On the Connectivity of Non-Commuting Graph of Finite Rings

Borworn Khuhirun, Khajee Jantarakhajorn* and Wanida Maneerut
Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University e-mail : borwornk@mathstat.sci.tu.ac.th (B. Khuhirun); Khajee@mathstat.sci.tu.ac.th (K. Jantarakhajorn); mneveryday@gmail.com (W. Maneerut)

Abstract

The non-commuting graph of a non-commutative ring R, denoted by Γ_{R}, is a simple graph with vertex set of elements in R except for its center. Two distinct vertices x and y are adjacent if $x y \neq y x$. In this paper, we study the vertex-connectivity and edge-connectivity of a non-commuting graph associated with a finite non-commutative ring R and prove their lower bounds. We show that the edge-connectivity of Γ_{R} is equal to its minimum degree. The vertex-connectivity and edge-connectivity of Γ_{R} are determined when R is a non-commutative ring of order p^{n} where p is a prime number, and $n \in\{2,3,4,5\}$.

MSC: 05C25; 05C40
Keywords: vertex-connectivity; edge-connectivity; minimum degree

Submission date: 29.01.2022 / Acceptance date: 07.02.2023

1. Introduction

Let R be a non-commutative ring and $Z(R)$ be the center of R. The centralizer of an element x in R is defined to be $C_{R}(x)=\{y \in R: x y=y x\}$ and a non-commutative ring R is called a $C C$-ring if every centralizer of non-central element in R is commutative. The non-commuting graph of R, denoted by Γ_{R}, is a graph whose vertex set is $R \backslash Z(R)$ and two distinct vertices x and y are adjacent if and only if $x y \neq y x$. This graph was introduced by Erfanian et al. [10]. The interplay between ring-theoretic properties and graph-theoretic properties has become a focus of research over the last decade. Many papers have assigned a group or a ring to a graph and investigated the properties of the associated graph, $[1-4,11,12,15,16]$.

For a graph $G, V(G)$ and $E(G)$ are the vertex set and edge set of G, respectively. The degree of vertex u in G, denoted by $\operatorname{deg}(u)$, is the number of edges incident with u. The minimum degree of G is the minimum degree among all vertices of G, denoted by $\delta(G)$. A $u-v$ path P in G is a sequence of distinct vertices, beginning with u and ending

[^0]Published by The Mathematical Association of Thailand.
Copyright © 2023 by TJM. All rights reserved.
at v such that consecutive vertices in P are adjacent in G. The path P is denoted by $P: v_{0}, v_{1}, v_{2}, \ldots, v_{k}$ where $u=v_{0}$ and $v=v_{k}$. The number of edges encountered in P is the length of path P. A graph G is said to be connected if G contain a $u-v$ path for every pair u, v of distinct vertices of G. The distance between u and v is the smallest length of any $u-v$ path in G, denoted by $d(u, v)$. The greatest distance between any two vertices of a connected graph G is called the diameter of G and denoted by $\operatorname{diam}(G)$. A complete graph is a graph in which every two distinct vertices are adjacent. A graph G is a k - partite graph if $V(G)$ can be partitioned into k subsets $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup \ldots \cup V_{k}$ and $V_{i} \cap V_{j}=\emptyset$ for all $i \neq j$, called partite sets, such that a adjacent to b if and only if a and b belong to different partite sets. A graph G is called a complete k-partite graph if G is k-partite and every two vertices in different partite sets are adjacent. The vertexconnectivity of G, denoted by $\kappa(G)$, is the minimum number of vertices whose removal from G results in a disconnected or trivial graph. The edge-connectivity of G, denoted by $\lambda(G)$, is the minimum number of edges whose removal from G results in a disconnected or a trivial graph.

Erfanian et al. [10] studied various graph theoretical properties of Γ_{R} such as completeness and planarity. They also determined the diameter, girth, domination number, chromatic number, and clique number of Γ_{R}.

The study of non-commuting graphs of rings was continued by Dutta and Basnet [8]. They proved that Γ_{R} is connected and determined the degree of vertices in Γ_{R}.

In this paper, we study the vertex-connectivity and edge-connectivity of the noncommuting graph associated with a finite non-commutative ring R. We prove a lower bound for $\kappa\left(\Gamma_{R}\right)$ and $\lambda\left(\Gamma_{R}\right)$. We show that the edge-connectivity of Γ_{R} is equal to $\delta\left(\Gamma_{R}\right)$, the minimum degree of Γ_{R}. In particular, we consider the relation between $\kappa\left(\Gamma_{R}\right), \lambda\left(\Gamma_{R}\right)$ and $\delta\left(\Gamma_{R}\right)$. Finally, for a ring R of order p^{n}, we determine $\kappa\left(\Gamma_{R}\right)$ and $\lambda\left(\Gamma_{R}\right)$ where p is a prime number, and $n \in\{2,3,4,5\}$.

2. Preliminaries

Throughout this paper, we let R be a finite non-commutative ring unless stated otherwise. We provide some useful results which will be used throughout this paper.

