Thai Journal of **Math**ematics Volume 21 Number 4 (2023) Pages 887–898

http://thaijmath.in.cmu.ac.th

Discrete and Computational Geometry, Graphs, and Games

On the Connectivity of Non-Commuting Graph of Finite Rings

Borworn Khuhirun, Khajee Jantarakhajorn* and Wanida Maneerut

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University e-mail : borwornk@mathstat.sci.tu.ac.th (B. Khuhirun); Khajee@mathstat.sci.tu.ac.th (K. Jantarakhajorn); mneveryday@gmail.com (W. Maneerut)

Abstract The non-commuting graph of a non-commutative ring R, denoted by Γ_R , is a simple graph with vertex set of elements in R except for its center. Two distinct vertices x and y are adjacent if $xy \neq yx$. In this paper, we study the vertex-connectivity and edge-connectivity of a non-commuting graph associated with a finite non-commutative ring R and prove their lower bounds. We show that the edge-connectivity of Γ_R is equal to its minimum degree. The vertex-connectivity and edge-connectivity of Γ_R are determined when R is a non-commutative ring of order p^n where p is a prime number, and $n \in \{2, 3, 4, 5\}$.

MSC: 05C25; 05C40 Keywords: vertex-connectivity; edge-connectivity; minimum degree

Submission date: 29.01.2022 / Acceptance date: 07.02.2023

1. INTRODUCTION

Let R be a non-commutative ring and Z(R) be the center of R. The *centralizer* of an element x in R is defined to be $C_R(x) = \{y \in R : xy = yx\}$ and a non-commutative ring R is called a *CC-ring* if every centralizer of non-central element in R is commutative. The *non-commuting graph* of R, denoted by Γ_R , is a graph whose vertex set is $R \setminus Z(R)$ and two distinct vertices x and y are adjacent if and only if $xy \neq yx$. This graph was introduced by Erfanian et al. [10]. The interplay between ring-theoretic properties and graph-theoretic properties has become a focus of research over the last decade. Many papers have assigned a group or a ring to a graph and investigated the properties of the associated graph, [1-4, 11, 12, 15, 16].

For a graph G, V(G) and E(G) are the vertex set and edge set of G, respectively. The *degree* of vertex u in G, denoted by deg(u), is the number of edges incident with u. The *minimum degree* of G is the minimum degree among all vertices of G, denoted by $\delta(G)$. A u - v path P in G is a sequence of distinct vertices, beginning with u and ending

^{*}Corresponding author.

at v such that consecutive vertices in P are adjacent in G. The path P is denoted by $P: v_0, v_1, v_2, ..., v_k$ where $u = v_0$ and $v = v_k$. The number of edges encountered in P is the length of path P. A graph G is said to be connected if G contain a u - v path for every pair u, v of distinct vertices of G. The distance between u and v is the smallest length of any u - v path in G, denoted by d(u, v). The greatest distance between any two vertices of a connected graph G is called the diameter of G and denoted by diam(G). A complete graph is a graph in which every two distinct vertices are adjacent. A graph G is a k-partite graph if V(G) can be partitioned into k subsets $V(G) = V_1 \cup V_2 \cup V_3 \cup ... \cup V_k$ and $V_i \cap V_j = \emptyset$ for all $i \neq j$, called partite sets, such that a adjacent to b if and only if a and b belong to different partite sets. A graph G is called a complete k-partite graph if G, denoted by $\kappa(G)$, is the minimum number of vertices whose removal from G results in a disconnected or trivial graph. The edge-connectivity of G, denoted by $\lambda(G)$, is the minimum number of results in a disconnected or trivial graph.

Erfanian et al. [10] studied various graph theoretical properties of Γ_R such as completeness and planarity. They also determined the diameter, girth, domination number, chromatic number, and clique number of Γ_R .

The study of non-commuting graphs of rings was continued by Dutta and Basnet [8]. They proved that Γ_R is connected and determined the degree of vertices in Γ_R .

In this paper, we study the vertex-connectivity and edge-connectivity of the noncommuting graph associated with a finite non-commutative ring R. We prove a lower bound for $\kappa(\Gamma_R)$ and $\lambda(\Gamma_R)$. We show that the edge-connectivity of Γ_R is equal to $\delta(\Gamma_R)$, the minimum degree of Γ_R . In particular, we consider the relation between $\kappa(\Gamma_R)$, $\lambda(\Gamma_R)$ and $\delta(\Gamma_R)$. Finally, for a ring R of order p^n , we determine $\kappa(\Gamma_R)$ and $\lambda(\Gamma_R)$ where p is a prime number, and $n \in \{2, 3, 4, 5\}$.

