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Abstract The non-commuting graph of a non-commutative ring R, denoted by ΓR, is a simple graph

with vertex set of elements in R except for its center. Two distinct vertices x and y are adjacent if

xy 6= yx. In this paper, we study the vertex-connectivity and edge-connectivity of a non-commuting

graph associated with a finite non-commutative ring R and prove their lower bounds. We show that the

edge-connectivity of ΓR is equal to its minimum degree. The vertex-connectivity and edge-connectivity

of ΓR are determined when R is a non-commutative ring of order pn where p is a prime number, and

n ∈ {2, 3, 4, 5}.
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1. Introduction

Let R be a non-commutative ring and Z(R) be the center of R. The centralizer of an
element x in R is defined to be CR(x) = {y ∈ R : xy = yx} and a non-commutative ring
R is called a CC-ring if every centralizer of non-central element in R is commutative.
The non-commuting graph of R, denoted by ΓR, is a graph whose vertex set is R\Z(R)
and two distinct vertices x and y are adjacent if and only if xy 6= yx. This graph was
introduced by Erfanian et al. [10]. The interplay between ring-theoretic properties and
graph-theoretic properties has become a focus of research over the last decade. Many
papers have assigned a group or a ring to a graph and investigated the properties of the
associated graph,[1–4, 11, 12, 15, 16].

For a graph G, V (G) and E(G) are the vertex set and edge set of G, respectively.
The degree of vertex u in G, denoted by deg(u), is the number of edges incident with u.
The minimum degree of G is the minimum degree among all vertices of G, denoted by
δ(G). A u− v path P in G is a sequence of distinct vertices, beginning with u and ending
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at v such that consecutive vertices in P are adjacent in G. The path P is denoted by
P : v0, v1, v2, ..., vk where u = v0 and v = vk. The number of edges encountered in P is
the length of path P . A graph G is said to be connected if G contain a u − v path for
every pair u, v of distinct vertices of G. The distance between u and v is the smallest
length of any u−v path in G, denoted by d(u, v). The greatest distance between any two
vertices of a connected graph G is called the diameter of G and denoted by diam(G). A
complete graph is a graph in which every two distinct vertices are adjacent. A graph G is
a k−partite graph if V (G) can be partitioned into k subsets V (G) = V1 ∪V2 ∪V3 ∪ ...∪Vk
and Vi ∩ Vj = ∅ for all i 6= j, called partite sets, such that a adjacent to b if and only if a
and b belong to different partite sets. A graph G is called a complete k−partite graph if
G is k−partite and every two vertices in different partite sets are adjacent. The vertex-
connectivity of G, denoted by κ(G), is the minimum number of vertices whose removal
from G results in a disconnected or trivial graph. The edge-connectivity of G, denoted by
λ(G), is the minimum number of edges whose removal from G results in a disconnected
or a trivial graph.

Erfanian et al. [10] studied various graph theoretical properties of ΓR such as com-
pleteness and planarity. They also determined the diameter, girth, domination number,
chromatic number, and clique number of ΓR.

The study of non-commuting graphs of rings was continued by Dutta and Basnet [8].
They proved that ΓR is connected and determined the degree of vertices in ΓR.

In this paper, we study the vertex-connectivity and edge-connectivity of the non-
commuting graph associated with a finite non-commutative ring R. We prove a lower
bound for κ(ΓR) and λ(ΓR). We show that the edge-connectivity of ΓR is equal to δ(ΓR),
the minimum degree of ΓR. In particular, we consider the relation between κ(ΓR), λ(ΓR)
and δ(ΓR) . Finally, for a ring R of order pn, we determine κ(ΓR) and λ(ΓR) where p is
a prime number, and n ∈ {2, 3, 4, 5}.

2. Preliminaries

Throughout this paper, we let R be a finite non-commutative ring unless stated oth-
erwise. We provide some useful results which will be used throughout this paper.

Theorem 2.1. [8, Proposition 2.1] Let R be a finite ring. Then ΓR is connected.

Theorem 2.2. [10, Theorem 2.1] Let R be a non-commutative ring. Then diam(ΓR) ≤ 2.