Theorem 2.1. [8, Proposition 2.1] Let R be a finite ring. Then Γ_{R} is connected.
Theorem 2.2. [10, Theorem 2.1] Let R be a non-commutative ring. Then diam $\left(\Gamma_{R}\right) \leq 2$.
Theorem 2.3. [13] If G is a connected graph of diameter at most 2 , then $\lambda(G)=\delta(G)$.
Theorem 2.4. [5] Let G be a graph of order n. If G is not a complete graph, then $\kappa(G) \geq 2 \delta(G)+2-n$.

Theorem 2.5. [10, Theorem 2.2] Let R be a non-commutative ring. Then Γ_{R} is complete if and only if $|R|=4$.

Lemma 2.6. [9, p.512] Let R be a finite ring with identity of order p^{n}, where p is a prime number. If $n<3$, then R is commutative.

Lemma 2.7. [16, Lemma 2.5] Let p be a prime number and R be a non-commutative ring of order p^{3} with identity. Then $|Z(R)|=p$.

Lemma 2.8. [16, Lemma 2.2] Let R be a finite non-commutative ring and $Z(R) \neq\{0\}$. Then $[R: Z(R)]=\frac{|R|}{|Z(R)|}$ is not prime.

Theorem 2.9. [15, Theorem 2.1] Let p be a prime number and R be a non-commutative ring of order p^{4} with identity. Then $C_{R}(x)$ is a commutative ring for all $x \in R \backslash Z(R)$.

Lemma 2.10. [14] If R is a ring of prime order p, then R is commutative.
Lemma 2.11. [6, p.567] If G is a complete k-partite graph of order n whose largest partite set contains n_{k} vertices, then $\kappa(G)=\lambda(G)=\delta(G)=n-n_{k}$.

Lemma 2.12. Let R be a non-commutative ring. Then $|Z(R)|<\left|C_{R}(x)\right|<|R|$ for all $x \in R \backslash Z(R)$

Proof. Let $x \in R \backslash Z(R)$. It obvious that $Z(R) \subseteq C_{R}(x) \subseteq R$. Since $x \notin Z(R)$, we have $C_{R}(x) \subsetneq R$. Also, $x \in C_{R}(x) \backslash Z(R)$. Hence $|Z(R)|<\left|C_{R}(x)\right|<|R|$.

3. Main Results

3.1. Edge-Connectivity and Vertex-Connectivity

In this section, we study the edge-connectivity and the vertex-connectivity of the noncommuting graph for a finite non-commutative ring R. We prove that $\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$ and present a lower bound and an upper bound for the edge-connectivity of Γ_{R}. In particular, we develop an upper bound for $\lambda\left(\Gamma_{R}\right)$ when R is a non-commutative ring and R has a nilpotent element of degree n. Examples are also given to ensure that our bounds are sharp. Moreover, we give a lower bound for the vertex-connectivity of Γ_{R}. We begin this section with the following lemma:

Lemma 3.1. Let R be a finite non-commutative ring. Then $\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$.
Proof. Let R be a finite non-commutative ring. By Theorem 2.1 and Theorem 2.2, Γ_{R} is a connected graph of diameter at most 2 and so by Theorem 2.3, $\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$.

Lemma 3.2. Let R be a finite non-commutative ring. Then $\delta\left(\Gamma_{R}\right) \geq \frac{|R|}{2}$.
Proof. Let $x \in V\left(\Gamma_{R}\right)$. Since R is a non-commutative ring and $C_{R}(x)$ is an additive subgroup of $R,|R|=m\left|C_{R}(x)\right|$ for some positive integer $m \geq 2$. Then $\left|C_{R}(x)\right| \leq \frac{|R|}{2}$ and so $|R|-\left|C_{R}(x)\right| \geq \frac{|R|}{2}$. Since $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|$ for every $x \in V\left(\Gamma_{R}\right)$, we get $\delta\left(\Gamma_{R}\right) \geq \frac{|R|}{2}$.
Lemma 3.3. Let R be a finite non-commutative ring. Then $\delta\left(\Gamma_{R}\right) \leq|R|-2$.
Proof. For any $x \in R \backslash Z(R)$, it is clear that $0, x \in C_{R}(x)$. Thus $\left|C_{R}(x)\right| \geq 2$. Then $|R|-\left|C_{R}(x)\right| \leq|R|-2$. Since $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|$ for every $x \in V\left(\Gamma_{R}\right)$, we get $\delta\left(\Gamma_{R}\right) \leq|R|-2$.

As a consequence, we obtain a lower bound and an upper bound for both $\delta\left(\Gamma_{R}\right)$ and $\lambda\left(\Gamma_{R}\right)$.

