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Abstract The non-commuting graph of a non-commutative ring R, denoted by I'g, is a simple graph
with vertex set of elements in R except for its center. Two distinct vertices x and y are adjacent if
zy # yx. In this paper, we study the vertex-connectivity and edge-connectivity of a non-commuting
graph associated with a finite non-commutative ring R and prove their lower bounds. We show that the
edge-connectivity of I'g is equal to its minimum degree. The vertex-connectivity and edge-connectivity
of I'p are determined when R is a non-commutative ring of order p™ where p is a prime number, and
n € {2,3,4,5}.
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1. INTRODUCTION

Let R be a non-commutative ring and Z(R) be the center of R. The centralizer of an
element z in R is defined to be Cr(z) = {y € R: zy = yz} and a non-commutative ring
R is called a CC-ring if every centralizer of non-central element in R is commutative.
The non-commuting graph of R, denoted by T'g, is a graph whose vertex set is R\Z(R)
and two distinct vertices z and y are adjacent if and only if zy # yx. This graph was
introduced by Erfanian et al. [10]. The interplay between ring-theoretic properties and
graph-theoretic properties has become a focus of research over the last decade. Many
papers have assigned a group or a ring to a graph and investigated the properties of the
associated graph,[1—4, 11, 12, 15, 16].

For a graph G, V(G) and E(G) are the vertex set and edge set of G, respectively.
The degree of vertex u in G, denoted by deg(u), is the number of edges incident with w.
The minimum degree of G is the minimum degree among all vertices of G, denoted by
3(G). A u—wv path P in G is a sequence of distinct vertices, beginning with « and ending
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at v such that consecutive vertices in P are adjacent in (G. The path P is denoted by
P : vg,v1,09,...,vp Where u = vy and v = v,. The number of edges encountered in P is
the length of path P. A graph G is said to be connected if G contain a u — v path for
every pair u,v of distinct vertices of G. The distance between u and v is the smallest
length of any u — v path in G, denoted by d(u,v). The greatest distance between any two
vertices of a connected graph G is called the diameter of G and denoted by diam(G). A
complete graph is a graph in which every two distinct vertices are adjacent. A graph G is
a k—partite graph if V(G) can be partitioned into k subsets V(G) = V1 UV UV U ..UV
and V; NV, = 0 for all ¢ # j, called partite sets, such that a adjacent to b if and only if a
and b belong to different partite sets. A graph G is called a complete k—partite graph if
G is k—partite and every two vertices in different partite sets are adjacent. The vertez-
connectivity of G, denoted by k(G), is the minimum number of vertices whose removal
from G results in a disconnected or trivial graph. The edge-connectivity of G, denoted by
A(G), is the minimum number of edges whose removal from G results in a disconnected
or a trivial graph.

Erfanian et al. [10] studied various graph theoretical properties of I'g such as com-
pleteness and planarity. They also determined the diameter, girth, domination number,
chromatic number, and clique number of I'g.

The study of non-commuting graphs of rings was continued by Dutta and Basnet [8].
They proved that I'g is connected and determined the degree of vertices in I'g.

In this paper, we study the vertex-connectivity and edge-connectivity of the non-
commuting graph associated with a finite non-commutative ring R. We prove a lower
bound for k(I'r) and A(T'r). We show that the edge-connectivity of I'g is equal to 6(I'r),
the minimum degree of I'g. In particular, we consider the relation between k(I'r), A(I'r)
and 6(I'g) . Finally, for a ring R of order p", we determine x(I'g) and A\(I'g) where p is
a prime number, and n € {2, 3,4, 5}.

2. PRELIMINARIES

Throughout this paper, we let R be a finite non-commutative ring unless stated oth-
erwise. We provide some useful results which will be used throughout this paper.

Theorem 2.1. [3, Proposition 2.1] Let R be a finite ring. Then I'r is connected.

Theorem 2.2. [10, Theorem 2.1] Let R be a non-commutative ring. Then diam(T'g) < 2.
Theorem 2.3. [13] If G is a connected graph of diameter at most 2, then A\(G) = §(G).
Theorem 2.4. [5] Let G be a graph of order n. If G is not a complete graph, then

K(G) > 26(G) +2 —n.