2. Preliminaries

Throughout this paper, we let R be a finite non-commutative ring unless stated otherwise. We provide some useful results which will be used throughout this paper.

Theorem 2.1. [8, Proposition 2.1] Let R be a finite ring. Then Γ_R is connected.

Theorem 2.2. [10, Theorem 2.1] Let R be a non-commutative ring. Then diam(Γ_R) ≤ 2 .

Theorem 2.3. [13] If G is a connected graph of diameter at most 2, then $\lambda(G) = \delta(G)$.

Theorem 2.4. [5] Let G be a graph of order n. If G is not a complete graph, then $\kappa(G) \ge 2\delta(G) + 2 - n$.

Theorem 2.5. [10, Theorem 2.2] Let R be a non-commutative ring. Then Γ_R is complete if and only if |R| = 4.

Lemma 2.6. [9, p.512] Let R be a finite ring with identity of order p^n , where p is a prime number. If n < 3, then R is commutative.

Lemma 2.7. [16, Lemma 2.5] Let p be a prime number and R be a non-commutative ring of order p^3 with identity. Then |Z(R)| = p.

Lemma 2.8. [16, Lemma 2.2] Let R be a finite non-commutative ring and $Z(R) \neq \{0\}$. Then $[R: Z(R)] = \frac{|R|}{|Z(R)|}$ is not prime.

Theorem 2.9. [15, Theorem 2.1] Let p be a prime number and R be a non-commutative ring of order p^4 with identity. Then $C_R(x)$ is a commutative ring for all $x \in R \setminus Z(R)$.

Lemma 2.10. [14] If R is a ring of prime order p, then R is commutative.

Lemma 2.11. [6, p.567] If G is a complete k-partite graph of order n whose largest partite set contains n_k vertices, then $\kappa(G) = \lambda(G) = \delta(G) = n - n_k$.

Lemma 2.12. Let R be a non-commutative ring. Then $|Z(R)| < |C_R(x)| < |R|$ for all $x \in R \setminus Z(R)$

Proof. Let $x \in R \setminus Z(R)$. It obvious that $Z(R) \subseteq C_R(x) \subseteq R$. Since $x \notin Z(R)$, we have $C_R(x) \subsetneq R$. Also, $x \in C_R(x) \setminus Z(R)$. Hence $|Z(R)| < |C_R(x)| < |R|$.

3. Main Results

3.1. Edge-Connectivity and Vertex-Connectivity

In this section, we study the edge-connectivity and the vertex-connectivity of the noncommuting graph for a finite non-commutative ring R. We prove that $\lambda(\Gamma_R) = \delta(\Gamma_R)$ and present a lower bound and an upper bound for the edge-connectivity of Γ_R . In particular, we develop an upper bound for $\lambda(\Gamma_R)$ when R is a non-commutative ring and R has a nilpotent element of degree n. Examples are also given to ensure that our bounds are sharp. Moreover, we give a lower bound for the vertex-connectivity of Γ_R . We begin this section with the following lemma:

Lemma 3.1. Let R be a finite non-commutative ring. Then $\lambda(\Gamma_R) = \delta(\Gamma_R)$.

Proof. Let R be a finite non-commutative ring. By Theorem 2.1 and Theorem 2.2, Γ_R is a connected graph of diameter at most 2 and so by Theorem 2.3, $\lambda(\Gamma_R) = \delta(\Gamma_R)$.

Lemma 3.2. Let R be a finite non-commutative ring. Then $\delta(\Gamma_R) \geq \frac{|R|}{2}$.

Proof. Let $x \in V(\Gamma_R)$. Since R is a non-commutative ring and $C_R(x)$ is an additive subgroup of R, $|R| = m|C_R(x)|$ for some positive integer $m \ge 2$. Then $|C_R(x)| \le \frac{|R|}{2}$ and so $|R| - |C_R(x)| \ge \frac{|R|}{2}$. Since $\deg(x) = |R| - |C_R(x)|$ for every $x \in V(\Gamma_R)$, we get $\delta(\Gamma_R) \ge \frac{|R|}{2}$.

Lemma 3.3. Let R be a finite non-commutative ring. Then $\delta(\Gamma_R) \leq |R| - 2$.

Proof. For any $x \in R \setminus Z(R)$, it is clear that $0, x \in C_R(x)$. Thus $|C_R(x)| \ge 2$. Then $|R| - |C_R(x)| \le |R| - 2$. Since $\deg(x) = |R| - |C_R(x)|$ for every $x \in V(\Gamma_R)$, we get $\delta(\Gamma_R) \le |R| - 2$.

