorithm for 107 times to obtain the data.

For the first case, we deal with derangements with one cycle. We set n = 8 and m = 1,
yielding s2(8, 1) = 5040 distinct derangements. See the histogram in Figure 4. We observe
that the standard deviation of the number of occurrences is 44.752 which is reasonably
close to the expected 44.539, calculated with an assumption that each derangement is
generated independently.

The second case considers derangements with two cycles. We let n = 7 and m = 2.
There are s2(7, 2) = 924 distinct derangements in this case. See histogram in Figure 5. We
observe that the standard deviation of the number of occurrences is 103.182 (as compared
to the expected 103.975, again calculated with an independence assumption).

For larger values of n, we investigate the distribution of π(0) instead of the entire
space of derangements. If the derangement algorithm works correctly, then Pr[π(0) =
u] = 1/(n−1) for every u 6= 0. We choose n = 100 and m = 10, then experiment 106 times
and observe the distribution of π(0). The histogram is shown in Figure 6. We remark
that we should see no generated derangements where π(0) = 0. The sampled standard
deviation is 102.41, which is close to the expected 99.99 calculated under an independence
assumption.

https://github.com/neizod/derangement
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Figure 4. The distribution of generated derangements when n = 8 and
m = 1.
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Figure 5. The distribution of generated derangements when n = 7 and
m = 2.
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Figure 6. The distribution of π(0) when n = 100 and m = 10.

6.2. Running Time

The worst-case running time bound of O(n3.5 log3 n) makes no assumption on m, the
number of cycles. To see the effects of m to the running time, we perform an experiment
where n = 1000 with many values of m. For each data point, we perform 10 runs. The
result in Figure 7 demonstrates that m is an important factor in the running time.
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Figure 7. Effects of m to the actual running times.
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Figure 8. Running times for n from 50 to 1, 450 with m = 0.05n.
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Figure 9. Experiment of running time, case 3

To demonstrate the running time for various values of n from 50 to 1, 450, we let m be
5% of n. For each configuration, we perform 10 experiments and show the average running
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times in Figure 8. For comparison, we draw curves of different asymptotic complexities
(normalized to fix small actual values) as well.

We consider the case where m = 1 shown in Figure 9. In this case, the experiment
hints a faster running time, possibly O(n3). We suspect that this speed up might come
from the fact we only need one table level, s2(n, 1), when m = 1. However, for the case
when m = 1, one can use Sattolo’s algorithm [5] which requires only linear time.
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