Theorem 2.5. [10, Theorem 2.2] Let R be a non-commutative ring. Then T'r is complete
if and only if |R| = 4.

Lemma 2.6. [9, p.512] Let R be a finite ring with identity of order p"™, where p is a
prime number. If n < 3, then R is commutative.

Lemma 2.7. [16, Lemma 2.5] Let p be a prime number and R be a non-commutative
ring of order p* with identity. Then |Z(R)| = p.
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Lemma 2.8. [16, Lemma 2.2] Let R be a finite non-commutative ring and Z(R) # {0}.
Then [R: Z(R)] = \Zlgiﬂ is not prime.
Theorem 2.9. [15, Theorem 2.1] Let p be a prime number and R be a non-commutative

ring of order p* with identity. Then Cr(x) is a commutative ring for all x € R\Z(R).
Lemma 2.10. [14] If R is a ring of prime order p, then R is commutative.

Lemma 2.11. [6, p.567] If G is a complete k—partite graph of order n whose largest
partite set contains ny, vertices, then k(G) = MG) = §(G) =n — ny.

Lemma 2.12. Let R be a non-commutative ring. Then |Z(R)| < |Cr(z)| < |R| for all
z € R\Z(R)

Proof. Let x € R\Z(R). It obvious that Z(R) C Cg(xz) C R. Since x ¢ Z(R), we have
Cr(z) € R. Also, x € Cr(z) \ Z(R). Hence |Z(R)| < |Cr(z)| < |R]. L]

3. MAIN RESULTS

3.1. EDGE-CONNECTIVITY AND VERTEX-CONNECTIVITY

In this section, we study the edge-connectivity and the vertex-connectivity of the non-
commuting graph for a finite non-commutative ring R. We prove that A(T'g) = §(I'g) and
present a lower bound and an upper bound for the edge-connectivity of I'g. In particular,
we develop an upper bound for A(T'g) when R is a non-commutative ring and R has a
nilpotent element of degree n. Examples are also given to ensure that our bounds are
sharp. Moreover, we give a lower bound for the vertex-connectivity of I'r . We begin this
section with the following lemma:

Lemma 3.1. Let R be a finite non-commutative ring. Then A(T'g) = 6(Tr).

Proof. Let R be a finite non-commutative ring. By Theorem 2.1 and Theorem 2.2, I'g is
a connected graph of diameter at most 2 and so by Theorem 2.3, A(T'r) = §(T'r). L]

Lemma 3.2. Let R be a finite non-commutative ring. Then §(T'g) > |2£|.

Proof. Let x € V(I'g). Since R is a non-commutative ring and Cr(x) is an additive
subgroup of R, |R| = m|Cg(z)| for some positive integer m > 2. Then |Cr(z)| < @
and so |R| — |Cr(z)| > %. Since deg(x) = |R| — |Cr(z)| for every x € V(I'g), we get

() > L. .
Lemma 3.3. Let R be a finite non-commutative ring. Then 6(I'r) < |R| — 2.

Proof. For any © € R\Z(R), it is clear that 0,z € Cg(z). Thus |Cg(x)| > 2. Then
|R| — |Cr(x)] < |R| — 2. Since deg(z) = |R| — |Cr(z)| for every x € V(I'gr), we get
0(Tr) <|R| —2. "

As a consequence, we obtain a lower bound and an upper bound for both §(I'g) and
AMTR).
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Theorem 3.4. Let R be a finite non-commutative ring. Then
R
B < s =aww) <1rI-2

The following example shows that the bounds given above are sharp.

Example 3.5. Let R = {0,z,y, 2z} be a non-commutative ring under the addition and
multiplication given by Table 1. Then I'r is the graph as shown below:
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TABLE 1. The addition and multiplication of R = {0, z,y, z}

FRI

Thus, 6(I'gr) = A(I'r) = 2, so the bounds in Theorem 3.4 are sharp.

As in the proof of Lemma 3.3, if R is a finite non-commutative ring with identity, we
have 0,1,z € Cr(z) and so |Cr(x)| > 3. Then we obtain the following result:

Corollary 3.6. Let R be a finite non-commutative ring with identity. Then A(T'r) <
|R| — 3.