As a consequence, we obtain a lower bound and an upper bound for both $\delta(\Gamma_R)$ and $\lambda(\Gamma_R)$.

Theorem 3.4. Let R be a finite non-commutative ring. Then

$$\frac{|R|}{2} \le \delta(\Gamma_R) = \lambda(\Gamma_R) \le |R| - 2.$$

The following example shows that the bounds given above are sharp.

Example 3.5. Let $R = \{0, x, y, z\}$ be a non-commutative ring under the addition and multiplication given by Table 1. Then Γ_R is the graph as shown below:

+	0	x	y	z	•	0	x	y
0	0	x	y	z	0	0	0	0
x	x	0	z	y	x	0	x	y
y	y	z	0	x	y	0	0	0
z	z	y	x	0	z	0	x	y

TABLE 1. The addition and multiplication of $R = \{0, x, y, z\}$

Thus, $\delta(\Gamma_R) = \lambda(\Gamma_R) = 2$, so the bounds in Theorem 3.4 are sharp.

As in the proof of Lemma 3.3, if R is a finite non-commutative ring with identity, we have $0, 1, x \in C_R(x)$ and so $|C_R(x)| \ge 3$. Then we obtain the following result:

Corollary 3.6. Let R be a finite non-commutative ring with identity. Then $\lambda(\Gamma_R) \leq |R| - 3$.

Furthermore, if $x \in R$ is a non-central nilpotent element of degree n, then $0, x, x^2, x^3, ..., x^{n-1} \in C_R(x)$, so an upper bound for $\lambda(\Gamma_R)$ is obtained.

Corollary 3.7. Let R be a non-commutative ring containing a non-central nilpotent element of degree n. Then $\lambda(\Gamma_R) \leq |R| - n$.

The following examples show rings that satisfy Corollary 3.6 and Corollary 3.7, respectively.

Example 3.8. Let $R = T_2(\mathbb{Z}_2) = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \in \mathbb{Z}_2 \right\}$. Then R is a non-commutative ring with identity of order 8 and Γ_R is the graph below:

Observe that $\lambda(\Gamma_R) = 4 < |R| - 3$.

Example 3.9. Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \middle| a, b \in \mathbb{Z}_4 \right\}$. Then R is a non-commutative ring of order 16 and $\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$ is a non-central nilpotent element of degree n = 3. By letting $\bar{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. $v_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $v_5 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $v_6 = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$, $v_7 = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$, $v_8 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$, $v_9 = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$, $v_{10} = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$, $v_{11} = \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}$, $v_{12} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$. $v_{13} = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}$, $v_{14} = \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix}$, $v_{15} = \begin{bmatrix} 3 & 3 \\ 0 & 0 \end{bmatrix}$,

 Γ_R is the following graph:

Notice that $\lambda(\Gamma_R) = 8 < 16 - 3 = |R| - n$.

If R is a finite non-commutative ring, then a lower bound of both edge-connectivity and vertex-connectivity of Γ_R can be determined in the following propositions:

Proposition 3.10. Let R be a finite non-commutative ring. Then $\lambda(\Gamma_R) \geq 2$.

Proof. It follows from Theorem 3.4 and $|R| \ge 4$.

Proposition 3.11. Let R be a finite non-commutative ring. Then $\kappa(\Gamma_R) \geq 2$.

Proof. Suppose, to the contrary, that there exists a finite non-commutative ring R such that $\kappa(\Gamma_R) = 1$. Then there is a vertex x such that $\Gamma_R - x$ is a disconnected graph or a trivial graph. Then we consider the next two cases:

<u>Case 1</u>: Assume that $\Gamma_R - x$ is a trivial graph. Then deg(x) = 1. By Lemma 3.2 and $|R| \ge 4$, we get $\delta(\Gamma_R) \ge \frac{|R|}{2} \ge \frac{4}{2} = 2$, which contradicts deg(x) = 1. <u>Case 2</u>: Assume that $\Gamma_R - x$ is a disconnected graph. Then there is at least 2 compo-

<u>Case 2</u>: Assume that $\Gamma_R - x$ is a disconnected graph. Then there is at least 2 components of $\Gamma_R - x$, say Γ_1 and Γ_2 . Assume that y_1 is a vertex of Γ_1 such that y_1 adjacent with x and y_2 is a vertex of Γ_2 such that y_2 adjacent with x. Thus, $xy_1 \neq y_1x$, $xy_2 \neq y_2x$ and there is no $y_1 - y_2$ path in $\Gamma_R - x$. Then $y_1y_2 = y_2y_1$. Next, we consider $x + y_1$. Since $y_1(x + y_1) \neq (x + y_1)y_1$ and $y_2(x + y_1) \neq (x + y_1)y_2$, we have $x + y_1 \notin Z(R)$, so $x + y_1 \in V(\Gamma_R)$. Furthermore, $P: y_1, x + y_1, y_2$ is a $y_1 - y_2$ path in $\Gamma_R - x$, which is a contradiction.