Theorem 3.4. Let R be a finite non-commutative ring. Then

$$
\frac{|R|}{2} \leq \delta\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right) \leq|R|-2
$$

The following example shows that the bounds given above are sharp.
Example 3.5. Let $R=\{0, x, y, z\}$ be a non-commutative ring under the addition and multiplication given by Table 1. Then Γ_{R} is the graph as shown below:

+	0	x	y	z
0	0	x	y	z
x	x	0	z	y
y	y	z	0	x
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	x	y	z
y	0	0	0	0
z	0	x	y	z

Table 1. The addition and multiplication of $R=\{0, x, y, z\}$

Thus, $\delta\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=2$, so the bounds in Theorem 3.4 are sharp.
As in the proof of Lemma 3.3, if R is a finite non-commutative ring with identity, we have $0,1, x \in C_{R}(x)$ and so $\left|C_{R}(x)\right| \geq 3$. Then we obtain the following result:
Corollary 3.6. Let R be a finite non-commutative ring with identity. Then $\lambda\left(\Gamma_{R}\right) \leq$ $|R|-3$.

Furthermore, if $x \in R$ is a non-central nilpotent element of degree n, then $0, x, x^{2}, x^{3}, \ldots$, $x^{n-1} \in C_{R}(x)$, so an upper bound for $\lambda\left(\Gamma_{R}\right)$ is obtained.
Corollary 3.7. Let R be a non-commutative ring containing a non-central nilpotent element of degree n. Then $\lambda\left(\Gamma_{R}\right) \leq|R|-n$.

The following examples show rings that satisfy Corollary 3.6 and Corollary 3.7 , respectively.
Example 3.8. Let $R=T_{2}\left(\mathbb{Z}_{2}\right)=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}_{2}\right\}$. Then R is a non-commutative ring with identity of order 8 and Γ_{R} is the graph below:
$\Gamma_{R}:$

Observe that $\lambda\left(\Gamma_{R}\right)=4<|R|-3$.
Example 3.9. Let $R=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}_{4}\right\}$. Then R is a non-commutative ring of order 16 and $\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]$ is a non-central nilpotent element of degree $n=3$. By letting

$$
\begin{aligned}
& \overline{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] . \quad v_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad v_{2}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right], \quad v_{3}=\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right], \\
& v_{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad v_{5}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \quad v_{6}=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], \quad v_{7}=\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right], \\
& v_{8}=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], \quad v_{9}=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right], \quad v_{10}=\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right], \quad v_{11}=\left[\begin{array}{ll}
2 & 3 \\
0 & 0
\end{array}\right], \\
& v_{12}=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] . \quad v_{13}=\left[\begin{array}{ll}
3 & 1 \\
0 & 0
\end{array}\right], \quad v_{14}=\left[\begin{array}{ll}
3 & 2 \\
0 & 0
\end{array}\right], \quad v_{15}=\left[\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right],
\end{aligned}
$$

Γ_{R} is the following graph:

Notice that $\lambda\left(\Gamma_{R}\right)=8<16-3=|R|-n$.

If R is a finite non-commutative ring, then a lower bound of both edge-connectivity and vertex-connectivity of Γ_{R} can be determined in the following propositions:
Proposition 3.10. Let R be a finite non-commutative ring. Then $\lambda\left(\Gamma_{R}\right) \geq 2$.
Proof. It follows from Theorem 3.4 and $|R| \geq 4$.
Proposition 3.11. Let R be a finite non-commutative ring. Then $\kappa\left(\Gamma_{R}\right) \geq 2$.
Proof. Suppose, to the contrary, that there exists a finite non-commutative ring R such that $\kappa\left(\Gamma_{R}\right)=1$. Then there is a vertex x such that $\Gamma_{R}-x$ is a disconnected graph or a trivial graph. Then we consider the next two cases:

Case 1: Assume that $\Gamma_{R}-x$ is a trivial graph. Then $\operatorname{deg}(x)=1$. By Lemma 3.2 and $|R| \geq 4$, we get $\delta\left(\Gamma_{R}\right) \geq \frac{|R|}{2} \geq \frac{4}{2}=2$, which contradicts $\operatorname{deg}(x)=1$.

Case 2: Assume that $\Gamma_{R}^{2}-x$ is a disconnected graph. Then there is at least 2 components of $\Gamma_{R}-x$, say Γ_{1} and Γ_{2}. Assume that y_{1} is a vertex of Γ_{1} such that y_{1} adjacent with x and y_{2} is a vertex of Γ_{2} such that y_{2} adjacent with x. Thus, $x y_{1} \neq y_{1} x, x y_{2} \neq y_{2} x$ and there is no $y_{1}-y_{2}$ path in $\Gamma_{R}-x$. Then $y_{1} y_{2}=y_{2} y_{1}$. Next, we consider $x+y_{1}$. Since $y_{1}\left(x+y_{1}\right) \neq\left(x+y_{1}\right) y_{1}$ and $y_{2}\left(x+y_{1}\right) \neq\left(x+y_{1}\right) y_{2}$, we have $x+y_{1} \notin Z(R)$, so $x+y_{1} \in V\left(\Gamma_{R}\right)$. Furthermore, $P: y_{1}, x+y_{1}, y_{2}$ is a $y_{1}-y_{2}$ path in $\Gamma_{R}-x$, which is a contradiction.