Furthermore, if z € R is a non-central nilpotent element of degree n, then 0, z, 22, 23, ...,
2"~ € Cgr(x), so an upper bound for A(I'g) is obtained.

Corollary 3.7. Let R be a non-commutative ring containing a mnon-central nilpotent
element of degree n. Then A(T'r) < |R| — n.

The following examples show rings that satisfy Corollary 3.6 and Corollary 3.7, respec-
tively.
a b

0
ring with identity of order 8 and I'g is the graph below:

Example 3.8. Let R = T5(Z2) = a, b, c€ Zg}. Then R is a non-commutative

FR:




891

On the Connectivity of Non-Commuting Graph of Finite Rings

4 <|R|-3.

Observe that A(T'r)

a,be Z4}. Then R is a non-commutative ring of
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] is a non-central nilpotent element of degree n = 3. By letting
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I'r is the following graph:

Notice that A(Tgr) =8 < 16 — 3 = |R| — n.
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If R is a finite non-commutative ring, then a lower bound of both edge-connectivity
and vertex-connectivity of I'r can be determined in the following propositions:

Proposition 3.10. Let R be a finite non-commutative ring. Then AM(T'g) > 2.
Proof. Tt follows from Theorem 3.4 and |R| > 4. L]
Proposition 3.11. Let R be a finite non-commutative ring. Then k(I'r) > 2.

Proof. Suppose, to the contrary, that there exists a finite non-commutative ring R such
that k(I'g) = 1. Then there is a vertex x such that 'y — z is a disconnected graph or a
trivial graph. Then we consider the next two cases:

Case 1: Assume that 'p — x is a trivial graph. Then deg(z) = 1. By Lemma 3.2 and
Rl _ 4
|R| > 4, we get 6(T'r) > % > 5= 2, which contradicts deg(z) = 1.

Case 2: Assume that I'r — z is a disconnected graph. Then there is at least 2 compo-
nents of ' — x, say I'y and I's. Assume that y; is a vertex of I'; such that y; adjacent
with = and ys is a vertex of I'y such that yo adjacent with x. Thus, xy; # y12, Ty # yox
and there is no y; — y2 path in I'r — . Then y1y» = ys2y1. Next, we consider x + y;.
Since y1(z +y1) # (z +y1)y1 and ya(z +y1) # (& + y1)y2, we have z +y1 ¢ Z(R), so
x4y € V(I'r). Furthermore, P : y;, x + y1, y2 is a y; — y2 path in I'r — &, which is a
contradiction. [

Moreover, if R is a non-commutative ring with |R| > 4, then the previous lower bound
of vertex-connectivity of I'p can be improved as shown below:

Theorem 3.12. Let R be a non-commutative ring with |R| > 4. Then k(T'g) > |Z(R)|+2.

Proof. Suppose that |R| > 4. By Theorem 2.5, we get I'r is not a complete graph.
By Theorem 2.4, we have k(T'g) > 26(T'gr) + 2 — (|R| — |Z(R)|). Also, by Lemma 3.2,
k(Tgr) > 2('—12%') +2—(|R| = |Z(R)|). Therefore, k(T'r) > |Z(R)| + 2. n

3.2. EDGE-CONNECTIVITY AND VERTEX-CONNECTIVITY OF A CC-RING

In this section, we turn our attention to CC-rings and their properties, starting with
the following lemmas.

Lemma 3.13. Let R be a finite CC-ring. If x,y € R\Z(R) and xy # yx, then Cr(z)N
Cr(y) = Z(R).

Proof. Let z,y € R\Z(R) be such that xy # yz. Since Z(R) is a subring of Cr(x)NCr(y),
we get Z(R) C Cr(x)NCr(y). Next, we will show that Cr(z)NCr(y) C Z(R). Suppose,
to the contrary, that there exists a € (Cr(x) NCr(y))\Z(R). Then za = ax and ya = ay.
Thus z,y € Cg(a). Since R is a CC-ring, Cg(a) is commutative. Then zy = yx, a
contradiction. Therefore, Cr(x) N Cr(y) = Z(R). L]

Lemma 3.14. Let R be a finite CC-ring and x,y € R\Z(R). Then xy = yx if and only
if Cr(z) = Cr(y).