Moreover, if R is a non-commutative ring with |R| > 4, then the previous lower bound of vertex-connectivity of Γ_R can be improved as shown below:

Theorem 3.12. Let R be a non-commutative ring with |R| > 4. Then $\kappa(\Gamma_R) \geq |Z(R)| + 2$.

Proof. Suppose that |R| > 4. By Theorem 2.5, we get Γ_R is not a complete graph. By Theorem 2.4, we have $\kappa(\Gamma_R) \ge 2\delta(\Gamma_R) + 2 - (|R| - |Z(R)|)$. Also, by Lemma 3.2, $\kappa(\Gamma_R) \ge 2(\frac{|R|}{2}) + 2 - (|R| - |Z(R)|)$. Therefore, $\kappa(\Gamma_R) \ge |Z(R)| + 2$.

3.2. Edge-Connectivity and Vertex-Connectivity of a CC-Ring

In this section, we turn our attention to CC-rings and their properties, starting with the following lemmas.

Lemma 3.13. Let R be a finite CC-ring. If $x, y \in R \setminus Z(R)$ and $xy \neq yx$, then $C_R(x) \cap C_R(y) = Z(R)$.

Proof. Let $x, y \in R \setminus Z(R)$ be such that $xy \neq yx$. Since Z(R) is a subring of $C_R(x) \cap C_R(y)$, we get $Z(R) \subseteq C_R(x) \cap C_R(y)$. Next, we will show that $C_R(x) \cap C_R(y) \subseteq Z(R)$. Suppose, to the contrary, that there exists $a \in (C_R(x) \cap C_R(y)) \setminus Z(R)$. Then xa = ax and ya = ay. Thus $x, y \in C_R(a)$. Since R is a CC-ring, $C_R(a)$ is commutative. Then xy = yx, a contradiction. Therefore, $C_R(x) \cap C_R(y) = Z(R)$.

Lemma 3.14. Let R be a finite CC-ring and $x, y \in R \setminus Z(R)$. Then xy = yx if and only if $C_R(x) = C_R(y)$.

Proof. Let R be a finite CC-ring. Suppose that $x, y \in R \setminus Z(R)$ with xy = yx. Then $y \in C_R(x)$. We will show that $C_R(x) \subseteq C_R(y)$. Let $a \in C_R(x)$. Since R is a CC-ring, $C_R(x)$ is commutative. It implies that ya = ay, and so $a \in C_R(y)$. Thus $C_R(x) \subseteq C_R(y)$. Similarly, $C_R(y) \subseteq C_R(x)$, so $C_R(x) = C_R(y)$. The converse is obvious.

Next, we define a relation \sim on $R \setminus Z(R)$. For any $x, y \in R \setminus Z(R)$, $x \sim y$ if and only if xy = yx. It turns out that \sim is an equivalence relation.

Lemma 3.15. Let R be a CC-ring. Then \sim is an equivalence relation on $R \setminus Z(R)$.

Proof. Let $x, y, z \in R \setminus Z(R)$. Since $x \in C_R(x)$, $x \sim x$. Then \sim is reflexive. Suppose that $x \sim y$. Then xy = yx. Thus $y \sim x$. Hence \sim is symmetric. Suppose that $x \sim y$ and $y \sim z$. Then xy = yx and yz = zy. By Lemma 3.14, we get $C_R(x) = C_R(y)$ and $C_R(y) = C_R(z)$, that is, $C_R(x) = C_R(z)$. Thus xz = zx, and so $x \sim z$. Therefore, \sim is transitive. As a result, \sim is an equivalence relation.