Theorem 2.3. [13] If G is a connected graph of diameter at most 2, then λ(G) = δ(G).

Theorem 2.4. [5] Let G be a graph of order n. If G is not a complete graph, then
κ(G) ≥ 2δ(G) + 2− n.

Theorem 2.5. [10, Theorem 2.2] Let R be a non-commutative ring. Then ΓR is complete
if and only if |R| = 4.

Lemma 2.6. [9, p.512] Let R be a finite ring with identity of order pn, where p is a
prime number. If n < 3, then R is commutative.

Lemma 2.7. [16, Lemma 2.5] Let p be a prime number and R be a non-commutative
ring of order p3 with identity. Then |Z(R)| = p.



On the Connectivity of Non-Commuting Graph of Finite Rings 889

Lemma 2.8. [16, Lemma 2.2] Let R be a finite non-commutative ring and Z(R) 6= {0}.
Then [R : Z(R)] = |R|

|Z(R)| is not prime.

Theorem 2.9. [15, Theorem 2.1] Let p be a prime number and R be a non-commutative
ring of order p4 with identity. Then CR(x) is a commutative ring for all x ∈ R\Z(R).

Lemma 2.10. [14] If R is a ring of prime order p, then R is commutative.

Lemma 2.11. [6, p.567] If G is a complete k−partite graph of order n whose largest
partite set contains nk vertices, then κ(G) = λ(G) = δ(G) = n− nk.

Lemma 2.12. Let R be a non-commutative ring. Then |Z(R)| < |CR(x)| < |R| for all
x ∈ R\Z(R)

Proof. Let x ∈ R\Z(R). It obvious that Z(R) ⊆ CR(x) ⊆ R. Since x /∈ Z(R), we have
CR(x) ( R. Also, x ∈ CR(x) \ Z(R). Hence |Z(R)| < |CR(x)| < |R|.

3. Main Results

3.1. Edge-Connectivity and Vertex-Connectivity

In this section, we study the edge-connectivity and the vertex-connectivity of the non-
commuting graph for a finite non-commutative ring R. We prove that λ(ΓR) = δ(ΓR) and
present a lower bound and an upper bound for the edge-connectivity of ΓR. In particular,
we develop an upper bound for λ(ΓR) when R is a non-commutative ring and R has a
nilpotent element of degree n. Examples are also given to ensure that our bounds are
sharp. Moreover, we give a lower bound for the vertex-connectivity of ΓR . We begin this
section with the following lemma:

Lemma 3.1. Let R be a finite non-commutative ring. Then λ(ΓR) = δ(ΓR).

Proof. Let R be a finite non-commutative ring. By Theorem 2.1 and Theorem 2.2, ΓR is
a connected graph of diameter at most 2 and so by Theorem 2.3, λ(ΓR) = δ(ΓR).

Lemma 3.2. Let R be a finite non-commutative ring. Then δ(ΓR) ≥ |R|2 .

Proof. Let x ∈ V (ΓR). Since R is a non-commutative ring and CR(x) is an additive

subgroup of R, |R| = m|CR(x)| for some positive integer m ≥ 2. Then |CR(x)| ≤ |R|
2

and so |R| − |CR(x)| ≥ |R|
2 . Since deg(x) = |R| − |CR(x)| for every x ∈ V (ΓR), we get

δ(ΓR) ≥ |R|2 .

Lemma 3.3. Let R be a finite non-commutative ring. Then δ(ΓR) ≤ |R| − 2.

Proof. For any x ∈ R\Z(R), it is clear that 0, x ∈ CR(x). Thus |CR(x)| ≥ 2. Then
|R| − |CR(x)| ≤ |R| − 2. Since deg(x) = |R| − |CR(x)| for every x ∈ V (ΓR), we get
δ(ΓR) ≤ |R| − 2.

As a consequence, we obtain a lower bound and an upper bound for both δ(ΓR) and
λ(ΓR).
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Theorem 3.4. Let R be a finite non-commutative ring. Then

|R|
2
≤ δ(ΓR) = λ(ΓR) ≤ |R| − 2.