Moreover, if R is a non-commutative ring with $|R|>4$, then the previous lower bound of vertex-connectivity of Γ_{R} can be improved as shown below:
Theorem 3.12. Let R be a non-commutative ring with $|R|>4$. Then $\kappa\left(\Gamma_{R}\right) \geq|Z(R)|+2$. Proof. Suppose that $|R|>4$. By Theorem 2.5, we get Γ_{R} is not a complete graph. By Theorem 2.4, we have $\kappa\left(\Gamma_{R}\right) \geq 2 \delta\left(\Gamma_{R}\right)+2-(|R|-|Z(R)|)$. Also, by Lemma 3.2, $\kappa\left(\Gamma_{R}\right) \geq 2\left(\frac{|R|}{2}\right)+2-(|R|-|Z(R)|)$. Therefore, $\kappa\left(\Gamma_{R}\right) \geq|Z(R)|+2$.

3.2. Edge-Connectivity and Vertex-Connectivity of a CC-Ring

In this section, we turn our attention to CC-rings and their properties, starting with the following lemmas.
Lemma 3.13. Let R be a finite CC-ring. If $x, y \in R \backslash Z(R)$ and $x y \neq y x$, then $C_{R}(x) \cap$ $C_{R}(y)=Z(R)$.
Proof. Let $x, y \in R \backslash Z(R)$ be such that $x y \neq y x$. Since $Z(R)$ is a subring of $C_{R}(x) \cap C_{R}(y)$, we get $Z(R) \subseteq C_{R}(x) \cap C_{R}(y)$. Next, we will show that $C_{R}(x) \cap C_{R}(y) \subseteq Z(R)$. Suppose, to the contrary, that there exists $a \in\left(C_{R}(x) \cap C_{R}(y)\right) \backslash Z(R)$. Then $x a=a x$ and $y a=a y$. Thus $x, y \in C_{R}(a)$. Since R is a CC-ring, $C_{R}(a)$ is commutative. Then $x y=y x$, a contradiction. Therefore, $C_{R}(x) \cap C_{R}(y)=Z(R)$.
Lemma 3.14. Let R be a finite $C C$-ring and $x, y \in R \backslash Z(R)$. Then $x y=y x$ if and only if $C_{R}(x)=C_{R}(y)$.
Proof. Let R be a finite CC-ring. Suppose that $x, y \in R \backslash Z(R)$ with $x y=y x$. Then $y \in C_{R}(x)$. We will show that $C_{R}(x) \subseteq C_{R}(y)$. Let $a \in C_{R}(x)$. Since R is a CC-ring, $C_{R}(x)$ is commutative. It implies that $y a=a y$, and so $a \in C_{R}(y)$. Thus $C_{R}(x) \subseteq C_{R}(y)$. Similarly, $C_{R}(y) \subseteq C_{R}(x)$, so $C_{R}(x)=C_{R}(y)$. The converse is obvious.

Next, we define a relation \sim on $R \backslash Z(R)$. For any $x, y \in R \backslash Z(R), x \sim y$ if and only if $x y=y x$. It turns out that \sim is an equivalence relation.

Lemma 3.15. Let R be a CC-ring. Then \sim is an equivalence relation on $R \backslash Z(R)$.
Proof. Let $x, y, z \in R \backslash Z(R)$. Since $x \in C_{R}(x), x \sim x$. Then \sim is reflexive. Suppose that $x \sim y$. Then $x y=y x$. Thus $y \sim x$. Hence \sim is symmetric. Suppose that $x \sim y$ and $y \sim z$. Then $x y=y x$ and $y z=z y$. By Lemma 3.14, we get $C_{R}(x)=C_{R}(y)$ and $C_{R}(y)=C_{R}(z)$, that is, $C_{R}(x)=C_{R}(z)$. Thus $x z=z x$, and so $x \sim z$. Therefore, \sim is transitive. As a result, \sim is an equivalence relation.

This equivalence relation \sim on $R \backslash Z(R)$ induces a partition of $R \backslash Z(R)$, where the equivalence classes are given by $[x]=\{y \in R \backslash Z(R) \mid x \sim y\}$. Notice that $[x]=C_{R}(x) \backslash Z(R)$. In particular, if R is a finite CC-ring, then we can partition $R \backslash Z(R)$ into $C_{R}\left(x_{1}\right) \backslash Z(R)$, $C_{R}\left(x_{2}\right) \backslash Z(R), \ldots, C_{R}\left(x_{k}\right) \backslash Z(R)$ for some $k \in \mathbb{N}$ and $x_{1}, x_{2}, x_{3}, \ldots, x_{k} \in R \backslash Z(R)$.

In 1932, Whitney [17] proved the classical inequalities $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for every graph G. Surprisingly, the vertex-connectivity and the edge-connectivity are equal in the case of non-commuting graph of finite CC-rings.