Proof. Let R be a finite CC-ring. Suppose that =,y € R\Z(R) with zy = yx. Then
y € Cr(x). We will show that Cr(z) C Cr(y). Let a € Cg(z). Since R is a CC-ring,
Cr(z) is commutative. It implies that ya = ay, and so a € Cr(y). Thus Cg(x) C Cr(y).
Similarly, Cr(y) C Cgr(z), so Cr(xz) = Cr(y). The converse is obvious. L]
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Next, we define a relation ~ on R\Z(R). For any z,y € R\Z(R), = ~ y if and only if
zy = yz. It turns out that ~ is an equivalence relation.

Lemma 3.15. Let R be a CC-ring. Then ~ is an equivalence relation on R\Z(R).

Proof. Let z,y,2 € R\Z(R). Since z € Cg(x), © ~ x. Then ~ is reflexive. Suppose
that « ~ y. Then zy = yx. Thus y ~ . Hence ~ is symmetric. Suppose that z ~ y
and y ~ z. Then zy = yx and yz = zy. By Lemma 3.14, we get Cr(z) = Cgr(y) and
Cr(y) = Cr(z), that is, Cr(z) = Cr(z). Thus zz = zx, and so  ~ z. Therefore, ~ is
transitive. As a result, ~ is an equivalence relation. [

This equivalence relation ~ on R\ Z(R) induces a partition of R\ Z(R), where the equiv-
alence classes are given by [z] = {y € R\Z(R) | « ~ y}. Notice that [x] = Cr(x)\Z(R).
In particular, if R is a finite CC-ring, then we can partition R\Z(R) into Cr(z1)\Z(R),
Cr(z2)\Z(R), ...,Cr(zr)\Z(R) for some k € N and 1, x2,z3, ...,x € R\Z(R).

In 1932, Whitney [17] proved the classical inequalities K(G) < A(G) < 6(G) for every
graph G. Surprisingly, the vertex-connectivity and the edge-connectivity are equal in the
case of non-commuting graph of finite CC-rings.

Theorem 3.16. Let R be a finite CC-ring. Then k(T'r) = MT'g) = 6(Tr).

Proof. Let R be a finite CC-ring. Then V(I'gr) = R\Z(R) can be partitioned into k
equivalence classes with respect to ~ for some k € N. Suppose that x and y belong to the
same class. Then x ~ y, that is, xy = yz. Thus = and y are not adjacent. On the other
hand, suppose that x and y belong to the different classes. Then = ~ y, that is, zy # yz.
Thus x and y are adjacent. It implies that every two vertices = and y, x adjacent to y
if and only if z and y belong to different classes. Therefore, I'g is a complete k—partite
graph. By Lemma 2.11 , we get x(T'gr) = AM(Tgr) = 6(TCr). L]

By Theorem 3.16, we can determine edge-connectivity and vertex-connectivity of I'g
where R is a ring of order p”, p is a prime number and n € {2, 3}.

Lemma 3.17. Let p be a prime number and R be a finite non-commutative ring with
identity.

(1) If |R| = p?, then |Z(R)| =1 and |Cg(z)| =p for allz € R\ Z(R).

(2) If |R| = p?, then |Z(R)| = p and |Cg(z)| = p? for allz € R\ Z(R).

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.

Suppose that |R| = p?. Let x € R\Z(R). Because Cr(z) is an additive subgroup of
R, |Cr(z)| € {1,p,p?}. By Lemma 2.12, |Cr(z)| < p*. Since 0,z € Cg(z), |Cr(z)| > 2.
Therefore, |Cr(z)| = p. Similarly, Z(R) is an additive subgroup of Cr(z), so |Z(R)| €
{1,p}. By Lemma 2.12, we have |Z(R)| < p, so |Z(R)| = 1.

Assume that |R| = p3. By Lemma 2.7, we get |Z(R)| = p. Let x € R\Z(R). Since
Cr(z) is an additive subgroup of R, |Cr(z)| € {1,p,p? p*}. By Lemma 2.12, we get
p <|Cr(z)| < p® so [Cr(z)| = p*. =

Lemma 3.18. Let p be a prime number and R be a non-commutative ring of order p>.
Then R is a CC-ring.