The following example shows that the bounds given above are sharp.

Example 3.5. Let R = {0, x, y, z} be a non-commutative ring under the addition and
multiplication given by Table 1. Then ΓR is the graph as shown below:

+ 0 x y z
0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

· 0 x y z
0 0 0 0 0
x 0 x y z
y 0 0 0 0
z 0 x y z

Table 1. The addition and multiplication of R = {0, x, y, z}

ΓR :

Thus, δ(ΓR) = λ(ΓR) = 2, so the bounds in Theorem 3.4 are sharp.

As in the proof of Lemma 3.3, if R is a finite non-commutative ring with identity, we
have 0, 1, x ∈ CR(x) and so |CR(x)| ≥ 3. Then we obtain the following result:

Corollary 3.6. Let R be a finite non-commutative ring with identity. Then λ(ΓR) ≤
|R| − 3.

Furthermore, if x ∈ R is a non-central nilpotent element of degree n, then 0, x, x2, x3, ...,
xn−1 ∈ CR(x), so an upper bound for λ(ΓR) is obtained.

Corollary 3.7. Let R be a non-commutative ring containing a non-central nilpotent
element of degree n. Then λ(ΓR) ≤ |R| − n.

The following examples show rings that satisfy Corollary 3.6 and Corollary 3.7, respec-
tively.

Example 3.8. LetR = T2(Z2) =

{[
a b
0 c

] ∣∣∣∣ a, b, c ∈ Z2

}
. ThenR is a non-commutative

ring with identity of order 8 and ΓR is the graph below:

ΓR :
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Observe that λ(ΓR) = 4 < |R| − 3.

Example 3.9. Let R =

{[
a b
0 0

] ∣∣∣∣ a, b ∈ Z4

}
. Then R is a non-commutative ring of

order 16 and

[
2 1
0 0

]
is a non-central nilpotent element of degree n = 3. By letting

0̄ =

[
0 0
0 0

]
. v1 =

[
0 1
0 0

]
, v2 =

[
0 2
0 0

]
, v3 =

[
0 3
0 0

]
,

v4 =

[
1 0
0 0

]
, v5 =

[
1 1
0 0

]
, v6 =

[
1 2
0 0

]
, v7 =

[
1 3
0 0

]
,

v8 =

[
2 0
0 0

]
, v9 =

[
2 1
0 0

]
, v10 =

[
2 2
0 0

]
, v11 =

[
2 3
0 0

]
,

v12 =

[
3 0
0 0

]
. v13 =

[
3 1
0 0

]
, v14 =

[
3 2
0 0

]
, v15 =

[
3 3
0 0

]
,

ΓR is the following graph:

v2 v3v1

v8

v4

v12

v6

v9

v14 v13

v11

v10

v5

v15

v7

Notice that λ(ΓR) = 8 < 16− 3 = |R| − n.
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If R is a finite non-commutative ring, then a lower bound of both edge-connectivity
and vertex-connectivity of ΓR can be determined in the following propositions:

Proposition 3.10. Let R be a finite non-commutative ring. Then λ(ΓR) ≥ 2.

Proof. It follows from Theorem 3.4 and |R| ≥ 4.

Proposition 3.11. Let R be a finite non-commutative ring. Then κ(ΓR) ≥ 2.

Proof. Suppose, to the contrary, that there exists a finite non-commutative ring R such
that κ(ΓR) = 1. Then there is a vertex x such that ΓR − x is a disconnected graph or a
trivial graph. Then we consider the next two cases:

Case 1: Assume that ΓR − x is a trivial graph. Then deg(x) = 1. By Lemma 3.2 and

|R| ≥ 4, we get δ(ΓR) ≥ |R|
2
≥ 4

2
= 2, which contradicts deg(x) = 1.