This equivalence relation \sim on $R \setminus Z(R)$ induces a partition of $R \setminus Z(R)$, where the equivalence classes are given by $[x] = \{y \in R \setminus Z(R) \mid x \sim y\}$. Notice that $[x] = C_R(x) \setminus Z(R)$. In particular, if R is a finite CC-ring, then we can partition $R \setminus Z(R)$ into $C_R(x_1) \setminus Z(R)$, $C_R(x_2) \setminus Z(R), ..., C_R(x_k) \setminus Z(R)$ for some $k \in \mathbb{N}$ and $x_1, x_2, x_3, ..., x_k \in R \setminus Z(R)$.

In 1932, Whitney [17] proved the classical inequalities $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for every graph G. Surprisingly, the vertex-connectivity and the edge-connectivity are equal in the case of non-commuting graph of finite CC-rings.

Theorem 3.16. Let R be a finite CC-ring. Then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$.

Proof. Let R be a finite CC-ring. Then $V(\Gamma_R) = R \setminus Z(R)$ can be partitioned into k equivalence classes with respect to \sim for some $k \in \mathbb{N}$. Suppose that x and y belong to the same class. Then $x \sim y$, that is, xy = yx. Thus x and y are not adjacent. On the other hand, suppose that x and y belong to the different classes. Then $x \sim y$, that is, $xy \neq yx$. Thus x and y are adjacent. It implies that every two vertices x and y, x adjacent to y if and only if x and y belong to different classes. Therefore, Γ_R is a complete k-partite graph. By Lemma 2.11, we get $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$.

By Theorem 3.16, we can determine edge-connectivity and vertex-connectivity of Γ_R where R is a ring of order p^n , p is a prime number and $n \in \{2, 3\}$.

Lemma 3.17. Let p be a prime number and R be a finite non-commutative ring with identity.

(1) If $|R| = p^2$, then |Z(R)| = 1 and $|C_R(x)| = p$ for all $x \in R \setminus Z(R)$. (2) If $|R| = p^3$, then |Z(R)| = p and $|C_R(x)| = p^2$ for all $x \in R \setminus Z(R)$.

Proof. Let p be a prime number and R be a finite non-commutative ring with identity. Suppose that $|R| = p^2$. Let $x \in R \setminus Z(R)$. Because $C_R(x)$ is an additive subgroup of

 $R, |C_R(x)| \in \{1, p, p^2\}$. By Lemma 2.12, $|C_R(x)| < p^2$. Since $0, x \in C_R(x), |C_R(x)| \ge 2$. Therefore, $|C_R(x)| = p$. Similarly, Z(R) is an additive subgroup of $C_R(x)$, so $|Z(R)| \in \{1, p\}$. By Lemma 2.12, we have |Z(R)| < p, so |Z(R)| = 1.

Assume that $|R| = p^3$. By Lemma 2.7, we get |Z(R)| = p. Let $x \in R \setminus Z(R)$. Since $C_R(x)$ is an additive subgroup of R, $|C_R(x)| \in \{1, p, p^2, p^3\}$. By Lemma 2.12, we get $p < |C_R(x)| < p^3$, so $|C_R(x)| = p^2$.

Lemma 3.18. Let p be a prime number and R be a non-commutative ring of order p^2 . Then R is a CC-ring.

Proof. Let x be a non-central element of R. By Lemma 3.17, we get $|C_R(x)| = p$. Also by Lemma 2.10, we get $C_R(x)$ is commutative.

Theorem 3.19. Let p be a prime number and R be a non-commutative ring of order p^2 . Then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^2 - p$.

Proof. By Lemma 3.18, we get R is a CC-ring. Also, by Theorem 3.16, we have $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$. Because deg $(x) = |R| - |C_R(x)|$ for every $x \in V(\Gamma_R)$, we get $\delta(\Gamma_R) = |R| - \max_{x \in R \setminus Z(R)} |C_R(x)|$. By Lemma 3.17, $|C_R(x)| = p$ for any $x \in R \setminus Z(R)$. Therefore, $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^2 - p$.

Lemma 3.20. Let p be a prime number and R be a non-commutative ring of order p^3 with identity. Then R is a CC-ring.

Proof. Let R be a non-commutative ring of order p^3 with identity. Let $x \in R \setminus Z(R)$. By Lemma 3.17, we get $|C_R(x)| = p^2$. Observe that $1 \in C_R(x)$, so $C_R(x)$ is a ring with identity. By Lemma 2.6, $C_R(x)$ is commutative. Therefore, R is a CC-ring.

Theorem 3.21. Let p be a prime number and R be a finite non-commutative ring of order p^3 with identity. Then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^3 - p^2$.