Proof. Let x be a non-central element of R. By Lemma 3.17, we get |Cr(x)| = p. Also
by Lemma 2.10, we get Cr(z) is commutative. ]
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Theorem 3.19. Let p be a prime number and R be a non-commutative ring of order p?.
Then k(T'r) = AM(Tr) = 6(Tr) = p* — p.

Proof. By Lemma 3.18, we get R is a CC-ring. Also, by Theorem 3.16, we have x(I'g) =
AMTgr) = 6(Tg). Because deg(z) = |R| — |Cr(x)]| for every z € V(I'g), we get §(T'r) =

|R| — gl\aZX(R)\CR(m)L By Lemma 3.17, |Cr(z)| = p for any z € R\Z(R). Therefore,
re

#(Cr) = MI'r) = 0(Tr) = p* — p. u

Lemma 3.20. Let p be a prime number and R be a non-commutative ring of order p>
with identity. Then R is a CC-ring.

Proof. Let R be a non-commutative ring of order p* with identity. Let x € R\Z(R). By
Lemma 3.17, we get |Cr(z)| = p?. Observe that 1 € Cg(z), so Cg(z) is a ring with
identity. By Lemma 2.6, Cr(x) is commutative. Therefore, R is a CC-ring. m

Theorem 3.21. Let p be a prime number and R be a finite non-commutative ring of
order p® with identity. Then k(Tr) = A(T'r) = §(Tr) = p> — p*.

Proof. By Lemma 3.20, R is a CC-ring. Also by Theorem 3.16, we get k(I'g) = M(T'g)
§(T'g). By Lemma 3.17, |Cg(z)| = p? for any * € R\Z(R). Then 6(Tg) = |R| —
max |Cr(z)| = p® — p?. Therefore, k(IT'r) = A(T'r) = 6(Tr) = p* — p*. "
2€R\Z(R)
Next, we consider a ring R of order p™ where p is a prime number and n € {4,5}. The
edge-connectivity and the vertex-connectivity of I'r both depend on |Z(R)|. The next
lemma indicates all possibilities of |Z(R)]|.

Lemma 3.22. Let p be a prime number and R be a finite non-commutative ring with
identity.

(1) If |R| = p*, then |Z(R)| € {p,p}.

(2) If |R| =p°, then |Z(R)| € {p,p*,p’}.

Proof. Let p be a prime number and R be a finite non-commutative ring with identity.

Suppose that |R| = p*. Since Z(R) is an additive subgroup of R, | Z(R)| € {1, p, p*, p*, p*}.
Because 0,1 € Z(R), |Z(R)| > 2. Moreover, |Z(R)| < p* by Lemma 2.12. Thus,
|Z(R)| € {p,p*,p*}. By Lemma 2.8, |Z(R)| # p*. Therefore, |Z(R)| € {p,p*}.

Assume that |R| = p°. Since Z(R) is an additive subgroup of R and |R| = p5,
|Z(R)| € {1,p,p*,p% p*,p°} . Note that |Z(R)| < p° and |Z(R)| # p* by Lemma 2.12
and Lemma 2.8, respectively. Thus, |Z(R)| € {1,p,p?,p*} . Since 0,1 € Z(R), |Z(R)| > 2.
Therefore, |Z(R)| € {p,p*,p*}. n

If R is a ring of order p* where p is a prime number, then two possibilities for |Z(R)]|
arise from Lemma 3.22. They yield different possibilities for |Cr(z)| where x is a non-
central element of R.

Lemma 3.23. Let p be a prime number and R be a finite non-commutative ring of order
p* with identity such that |Z(R)| = p. Then |Cg(z)| € {p*,p*} for any x € R\Z(R).

Proof. Let x € R\ Z(R). Since Cr(x) is an additive subgroup of R, p* is a multiple of
|Cr(z)|. Then |Cg(x)| € {1,p,p? p® p*}. By Lemma 2.12, we have p < |Cg(z)| < p*, so
|Cr(z)| € {p*,p°} . -
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Lemma 3.24. Let p be a prime number and R be a finite non-commutative ring of order
p* with identity such that |Z(R)| = p?. Then |Cr(x)| = p3 for any x € R\Z(R).