Case 2: Assume that ΓR − x is a disconnected graph. Then there is at least 2 compo-
nents of ΓR − x, say Γ1 and Γ2. Assume that y1 is a vertex of Γ1 such that y1 adjacent
with x and y2 is a vertex of Γ2 such that y2 adjacent with x. Thus, xy1 6= y1x, xy2 6= y2x
and there is no y1 − y2 path in ΓR − x. Then y1y2 = y2y1. Next, we consider x + y1.
Since y1(x + y1) 6= (x + y1)y1 and y2(x + y1) 6= (x + y1)y2, we have x + y1 /∈ Z(R), so
x+ y1 ∈ V (ΓR). Furthermore, P : y1, x+ y1, y2 is a y1 − y2 path in ΓR − x, which is a
contradiction.

Moreover, if R is a non-commutative ring with |R| > 4, then the previous lower bound
of vertex-connectivity of ΓR can be improved as shown below:

Theorem 3.12. Let R be a non-commutative ring with |R| > 4. Then κ(ΓR) ≥ |Z(R)|+2.

Proof. Suppose that |R| > 4. By Theorem 2.5, we get ΓR is not a complete graph.
By Theorem 2.4, we have κ(ΓR) ≥ 2δ(ΓR) + 2 − (|R| − |Z(R)|). Also, by Lemma 3.2,

κ(ΓR) ≥ 2( |R|2 ) + 2− (|R| − |Z(R)|). Therefore, κ(ΓR) ≥ |Z(R)|+ 2.

3.2. Edge-Connectivity and Vertex-Connectivity of a CC-Ring

In this section, we turn our attention to CC-rings and their properties, starting with
the following lemmas.

Lemma 3.13. Let R be a finite CC-ring. If x, y ∈ R\Z(R) and xy 6= yx, then CR(x) ∩
CR(y) = Z(R).

Proof. Let x, y ∈ R\Z(R) be such that xy 6= yx. Since Z(R) is a subring of CR(x)∩CR(y),
we get Z(R) ⊆ CR(x)∩CR(y). Next, we will show that CR(x)∩CR(y) ⊆ Z(R). Suppose,
to the contrary, that there exists a ∈ (CR(x)∩CR(y))\Z(R). Then xa = ax and ya = ay.
Thus x, y ∈ CR(a). Since R is a CC-ring, CR(a) is commutative. Then xy = yx, a
contradiction. Therefore, CR(x) ∩ CR(y) = Z(R).

Lemma 3.14. Let R be a finite CC-ring and x, y ∈ R\Z(R). Then xy = yx if and only
if CR(x) = CR(y).

Proof. Let R be a finite CC-ring. Suppose that x, y ∈ R\Z(R) with xy = yx. Then
y ∈ CR(x). We will show that CR(x) ⊆ CR(y). Let a ∈ CR(x). Since R is a CC-ring,
CR(x) is commutative. It implies that ya = ay, and so a ∈ CR(y). Thus CR(x) ⊆ CR(y).
Similarly, CR(y) ⊆ CR(x), so CR(x) = CR(y). The converse is obvious.
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Next, we define a relation ∼ on R\Z(R). For any x, y ∈ R\Z(R), x ∼ y if and only if
xy = yx. It turns out that ∼ is an equivalence relation.

Lemma 3.15. Let R be a CC-ring. Then ∼ is an equivalence relation on R\Z(R).

Proof. Let x, y, z ∈ R\Z(R). Since x ∈ CR(x), x ∼ x. Then ∼ is reflexive. Suppose
that x ∼ y. Then xy = yx. Thus y ∼ x. Hence ∼ is symmetric. Suppose that x ∼ y
and y ∼ z. Then xy = yx and yz = zy. By Lemma 3.14, we get CR(x) = CR(y) and
CR(y) = CR(z), that is, CR(x) = CR(z). Thus xz = zx, and so x ∼ z. Therefore, ∼ is
transitive. As a result, ∼ is an equivalence relation.

This equivalence relation∼ on R\Z(R) induces a partition of R\Z(R), where the equiv-
alence classes are given by [x] = {y ∈ R\Z(R) | x ∼ y}. Notice that [x] = CR(x)\Z(R).
In particular, if R is a finite CC-ring, then we can partition R\Z(R) into CR(x1)\Z(R),
CR(x2)\Z(R), ..., CR(xk)\Z(R) for some k ∈ N and x1, x2, x3, ..., xk ∈ R\Z(R).