Proof. By Lemma 3.20, R is a CC-ring. Also by Theorem 3.16, we get $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$. By Lemma 3.17, $|C_R(x)| = p^2$ for any $x \in R \setminus Z(R)$. Then $\delta(\Gamma_R) = |R| - \max_{x \in R \setminus Z(R)} |C_R(x)| = p^3 - p^2$. Therefore, $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^3 - p^2$.

Next, we consider a ring R of order p^n where p is a prime number and $n \in \{4, 5\}$. The edge-connectivity and the vertex-connectivity of Γ_R both depend on |Z(R)|. The next lemma indicates all possibilities of |Z(R)|.

Lemma 3.22. Let p be a prime number and R be a finite non-commutative ring with identity.

(1) If $|R| = p^4$, then $|Z(R)| \in \{p, p^2\}$. (2) If $|R| = p^5$, then $|Z(R)| \in \{p, p^2, p^3\}$.

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.

Suppose that $|R| = p^4$. Since Z(R) is an additive subgroup of R, $|Z(R)| \in \{1, p, p^2, p^3, p^4\}$. Because $0, 1 \in Z(R), |Z(R)| \ge 2$. Moreover, $|Z(R)| < p^4$ by Lemma 2.12. Thus, $|Z(R)| \in \{p, p^2, p^3\}$. By Lemma 2.8, $|Z(R)| \neq p^3$. Therefore, $|Z(R)| \in \{p, p^2\}$.

Assume that $|R| = p^5$. Since Z(R) is an additive subgroup of R and $|R| = p^5$, $|Z(R)| \in \{1, p, p^2, p^3, p^4, p^5\}$. Note that $|Z(R)| < p^5$ and $|Z(R)| \neq p^4$ by Lemma 2.12 and Lemma 2.8, respectively. Thus, $|Z(R)| \in \{1, p, p^2, p^3\}$. Since $0, 1 \in Z(R), |Z(R)| > 2$. Therefore, $|Z(R)| \in \{p, p^2, p^3\}$.

If R is a ring of order p^4 where p is a prime number, then two possibilities for |Z(R)| arise from Lemma 3.22. They yield different possibilities for $|C_R(x)|$ where x is a non-central element of R.

Lemma 3.23. Let p be a prime number and R be a finite non-commutative ring of order p^4 with identity such that |Z(R)| = p. Then $|C_R(x)| \in \{p^2, p^3\}$ for any $x \in R \setminus Z(R)$.

Proof. Let $x \in R \setminus Z(R)$. Since $C_R(x)$ is an additive subgroup of R, p^4 is a multiple of $|C_R(x)|$. Then $|C_R(x)| \in \{1, p, p^2, p^3, p^4\}$. By Lemma 2.12, we have $p < |C_R(x)| < p^4$, so $|C_R(x)| \in \{p^2, p^3\}$.

Lemma 3.24. Let p be a prime number and R be a finite non-commutative ring of order p^4 with identity such that $|Z(R)| = p^2$. Then $|C_R(x)| = p^3$ for any $x \in R \setminus Z(R)$.

Proof. Let x be a non-central element of R. Since $C_R(x)$ is an additive subgroup of R, $|C_R(x)| \in \{1, p, p^2, p^3, p^4\}$. By Lemma 2.12, we get $p^2 < |C_R(x)| < p^4$, so $|C_R(x)| = p^3$.

Theorem 3.25. Let p be a prime number and R be a finite non-commutative ring of order p^4 with identity. Then the connectivity of Γ_R is one of the following case:

(1) If |Z(R)| = p, then either

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^4 - p^2 \quad or \quad \kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^4 - p^3.$$
(2) If $|Z(R)| = p^2$, then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^4 - p^3.$

Proof. Let R be a finite non-commutative ring of order p^4 with identity. By Lemma 2.9, R is a CC-ring. Also by Theorem 3.16, we get $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$. Since $\deg(x) = |R| - |C_R(x)|$ for all $x \in V(\Gamma_R)$, we have

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = \min_{x \in V(\Gamma_R)} \left(|R| - |C_R(x)| \right) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)|.$$

Next, we consider the following two cases:

<u>Case 1</u>: Suppose that |Z(R)| = p. By Lemma 3.23, we have $|C_R(x)| \in \{p^2, p^3\}$. If $|C_R(x)| = p^2$ for all $x \in R \setminus Z(R)$, then

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)| = p^4 - p^2.$$

On the other hand, if there exists $x \in R \setminus Z(R)$ such that $|C_R(x)| = p^3$, then

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)| = p^4 - p^3.$$

<u>Case 2</u>: Suppose that $|Z(R)| = p^2$. By Lemma 3.24, we have $|C_R(x)| = p^3$ for all $x \in R \setminus Z(R)$. Then

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)| = p^4 - p^3.$$

Finally, if R is a ring of order p^5 where p is a prime number, there are three possibilities for |Z(R)| by Lemma 3.22. It will affect the edge-connectivity and the vertex-connectivity of Γ_R as well.