Theorem 3.16. Let R be a finite CC-ring. Then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$.
Proof. Let R be a finite CC-ring. Then $V\left(\Gamma_{R}\right)=R \backslash Z(R)$ can be partitioned into k equivalence classes with respect to \sim for some $k \in \mathbb{N}$. Suppose that x and y belong to the same class. Then $x \sim y$, that is, $x y=y x$. Thus x and y are not adjacent. On the other hand, suppose that x and y belong to the different classes. Then $x \nsim y$, that is, $x y \neq y x$. Thus x and y are adjacent. It implies that every two vertices x and y, x adjacent to y if and only if x and y belong to different classes. Therefore, Γ_{R} is a complete k-partite graph. By Lemma 2.11, we get $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$.

By Theorem 3.16, we can determine edge-connectivity and vertex-connectivity of Γ_{R} where R is a ring of order p^{n}, p is a prime number and $n \in\{2,3\}$.

Lemma 3.17. Let p be a prime number and R be a finite non-commutative ring with identity.
(1) If $|R|=p^{2}$, then $|Z(R)|=1$ and $\left|C_{R}(x)\right|=p$ for all $x \in R \backslash Z(R)$.
(2) If $|R|=p^{3}$, then $|Z(R)|=p$ and $\left|C_{R}(x)\right|=p^{2}$ for all $x \in R \backslash Z(R)$.

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.
Suppose that $|R|=p^{2}$. Let $x \in R \backslash Z(R)$. Because $C_{R}(x)$ is an additive subgroup of $R,\left|C_{R}(x)\right| \in\left\{1, p, p^{2}\right\}$. By Lemma 2.12, $\left|C_{R}(x)\right|<p^{2}$. Since $0, x \in C_{R}(x),\left|C_{R}(x)\right| \geq 2$. Therefore, $\left|C_{R}(x)\right|=p$. Similarly, $Z(R)$ is an additive subgroup of $C_{R}(x)$, so $|Z(R)| \in$ $\{1, p\}$. By Lemma 2.12, we have $|Z(R)|<p$, so $|Z(R)|=1$.

Assume that $|R|=p^{3}$. By Lemma 2.7, we get $|Z(R)|=p$. Let $x \in R \backslash Z(R)$. Since $C_{R}(x)$ is an additive subgroup of $R,\left|C_{R}(x)\right| \in\left\{1, p, p^{2}, p^{3}\right\}$. By Lemma 2.12, we get $p<\left|C_{R}(x)\right|<p^{3}$, so $\left|C_{R}(x)\right|=p^{2}$.

Lemma 3.18. Let p be a prime number and R be a non-commutative ring of order p^{2}. Then R is a CC-ring.
Proof. Let x be a non-central element of R. By Lemma 3.17, we get $\left|C_{R}(x)\right|=p$. Also by Lemma 2.10, we get $C_{R}(x)$ is commutative.

Theorem 3.19. Let p be a prime number and R be a non-commutative ring of order p^{2}. Then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{2}-p$.
Proof. By Lemma 3.18, we get R is a CC-ring. Also, by Theorem 3.16, we have $\kappa\left(\Gamma_{R}\right)=$ $\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$. Because $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|$ for every $x \in V\left(\Gamma_{R}\right)$, we get $\delta\left(\Gamma_{R}\right)=$ $|R|-\max _{x \in R \backslash Z(R)}\left|C_{R}(x)\right|$. By Lemma 3.17, $\left|C_{R}(x)\right|=p$ for any $x \in R \backslash Z(R)$. Therefore, $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{2}-p$.

Lemma 3.20. Let p be a prime number and R be a non-commutative ring of order p^{3} with identity. Then R is a CC-ring.
Proof. Let R be a non-commutative ring of order p^{3} with identity. Let $x \in R \backslash Z(R)$. By Lemma 3.17, we get $\left|C_{R}(x)\right|=p^{2}$. Observe that $1 \in C_{R}(x)$, so $C_{R}(x)$ is a ring with identity. By Lemma 2.6, $C_{R}(x)$ is commutative. Therefore, R is a CC-ring.

Theorem 3.21. Let p be a prime number and R be a finite non-commutative ring of order p^{3} with identity. Then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{3}-p^{2}$.

Proof. By Lemma 3.20, R is a CC-ring. Also by Theorem 3.16, we get $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=$ $\delta\left(\Gamma_{R}\right)$. By Lemma 3.17, $\left|C_{R}(x)\right|=p^{2}$ for any $x \in R \backslash Z(R)$. Then $\delta\left(\Gamma_{R}\right)=|R|-$ $\max _{x \in R \backslash Z(R)}\left|C_{R}(x)\right|=p^{3}-p^{2}$. Therefore, $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{3}-p^{2}$.

Next, we consider a ring R of order p^{n} where p is a prime number and $n \in\{4,5\}$. The edge-connectivity and the vertex-connectivity of Γ_{R} both depend on $|Z(R)|$. The next lemma indicates all possibilities of $|Z(R)|$.