In 1932, Whitney [17] proved the classical inequalities κ(G) ≤ λ(G) ≤ δ(G) for every
graph G. Surprisingly, the vertex-connectivity and the edge-connectivity are equal in the
case of non-commuting graph of finite CC-rings.

Theorem 3.16. Let R be a finite CC-ring. Then κ(ΓR) = λ(ΓR) = δ(ΓR).

Proof. Let R be a finite CC-ring. Then V (ΓR) = R\Z(R) can be partitioned into k
equivalence classes with respect to ∼ for some k ∈ N. Suppose that x and y belong to the
same class. Then x ∼ y, that is, xy = yx. Thus x and y are not adjacent. On the other
hand, suppose that x and y belong to the different classes. Then x � y, that is, xy 6= yx.
Thus x and y are adjacent. It implies that every two vertices x and y, x adjacent to y
if and only if x and y belong to different classes. Therefore, ΓR is a complete k−partite
graph. By Lemma 2.11 , we get κ(ΓR) = λ(ΓR) = δ(ΓR).

By Theorem 3.16, we can determine edge-connectivity and vertex-connectivity of ΓR

where R is a ring of order pn, p is a prime number and n ∈ {2, 3}.

Lemma 3.17. Let p be a prime number and R be a finite non-commutative ring with
identity.

(1) If |R| = p2, then |Z(R)| = 1 and |CR(x)| = p for all x ∈ R \ Z(R).
(2) If |R| = p3, then |Z(R)| = p and |CR(x)| = p2 for all x ∈ R \ Z(R).

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.
Suppose that |R| = p2. Let x ∈ R\Z(R). Because CR(x) is an additive subgroup of

R, |CR(x)| ∈
{

1, p, p2
}

. By Lemma 2.12, |CR(x)| < p2. Since 0, x ∈ CR(x), |CR(x)| ≥ 2.
Therefore, |CR(x)| = p. Similarly, Z(R) is an additive subgroup of CR(x), so |Z(R)| ∈
{1, p}. By Lemma 2.12, we have |Z(R)| < p, so |Z(R)| = 1.

Assume that |R| = p3. By Lemma 2.7, we get |Z(R)| = p. Let x ∈ R\Z(R). Since
CR(x) is an additive subgroup of R, |CR(x)| ∈

{
1, p, p2, p3

}
. By Lemma 2.12, we get

p < |CR(x)| < p3, so |CR(x)| = p2.

Lemma 3.18. Let p be a prime number and R be a non-commutative ring of order p2.
Then R is a CC-ring.

Proof. Let x be a non-central element of R. By Lemma 3.17, we get |CR(x)| = p. Also
by Lemma 2.10, we get CR(x) is commutative.
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Theorem 3.19. Let p be a prime number and R be a non-commutative ring of order p2.
Then κ(ΓR) = λ(ΓR) = δ(ΓR) = p2 − p.

Proof. By Lemma 3.18, we get R is a CC-ring. Also, by Theorem 3.16, we have κ(ΓR) =
λ(ΓR) = δ(ΓR). Because deg(x) = |R| − |CR(x)| for every x ∈ V (ΓR), we get δ(ΓR) =
|R| − max

x∈R\Z(R)
|CR(x)|. By Lemma 3.17, |CR(x)| = p for any x ∈ R\Z(R). Therefore,

κ(ΓR) = λ(ΓR) = δ(ΓR) = p2 − p.

Lemma 3.20. Let p be a prime number and R be a non-commutative ring of order p3

with identity. Then R is a CC-ring.

Proof. Let R be a non-commutative ring of order p3 with identity. Let x ∈ R\Z(R). By
Lemma 3.17, we get |CR(x)| = p2. Observe that 1 ∈ CR(x), so CR(x) is a ring with
identity. By Lemma 2.6, CR(x) is commutative. Therefore, R is a CC-ring.

Theorem 3.21. Let p be a prime number and R be a finite non-commutative ring of
order p3 with identity. Then κ(ΓR) = λ(ΓR) = δ(ΓR) = p3 − p2.