Proof. Let x be a non-central element of R. Since Cg(x) is an additive subgroup of R,
|Cr(z)| € {1,p,p? p* p"}. By Lemma 2.12, we get p? < |Cr(z)| < p*, so |Cr(z)| = p>.
m

Theorem 3.25. Let p be a prime number and R be a finite non-commutative ring of
order p* with identity. Then the connectivity of I'r is one of the following case:

(1) If |Z(R)| = p, then either
k(Tr) = MT'r) = 0(Tr) =p* —p* or k(Tr) = ATr) =6(Tr) =p* —p*.
(2) If |Z(R)| = p®, then x(Ur) = A('r) = 6(T'r) = p* - p°.
Proof. Let R be a finite non-commutative ring of order p* with identity. By Lemma
2.9, R is a CC-ring. Also by Theorem 3.16, we get k(I'g) = A(T'r) = §(I'gr). Since
deg(z) = |R| — |Cr(x)] for all x € V(T'r), we have
K(lr) = Alr) = 0(Tp) = min (|R| [Cr(z)]) = |R| = max |Cg(z)|.
zeV (T z€V (L)
Next, we consider the following two cases:
Case 1: Suppose that |Z(R)| = p. By Lemma 3.23, we have |Cr(z)| € {p? p*}. If
|Cr(z)| = p? for all x € R\Z(R), then

K(Tr) = A(Cr) = 8(Cs) = Rl = _max [Can(a)| =p* ~ "

On the other hand, if there exists z € R\Z(R) such that |Cr(z)| = p?, then
#(lr) = Mr) = 0(T'r) = [R] = max |Cr(2)] = pt=p’.

Case 2: Suppose that |Z(R)| = p?. By Lemma 3.24, we have |Cg(z)| = p? for all
x € R\Z(R). Then
#(Tr) = AM'r) = 0(T'r) = [R| = max \CR( ) =p"=p’. =
zeV(I'r)
Finally, if R is a ring of order p® where p is a prime number, there are three possibilities
for |Z(R)| by Lemma 3.22. It will affect the edge-connectivity and the vertex-connectivity
of ' as well.

Lemma 3.26. Let p be a prime number and R be a finite non-commutative ring of order
p® with identity such that |Z(R)| = p*. Then |Cr(z)| € {p® p*} for any x € R\Z(R).

Proof. Let x be a non-central element of R. Since Cr(z) is an additive subgroup of R,
p® is a multiple of [Cgr(z)|. Then |Cr(z)| € {1,p,p?,p*,p*,p°} . By Lemma 2.12, we get
p* <|Cr(z)| < p°, so |Cr(z)| € {p*,p*}. n
Lemma 3.27. Let p be a prime number and R be a finite non-commutative ring of order
p° with identity such that |Z(R)| = p?>. Then R is a CC-ring.
Proof. Let R be a finite non-commutative ring of order p® with identity such that | Z(R)|
p?. Suppose that x is a non-central element of R. By Lemma, 3.26, we get |Cr(z)]
{pS,p4} . Since 1 € Cr(z), Cr(z) is a ring with identity.

Case 1: Let |Cg(z)| = p®. We will show that Cr(z) is a commutative ring. Assume,
to the contrary, that Cr(z) is a non-commutative ring. By Lemma 2.7, |Z(Cg(x))| = p.

S
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This is a contradiction since Z(R) C Z(Cg(z)). Consequently, Cr(x) is a commutative
ring.

Case 2: Let |Cr(x)| = p*. Suppose that Cr(x) is a non-commutative ring. By Lemma
3.22, we get |Z(Cr(z))| € {p,p*} . Since Z(R) C Z(Cr(x)), |Z(Cr(z))| > |Z(R)| = p*.
Then |Z(Cgr(z))| = p?, so Z(R) = Z(Cgr(x)). Since z € Z(Cr(z)) and = ¢ Z(R), we get
Z(R) € Z(Cg(x)), which is a contradiction. Then Cg(x) is a commutative ring.