Lemma 3.22. Let p be a prime number and R be a finite non-commutative ring with identity.
(1) If $|R|=p^{4}$, then $|Z(R)| \in\left\{p, p^{2}\right\}$.
(2) If $|R|=p^{5}$, then $|Z(R)| \in\left\{p, p^{2}, p^{3}\right\}$.

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.
Suppose that $|R|=p^{4}$. Since $Z(R)$ is an additive subgroup of $R,|Z(R)| \in\left\{1, p, p^{2}, p^{3}, p^{4}\right\}$. Because $0,1 \in Z(R),|Z(R)| \geq 2$. Moreover, $|Z(R)|<p^{4}$ by Lemma 2.12. Thus, $|Z(R)| \in\left\{p, p^{2}, p^{3}\right\}$. By Lemma 2.8, $|Z(R)| \neq p^{3}$. Therefore, $|Z(R)| \in\left\{p, p^{2}\right\}$.

Assume that $|R|=p^{5}$. Since $Z(R)$ is an additive subgroup of R and $|R|=p^{5}$, $|Z(R)| \in\left\{1, p, p^{2}, p^{3}, p^{4}, p^{5}\right\}$. Note that $|Z(R)|<p^{5}$ and $|Z(R)| \neq p^{4}$ by Lemma 2.12 and Lemma 2.8, respectively. Thus, $|Z(R)| \in\left\{1, p, p^{2}, p^{3}\right\}$. Since $0,1 \in Z(R),|Z(R)|>2$. Therefore, $|Z(R)| \in\left\{p, p^{2}, p^{3}\right\}$.

If R is a ring of order p^{4} where p is a prime number, then two possibilities for $|Z(R)|$ arise from Lemma 3.22. They yield different possibilities for $\left|C_{R}(x)\right|$ where x is a noncentral element of R.

Lemma 3.23. Let p be a prime number and R be a finite non-commutative ring of order p^{4} with identity such that $|Z(R)|=p$. Then $\left|C_{R}(x)\right| \in\left\{p^{2}, p^{3}\right\}$ for any $x \in R \backslash Z(R)$.
Proof. Let $x \in R \backslash Z(R)$. Since $C_{R}(x)$ is an additive subgroup of R, p^{4} is a multiple of $\left|C_{R}(x)\right|$. Then $\left|C_{R}(x)\right| \in\left\{1, p, p^{2}, p^{3}, p^{4}\right\}$. By Lemma 2.12, we have $p<\left|C_{R}(x)\right|<p^{4}$, so $\left|C_{R}(x)\right| \in\left\{p^{2}, p^{3}\right\}$.

Lemma 3.24. Let p be a prime number and R be a finite non-commutative ring of order p^{4} with identity such that $|Z(R)|=p^{2}$. Then $\left|C_{R}(x)\right|=p^{3}$ for any $x \in R \backslash Z(R)$.
Proof. Let x be a non-central element of R. Since $C_{R}(x)$ is an additive subgroup of R, $\left|C_{R}(x)\right| \in\left\{1, p, p^{2}, p^{3}, p^{4}\right\}$. By Lemma 2.12, we get $p^{2}<\left|C_{R}(x)\right|<p^{4}$, so $\left|C_{R}(x)\right|=p^{3}$.

Theorem 3.25. Let p be a prime number and R be a finite non-commutative ring of order p^{4} with identity. Then the connectivity of Γ_{R} is one of the following case:
(1) If $|Z(R)|=p$, then either

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{4}-p^{2} \quad \text { or } \quad \kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{4}-p^{3} .
$$

(2) If $|Z(R)|=p^{2}$, then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{4}-p^{3}$.

Proof. Let R be a finite non-commutative ring of order p^{4} with identity. By Lemma $2.9, R$ is a CC-ring. Also by Theorem 3.16, we get $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$. Since $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|$ for all $x \in V\left(\Gamma_{R}\right)$, we have

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=\min _{x \in V\left(\Gamma_{R}\right)}\left(|R|-\left|C_{R}(x)\right|\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right| .
$$

Next, we consider the following two cases:
Case 1: Suppose that $|Z(R)|=p$. By Lemma 3.23, we have $\left|C_{R}(x)\right| \in\left\{p^{2}, p^{3}\right\}$. If $\left|C_{R}(x)\right|=p^{2}$ for all $x \in R \backslash Z(R)$, then

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right|=p^{4}-p^{2}
$$

On the other hand, if there exists $x \in R \backslash Z(R)$ such that $\left|C_{R}(x)\right|=p^{3}$, then

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right|=p^{4}-p^{3} .
$$

Case 2: Suppose that $|Z(R)|=p^{2}$. By Lemma 3.24, we have $\left|C_{R}(x)\right|=p^{3}$ for all $x \in R \backslash Z(R)$. Then

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right|=p^{4}-p^{3}
$$

Finally, if R is a ring of order p^{5} where p is a prime number, there are three possibilities for $|Z(R)|$ by Lemma 3.22. It will affect the edge-connectivity and the vertex-connectivity of Γ_{R} as well.