Proof. By Lemma 3.20, R is a CC-ring. Also by Theorem 3.16, we get κ(ΓR) = λ(ΓR) =
δ(ΓR). By Lemma 3.17, |CR(x)| = p2 for any x ∈ R\Z(R). Then δ(ΓR) = |R| −

max
x∈R\Z(R)

|CR(x)| = p3 − p2. Therefore, κ(ΓR) = λ(ΓR) = δ(ΓR) = p3 − p2.

Next, we consider a ring R of order pn where p is a prime number and n ∈ {4, 5}. The
edge-connectivity and the vertex-connectivity of ΓR both depend on |Z(R)|. The next
lemma indicates all possibilities of |Z(R)|.

Lemma 3.22. Let p be a prime number and R be a finite non-commutative ring with
identity.

(1) If |R| = p4, then |Z(R)| ∈ {p, p2}.
(2) If |R| = p5, then |Z(R)| ∈ {p, p2, p3}.

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.
Suppose that |R| = p4. Since Z(R) is an additive subgroup ofR, |Z(R)|∈

{
1, p, p2, p3, p4

}
.

Because 0, 1 ∈ Z(R), |Z(R)| ≥ 2. Moreover, |Z(R)| < p4 by Lemma 2.12. Thus,
|Z(R)| ∈

{
p, p2, p3

}
. By Lemma 2.8, |Z(R)| 6= p3. Therefore, |Z(R)| ∈

{
p, p2

}
.

Assume that |R| = p5. Since Z(R) is an additive subgroup of R and |R| = p5,
|Z(R)| ∈

{
1, p, p2, p3, p4, p5

}
. Note that |Z(R)| < p5 and |Z(R)| 6= p4 by Lemma 2.12

and Lemma 2.8, respectively. Thus, |Z(R)| ∈
{

1, p, p2, p3
}
. Since 0, 1 ∈ Z(R), |Z(R)| > 2.

Therefore, |Z(R)| ∈
{
p, p2, p3

}
.

If R is a ring of order p4 where p is a prime number, then two possibilities for |Z(R)|
arise from Lemma 3.22. They yield different possibilities for |CR(x)| where x is a non-
central element of R.

Lemma 3.23. Let p be a prime number and R be a finite non-commutative ring of order
p4 with identity such that |Z(R)| = p. Then |CR(x)| ∈

{
p2, p3

}
for any x ∈ R\Z(R).

Proof. Let x ∈ R \ Z(R). Since CR(x) is an additive subgroup of R, p4 is a multiple of
|CR(x)|. Then |CR(x)| ∈

{
1, p, p2, p3, p4

}
. By Lemma 2.12, we have p < |CR(x)| < p4, so

|CR(x)| ∈
{
p2, p3

}
.
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Lemma 3.24. Let p be a prime number and R be a finite non-commutative ring of order
p4 with identity such that |Z(R)| = p2. Then |CR(x)| = p3 for any x ∈ R\Z(R).

Proof. Let x be a non-central element of R. Since CR(x) is an additive subgroup of R,
|CR(x)| ∈

{
1, p, p2, p3, p4

}
. By Lemma 2.12, we get p2 < |CR(x)| < p4, so |CR(x)| = p3.

Theorem 3.25. Let p be a prime number and R be a finite non-commutative ring of
order p4 with identity. Then the connectivity of ΓR is one of the following case:

(1) If |Z(R)| = p, then either

κ(ΓR) = λ(ΓR) = δ(ΓR) = p4 − p2 or κ(ΓR) = λ(ΓR) = δ(ΓR) = p4 − p3.

(2) If |Z(R)| = p2, then κ(ΓR) = λ(ΓR) = δ(ΓR) = p4 − p3.

Proof. Let R be a finite non-commutative ring of order p4 with identity. By Lemma
2.9, R is a CC-ring. Also by Theorem 3.16, we get κ(ΓR) = λ(ΓR) = δ(ΓR). Since
deg(x) = |R| − |CR(x)| for all x ∈ V (ΓR), we have

κ(ΓR) = λ(ΓR) = δ(ΓR) = min
x∈V (ΓR)

(|R| − |CR(x)|) = |R| − max
x∈V (ΓR)

|CR(x)|.