Lemma 3.26. Let p be a prime number and R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^2$. Then $|C_R(x)| \in \{p^3, p^4\}$ for any $x \in R \setminus Z(R)$.

Proof. Let x be a non-central element of R. Since $C_R(x)$ is an additive subgroup of R, p^5 is a multiple of $|C_R(x)|$. Then $|C_R(x)| \in \{1, p, p^2, p^3, p^4, p^5\}$. By Lemma 2.12, we get $p^2 < |C_R(x)| < p^5$, so $|C_R(x)| \in \{p^3, p^4\}$.

Lemma 3.27. Let p be a prime number and R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^2$. Then R is a CC-ring.

Proof. Let R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^2$. Suppose that x is a non-central element of R. By Lemma, 3.26, we get $|C_R(x)| \in \{p^3, p^4\}$. Since $1 \in C_R(x), C_R(x)$ is a ring with identity.

<u>Case 1</u>: Let $|C_R(x)| = p^3$. We will show that $C_R(x)$ is a commutative ring. Assume, to the contrary, that $C_R(x)$ is a non-commutative ring. By Lemma 2.7, $|Z(C_R(x))| = p$.

This is a contradiction since $Z(R) \subseteq Z(C_R(x))$. Consequently, $C_R(x)$ is a commutative ring.

<u>Case 2</u>: Let $|C_R(x)| = p^4$. Suppose that $C_R(x)$ is a non-commutative ring. By Lemma 3.22, we get $|Z(C_R(x))| \in \{p, p^2\}$. Since $Z(R) \subseteq Z(C_R(x)), |Z(C_R(x))| \ge |Z(R)| = p^2$. Then $|Z(C_R(x))| = p^2$, so $Z(R) = Z(C_R(x))$. Since $x \in Z(C_R(x))$ and $x \notin Z(R)$, we get $Z(R) \subsetneq Z(C_R(x))$, which is a contradiction. Then $C_R(x)$ is a commutative ring.

As a result, R is a CC-ring.

Theorem 3.28. Let p be a prime number and R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^2$. Then

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^5 - p^3 \text{ or } \kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^5 - p^4.$$

Proof. Let R be a finite non-commutative ring with identity of order p^5 such that $|Z(R)| = p^2$. By Lemma 3.27, R is a CC-ring. Also, by Theorem 3.16, we get $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$. Since deg $(x) = |R| - |C_R(x)|$ for all $x \in V(\Gamma_R)$, we get

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = \min_{x \in V(\Gamma_R)} \left(|R| - |C_R(x)| \right) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)|.$$

Suppose that $x \in R \setminus Z(R)$. By Lemma 3.26, we have $|C_R(x)| \in \{p^3, p^4\}$. If $|C_R(x)| = p^3$ for all $x \in R \setminus Z(R)$, then

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)| = p^5 - p^3.$$

If there exists $x \in R \setminus Z(R)$ such that $|C_R(x)| = p^4$, then

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)| = p^5 - p^4.$$

Lemma 3.29. Let p be a prime number and R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^3$. Then $|C_R(x)| = p^4$ for any $x \in R \setminus Z(R)$.

Proof. Let x be a non-central element of R. Since $C_R(x)$ is an additive subgroup of R, we have $|C_R(x)| \in \{1, p, p^2, p^3, p^4, p^5\}$. By Lemma 2.12, we get $p^3 < |C_R(x)| < p^5$, so $|C_R(x)| = p^4$.

Lemma 3.30. Let p be a prime number and R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^3$. Then R is a CC-ring.

Proof. Let x be a non-central element of R. By Lemma 3.29, we get $|C_R(x)| = p^4$. We will show that $C_R(x)$ is commutative. Assume, to the contrary, that $C_R(x)$ is a non-commutative ring. Since $1 \in C_R(x)$, $C_R(x)$ is a non-commutative ring of order p^4 with identity. By Lemma 3.22, $|Z(C_R(x))| \in \{p, p^2\}$. Since Z(R) is a subring of $Z(C_R(x))$ and $x \in Z(C_R(x)) \setminus Z(R)$, we get $Z(R) \subsetneq Z(C_R(x))$. Then $|Z(C_R(x))| > |Z(R)| = p^3$, which is a contradiction. Then $C_R(x)$ is a commutative ring. Consequently, R is a CC-ring.