Lemma 3.26. Let p be a prime number and R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=p^{2}$. Then $\left|C_{R}(x)\right| \in\left\{p^{3}, p^{4}\right\}$ for any $x \in R \backslash Z(R)$.
Proof. Let x be a non-central element of R. Since $C_{R}(x)$ is an additive subgroup of R, p^{5} is a multiple of $\left|C_{R}(x)\right|$. Then $\left|C_{R}(x)\right| \in\left\{1, p, p^{2}, p^{3}, p^{4}, p^{5}\right\}$. By Lemma 2.12, we get $p^{2}<\left|C_{R}(x)\right|<p^{5}$, so $\left|C_{R}(x)\right| \in\left\{p^{3}, p^{4}\right\}$.

Lemma 3.27. Let p be a prime number and R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=p^{2}$. Then R is a CC-ring.
Proof. Let R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=$ p^{2}. Suppose that x is a non-central element of R. By Lemma, 3.26, we get $\left|C_{R}(x)\right| \in$ $\left\{p^{3}, p^{4}\right\}$. Since $1 \in C_{R}(x), C_{R}(x)$ is a ring with identity.

Case 1: Let $\left|C_{R}(x)\right|=p^{3}$. We will show that $C_{R}(x)$ is a commutative ring. Assume, to the contrary, that $C_{R}(x)$ is a non-commutative ring. By Lemma 2.7, $\left|Z\left(C_{R}(x)\right)\right|=p$.

This is a contradiction since $Z(R) \subseteq Z\left(C_{R}(x)\right)$. Consequently, $C_{R}(x)$ is a commutative ring.

Case 2: Let $\left|C_{R}(x)\right|=p^{4}$. Suppose that $C_{R}(x)$ is a non-commutative ring. By Lemma 3.22, we get $\left|Z\left(C_{R}(x)\right)\right| \in\left\{p, p^{2}\right\}$. Since $Z(R) \subseteq Z\left(C_{R}(x)\right),\left|Z\left(C_{R}(x)\right)\right| \geq|Z(R)|=p^{2}$. Then $\left|Z\left(C_{R}(x)\right)\right|=p^{2}$, so $Z(R)=Z\left(C_{R}(x)\right)$. Since $x \in Z\left(C_{R}(x)\right)$ and $x \notin Z(R)$, we get $Z(R) \subsetneq Z\left(C_{R}(x)\right)$, which is a contradiction. Then $C_{R}(x)$ is a commutative ring.

As a result, R is a CC-ring.
Theorem 3.28. Let p be a prime number and R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=p^{2}$. Then

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{5}-p^{3} \quad \text { or } \quad \kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{5}-p^{4}
$$

Proof. Let R be a finite non-commutative ring with identity of order p^{5} such that $|Z(R)|=$ p^{2}. By Lemma 3.27, R is a CC-ring. Also, by Theorem 3.16, we get $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=$ $\delta\left(\Gamma_{R}\right)$. Since $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|$ for all $x \in V\left(\Gamma_{R}\right)$, we get

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=\min _{x \in V\left(\Gamma_{R}\right)}\left(|R|-\left|C_{R}(x)\right|\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right| .
$$

Suppose that $x \in R \backslash Z(R)$. By Lemma 3.26, we have $\left|C_{R}(x)\right| \in\left\{p^{3}, p^{4}\right\}$. If $\left|C_{R}(x)\right|=p^{3}$ for all $x \in R \backslash Z(R)$, then

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right|=p^{5}-p^{3}
$$

If there exists $x \in R \backslash Z(R)$ such that $\left|C_{R}(x)\right|=p^{4}$, then

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right|=p^{5}-p^{4}
$$

Lemma 3.29. Let p be a prime number and R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=p^{3}$. Then $\left|C_{R}(x)\right|=p^{4}$ for any $x \in R \backslash Z(R)$.
Proof. Let x be a non-central element of R. Since $C_{R}(x)$ is an additive subgroup of R, we have $\left|C_{R}(x)\right| \in\left\{1, p, p^{2}, p^{3}, p^{4}, p^{5}\right\}$. By Lemma 2.12, we get $p^{3}<\left|C_{R}(x)\right|<p^{5}$, so $\left|C_{R}(x)\right|=p^{4}$.

Lemma 3.30. Let p be a prime number and R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=p^{3}$. Then R is a CC-ring.
Proof. Let x be a non-central element of R. By Lemma 3.29, we get $\left|C_{R}(x)\right|=p^{4}$. We will show that $C_{R}(x)$ is commutative. Assume, to the contrary, that $C_{R}(x)$ is a noncommutative ring. Since $1 \in C_{R}(x), C_{R}(x)$ is a non-commutative ring of order p^{4} with identity. By Lemma $3.22,\left|Z\left(C_{R}(x)\right)\right| \in\left\{p, p^{2}\right\}$. Since $Z(R)$ is a subring of $Z\left(C_{R}(x)\right)$ and $x \in Z\left(C_{R}(x)\right) \backslash Z(R)$, we get $Z(R) \subsetneq Z\left(C_{R}(x)\right)$. Then $\left|Z\left(C_{R}(x)\right)\right|>|Z(R)|=p^{3}$, which is a contradiction. Then $C_{R}(x)$ is a commutative ring. Consequently, R is a CC-ring.