Next, we consider the following two cases:
Case 1: Suppose that |Z(R)| = p. By Lemma 3.23, we have |CR(x)| ∈

{
p2, p3

}
. If

|CR(x)| = p2 for all x ∈ R\Z(R), then

κ(ΓR) = λ(ΓR) = δ(ΓR) = |R| − max
x∈V (ΓR)

|CR(x)| = p4 − p2.

On the other hand, if there exists x ∈ R\Z(R) such that |CR(x)| = p3, then

κ(ΓR) = λ(ΓR) = δ(ΓR) = |R| − max
x∈V (ΓR)

|CR(x)| = p4 − p3.

Case 2: Suppose that |Z(R)| = p2. By Lemma 3.24, we have |CR(x)| = p3 for all
x ∈ R\Z(R). Then

κ(ΓR) = λ(ΓR) = δ(ΓR) = |R| − max
x∈V (ΓR)

|CR(x)| = p4 − p3.

Finally, if R is a ring of order p5 where p is a prime number, there are three possibilities
for |Z(R)| by Lemma 3.22. It will affect the edge-connectivity and the vertex-connectivity
of ΓR as well.

Lemma 3.26. Let p be a prime number and R be a finite non-commutative ring of order
p5 with identity such that |Z(R)| = p2. Then |CR(x)| ∈

{
p3, p4

}
for any x ∈ R\Z(R).

Proof. Let x be a non-central element of R. Since CR(x) is an additive subgroup of R,
p5 is a multiple of |CR(x)|. Then |CR(x)| ∈

{
1, p, p2, p3, p4, p5

}
. By Lemma 2.12, we get

p2 < |CR(x)| < p5, so |CR(x)| ∈
{
p3, p4

}
.

Lemma 3.27. Let p be a prime number and R be a finite non-commutative ring of order
p5 with identity such that |Z(R)| = p2. Then R is a CC-ring.

Proof. Let R be a finite non-commutative ring of order p5 with identity such that |Z(R)| =
p2. Suppose that x is a non-central element of R. By Lemma, 3.26, we get |CR(x)| ∈{
p3, p4

}
. Since 1 ∈ CR(x), CR(x) is a ring with identity.

Case 1: Let |CR(x)| = p3. We will show that CR(x) is a commutative ring. Assume,
to the contrary, that CR(x) is a non-commutative ring. By Lemma 2.7, |Z(CR(x))| = p.
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This is a contradiction since Z(R) ⊆ Z(CR(x)). Consequently, CR(x) is a commutative
ring.

Case 2: Let |CR(x)| = p4. Suppose that CR(x) is a non-commutative ring. By Lemma
3.22, we get |Z(CR(x))| ∈

{
p, p2

}
. Since Z(R) ⊆ Z(CR(x)), |Z(CR(x))| ≥ |Z(R)| = p2.

Then |Z(CR(x))| = p2, so Z(R) = Z(CR(x)). Since x ∈ Z(CR(x)) and x /∈ Z(R), we get
Z(R) ( Z(CR(x)), which is a contradiction. Then CR(x) is a commutative ring.

As a result, R is a CC-ring.

Theorem 3.28. Let p be a prime number and R be a finite non-commutative ring of
order p5 with identity such that |Z(R)| = p2. Then

κ(ΓR) = λ(ΓR) = δ(ΓR) = p5 − p3 or κ(ΓR) = λ(ΓR) = δ(ΓR) = p5 − p4.

Proof. Let R be a finite non-commutative ring with identity of order p5 such that |Z(R)| =
p2. By Lemma 3.27, R is a CC-ring. Also, by Theorem 3.16, we get κ(ΓR) = λ(ΓR) =
δ(ΓR). Since deg(x) = |R| − |CR(x)| for all x ∈ V (ΓR), we get

κ(ΓR) = λ(ΓR) = δ(ΓR) = min
x∈V (ΓR)

(|R| − |CR(x)|) = |R| − max
x∈V (ΓR)

|CR(x)|.