Corollary 3.31. Let p be a prime number and R be a finite non-commutative ring of order p^5 with identity such that $|Z(R)| = p^3$. Then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = p^5 - p^4$.

Proof. Let R be a finite non-commutative ring with identity of order p^5 such that $|Z(R)| = p^3$. By Lemma 3.30, R is a CC-ring. By Theorem 3.16, we have $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$. Also by Lemma 3.29, $|C_R(x)| = p^4$ for all $x \in R \setminus Z(R)$. Therefore,

$$\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R) = |R| - \max_{x \in V(\Gamma_R)} |C_R(x)| = p^5 - p^4.$$

If R is a ring of order p^5 and |Z(R)| = p where p is a prime number, then R may not be a CC-ring as illustrated in the following example.

 $\begin{aligned} \mathbf{Example 3.32. Let } R &= \left\{ \begin{bmatrix} a & 0 & b \\ 0 & c & d \\ 0 & 0 & e \end{bmatrix} \middle| a, b, c, d, e \in \mathbb{Z}_2 \right\}. \text{ Then } R \text{ is a non-commutative} \\ \text{ring of order 32 and } Z(R) &= \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}. \text{ Then it is easy to see that} \\ C_R \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) &= \left\{ \begin{bmatrix} a & 0 & 0 \\ 0 & c & d \\ 0 & 0 & e \end{bmatrix} \middle| a, c, d, e \in \mathbb{Z}_2 \right\} \text{ which is non-commutative since} \\ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \end{aligned}$

4. Concluding Remark

In this paper, we studied the edge-connectivity and the vertex-connectivity of noncommuting graphs of a finite non-commutative ring R. We proved that $\lambda(\Gamma_R) = \delta(\Gamma_R)$ and obtained a lower bound and an upper bound for the edge-connectivity and the vertex-connectivity of Γ_R . In particular, we showed that if R is a finite CC-ring, then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$. Then the more general problem is to determine the following conjecture.

Conjecture: Let R be a finite non-commutative ring. Then $\kappa(\Gamma_R) = \lambda(\Gamma_R) = \delta(\Gamma_R)$.

References

- A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra and Its Applications 428 (2008) 2947–2954.
- [2] A. Abdollahi, S. Akbari, H.R. Maimani, Non-commuting graph of a group, Journal of Algebra 298 (2006) 468–492.
- [3] D.F. Anderson, S.L. Philip, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999) 434–447.
- [4] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988) 208–226.
- [5] G. Chartrand, F. Harary, Graphs with prescribed connectivities, Theory of Graphs (P. Erdös and G. Katona, eds.), Akadémiai Kiadó, Budapest (1968), 61–63.
- [6] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs 6th Edition, CRC Press; Chapman and Hall, New York, 2016.
- [7] M.R. Darafsheh, Groups with the same non-commuting graph, Discrete Applied Mathematics 157 (2009) 833-837.
- [8] J. Dutta, D.K. Basnet, On non-commuting graph of a finite ring, Preprint.
- [9] K.E. Eldridge, Orders for finite noncommutative rings with unity, The American Mathematical Monthly 75 (1968) 512–514.

- [10] A. Erfanian, K. Khashyarmanesh, K. Nafar, Non-commuting graphs of rings, Discrete Mathematics, Algorithms and Applications 7 (2015) 1–27.
- [11] B.H. Neumann, A problem of Paul Erdös on groups, Journal of the Australian Mathematical Society 21 (1976) 467–472.
- [12] G.R. Omidi, E. Vatandoost. On the commuting graph of rings, Journal of Algebra and Its Applications 10 (2011) 521–527.
- [13] J. Plesnik, Critical graphs of given diameter, Acta F.R.N. Univ. Comen Mathematica 30 (1975) 71–93.
- [14] J.N. Salunke, On commutativity of finite rings, Bulletin of the Marathwada Mathematical Society 13 (2012) 39–47.
- [15] E. Vatandoost, F. Ramezani. On the commuting graph of some non-commutative rings with unity, Journal of Linear and Topological Algebra 5 (2016) 289–294.
- [16] E. Vatandoost, F. Ramezani, A. Bahraini, On the commuting graph of noncommutative rings of order $p^n q$, Journal of Linear and Topological Algebra 3 (2014) 1–6.
- [17] H. Whitney, Congruent graphs and the connectivity of graphs, American Journal of Mathematics 54 (1932) 150–168.