Corollary 3.31. Let p be a prime number and R be a finite non-commutative ring of order p^{5} with identity such that $|Z(R)|=p^{3}$. Then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=p^{5}-p^{4}$.
Proof. Let R be a finite non-commutative ring with identity of order p^{5} such that $|Z(R)|=$ p^{3}. By Lemma 3.30, R is a CC-ring. By Theorem 3.16, we have $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$. Also by Lemma 3.29, $\left|C_{R}(x)\right|=p^{4}$ for all $x \in R \backslash Z(R)$. Therefore,

$$
\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)=|R|-\max _{x \in V\left(\Gamma_{R}\right)}\left|C_{R}(x)\right|=p^{5}-p^{4} .
$$

If R is a ring of order p^{5} and $|Z(R)|=p$ where p is a prime number, then R may not be a CC-ring as illustrated in the following example.
Example 3.32. Let $R=\left\{\left.\left[\begin{array}{lll}a & 0 & b \\ 0 & c & d \\ 0 & 0 & e\end{array}\right] \right\rvert\, a, b, c, d, e \in \mathbb{Z}_{2}\right\}$. Then R is a non-commutative ring of order 32 and $Z(R)=\left\{\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$. Then it is easy to see that $C_{R}\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right)=\left\{\left.\left[\begin{array}{lll}a & 0 & 0 \\ 0 & c & d \\ 0 & 0 & e\end{array}\right] \right\rvert\, a, c, d, e \in \mathbb{Z}_{2}\right\}$ which is non-commutative since $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \neq\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.

4. Concluding Remark

In this paper, we studied the edge-connectivity and the vertex-connectivity of noncommuting graphs of a finite non-commutative ring R. We proved that $\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$ and obtained a lower bound and an upper bound for the edge-connectivity and the vertex-connectivity of Γ_{R}. In particular, we showed that if R is a finite CC-ring, then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$. Then the more general problem is to determine the following conjecture.

Conjecture: Let R be a finite non-commutative ring. Then $\kappa\left(\Gamma_{R}\right)=\lambda\left(\Gamma_{R}\right)=\delta\left(\Gamma_{R}\right)$.

References

[1] A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra and Its Applications 428 (2008) 2947-2954.
[2] A. Abdollahi, S. Akbari, H.R. Maimani, Non-commuting graph of a group, Journal of Algebra 298 (2006) 468-492.
[3] D.F. Anderson, S.L. Philip, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999) 434-447.
[4] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988) 208-226.
[5] G. Chartrand, F. Harary, Graphs with prescribed connectivities, Theory of Graphs (P. Erdös and G. Katona, eds.), Akadémiai Kiadó, Budapest (1968), 61-63.
[6] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs 6th Edition, CRC Press; Chapman and Hall, New York, 2016.
[7] M.R. Darafsheh, Groups with the same non-commuting graph, Discrete Applied Mathematics 157 (2009) 833-837.
[8] J. Dutta, D.K. Basnet, On non-commuting graph of a finite ring, Preprint.
[9] K.E. Eldridge, Orders for finite noncommutative rings with unity, The American Mathematical Monthly 75 (1968) 512-514.
[10] A. Erfanian, K. Khashyarmanesh, K. Nafar, Non-commuting graphs of rings, Discrete Mathematics, Algorithms and Applications 7 (2015) 1-27.
[11] B.H. Neumann, A problem of Paul Erdös on groups, Journal of the Australian Mathematical Society 21 (1976) 467-472.
[12] G.R. Omidi, E. Vatandoost. On the commuting graph of rings, Journal of Algebra and Its Applications 10 (2011) 521-527.
[13] J. Plesnik, Critical graphs of given diameter, Acta F.R.N. Univ. Comen - Mathematica 30 (1975) 71-93.
[14] J.N. Salunke, On commutativity of finite rings, Bulletin of the Marathwada Mathematical Society 13 (2012) 39-47.
[15] E. Vatandoost, F. Ramezani. On the commuting graph of some non-commutative rings with unity, Journal of Linear and Topological Algebra 5 (2016) 289-294.
[16] E. Vatandoost, F. Ramezani, A. Bahraini, On the commuting graph of noncommutative rings of order $p^{n} q$, Journal of Linear and Topological Algebra 3 (2014) 1-6.
[17] H. Whitney, Congruent graphs and the connectivity of graphs, American Journal of Mathematics 54 (1932) 150-168.

[^0]: *Corresponding author.