Suppose that x ∈ R\Z(R). By Lemma 3.26, we have |CR(x)| ∈
{
p3, p4

}
. If |CR(x)| = p3

for all x ∈ R\Z(R), then

κ(ΓR) = λ(ΓR) = δ(ΓR) = |R| − max
x∈V (ΓR)

|CR(x)| = p5 − p3.

If there exists x ∈ R\Z(R) such that |CR(x)| = p4, then

κ(ΓR) = λ(ΓR) = δ(ΓR) = |R| − max
x∈V (ΓR)

|CR(x)| = p5 − p4.

Lemma 3.29. Let p be a prime number and R be a finite non-commutative ring of order
p5 with identity such that |Z(R)| = p3. Then |CR(x)| = p4 for any x ∈ R\Z(R).

Proof. Let x be a non-central element of R. Since CR(x) is an additive subgroup of R,
we have |CR(x)| ∈

{
1, p, p2, p3, p4, p5

}
. By Lemma 2.12, we get p3 < |CR(x)| < p5, so

|CR(x)| = p4.

Lemma 3.30. Let p be a prime number and R be a finite non-commutative ring of order
p5 with identity such that |Z(R)| = p3. Then R is a CC-ring.

Proof. Let x be a non-central element of R. By Lemma 3.29, we get |CR(x)| = p4. We
will show that CR(x) is commutative. Assume, to the contrary, that CR(x) is a non-
commutative ring. Since 1 ∈ CR(x), CR(x) is a non-commutative ring of order p4 with
identity. By Lemma 3.22, |Z(CR(x))| ∈

{
p, p2

}
. Since Z(R) is a subring of Z(CR(x)) and

x ∈ Z(CR(x))\Z(R), we get Z(R) ( Z(CR(x)). Then |Z(CR(x))| > |Z(R)| = p3, which
is a contradiction. Then CR(x) is a commutative ring. Consequently, R is a CC-ring.

Corollary 3.31. Let p be a prime number and R be a finite non-commutative ring of
order p5 with identity such that |Z(R)| = p3. Then κ(ΓR) = λ(ΓR) = δ(ΓR) = p5 − p4.

Proof. Let R be a finite non-commutative ring with identity of order p5 such that |Z(R)| =
p3. By Lemma 3.30, R is a CC-ring. By Theorem 3.16, we have κ(ΓR) = λ(ΓR) = δ(ΓR).
Also by Lemma 3.29, |CR(x)| = p4 for all x ∈ R\Z(R). Therefore,

κ(ΓR) = λ(ΓR) = δ(ΓR) = |R| − max
x∈V (ΓR)

|CR(x)| = p5 − p4.
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If R is a ring of order p5 and |Z(R)| = p where p is a prime number, then R may not
be a CC-ring as illustrated in the following example.

Example 3.32. LetR =


 a 0 b

0 c d
0 0 e

∣∣∣∣∣∣ a, b, c, d, e ∈ Z2

. ThenR is a non-commutative

ring of order 32 and Z(R) =


 0 0 0

0 0 0
0 0 0

 ,
 1 0 0

0 1 0
0 0 1

. Then it is easy to see that

CR

 1 0 0
0 0 0
0 0 0

 =


 a 0 0

0 c d
0 0 e

∣∣∣∣∣∣ a, c, d, e ∈ Z2

 which is non-commutative since 0 0 0
0 1 1
0 0 0

 0 0 0
0 1 1
0 0 1

 6=
 0 0 0

0 1 1
0 0 1

 0 0 0
0 1 1
0 0 0

.

4. Concluding Remark

In this paper, we studied the edge-connectivity and the vertex-connectivity of non-
commuting graphs of a finite non-commutative ring R. We proved that λ(ΓR) = δ(ΓR)
and obtained a lower bound and an upper bound for the edge-connectivity and the
vertex-connectivity of ΓR. In particular, we showed that if R is a finite CC-ring, then
κ(ΓR) = λ(ΓR) = δ(ΓR). Then the more general problem is to determine the following
conjecture.

Conjecture: Let R be a finite non-commutative ring. Then κ(ΓR) = λ(ΓR) = δ(ΓR).
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