As a result, R is a CC-ring. (]

Theorem 3.28. Let p be a prime number and R be a finite non-commutative ring of
order p® with identity such that |Z(R)| = p*. Then

k(Tr) = ATg) =6(Tgr) =p° —p> or w(Tgr) =ATg)=06Tg)=7p"—p
Proof. Let R be a finite non-commutative ring with identity of order p® such that | Z(R)| =
p?. By Lemma 3.27, R is a CC-ring. Also, by Theorem 3.16, we get x(T'r) = AM('gr) =
0(T'r). Since deg(x) = |R| — |Cgr(z)| for all z € V(T'g), we get

k(I'r) = MI'r) = 06(T'r) = L (IR| = |Cr(x)|) = |R| - welg%gR)\CR(mﬂ-

Suppose that z € R\Z(R). By Lemma 3.26, we have |Cr(z)| € {p?,p*}. If |Cr(z)| = p?
for all € R\Z(R), then

R(TR) = A(Tr) = (Tr) = |R| - max |Ca(a) =p° - p°.

z€V(T'r)
If there exists z € R\Z(R) such that |Cg(z)| = p?*, then
#(Tr) = ATg) = 0(T'r) = |R| — max |Cgr(x)|=p° —p* "
€V (TRr)

Lemma 3.29. Let p be a prime number and R be a finite non-commutative ring of order
p> with identity such that |Z(R)| = p®. Then |Cr(z)| = p* for any x € R\Z(R).

Proof. Let x be a non-central element of R. Since Cr(z) is an additive subgroup of R,
we have |Cgr(z)| € {1,p,p2,p3,p4,p5}. By Lemma 2.12, we get p® < |Cgr(z)| < p°, so
|Cr(x)| = p*. n

Lemma 3.30. Let p be a prime number and R be a finite non-commutative ring of order
p° with identity such that |Z(R)| = p®. Then R is a CC-ring.

Proof. Let = be a non-central element of R. By Lemma 3.29, we get |Cr(z)| = p*. We
will show that Cr(z) is commutative. Assume, to the contrary, that Cr(x) is a non-
commutative ring. Since 1 € Cr(x), Cr(z) is a non-commutative ring of order p* with
identity. By Lemma 3.22, |Z(Cg(z))| € {p,p?} . Since Z(R) is a subring of Z(Cg(z)) and
x € Z(Cr(x))\Z(R), we get Z(R) € Z(Cg(x)). Then |Z(Cr(z))| > |Z(R)| = p?, which
is a contradiction. Then Cr(z) is a commutative ring. Consequently, R is a CC-ring. m

Corollary 3.31. Let p be a prime number and R be a finite non-commutative ring of
order p° with identity such that |Z(R)| = p®. Then x(T'r) = A(I'g) = 6(T'r) = p° — p*.

Proof. Let R be a finite non-commutative ring with identity of order p® such that | Z(R)| =
p®. By Lemma 3.30, R is a CC-ring. By Theorem 3.16, we have x(I'gr) = A(T'r) = 6(T'r).
Also by Lemma 3.29, |Cr(z)| = p* for all 2 € R\Z(R). Therefore,

k(Tr) = AMT'g) =0(Tr) = |R| — max |Cgr(z)| =p°—p". u
z€V(I'r)
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If R is a ring of order p° and |Z(R)| = p where p is a prime number, then R may not
be a CC-ring as illustrated in the following example.

a 0 b
Example 3.32. Let R = 0 ¢ d a,b,c,d,e € Zo p. Then R is a non-commutative
0 0 e
0 0 0 1 00
ring of order 32 and Z(R) = 00 0f,]0 10 . Then it is easy to see that
0 0 O 0 0 1
100 a 0 0
Cr 0 0 O = 0 ¢ d a,c,d,e € Zy p which is non-commutative since
0 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 0 0
01 1 01 1|(#|0 11 0 1 1
0 0 0 0 0 1 0 0 1 0 0 0

4. CONCLUDING REMARK

In this paper, we studied the edge-connectivity and the vertex-connectivity of non-
commuting graphs of a finite non-commutative ring R. We proved that A(T'r) = §(T'r)
and obtained a lower bound and an upper bound for the edge-connectivity and the
vertex-connectivity of I'r. In particular, we showed that if R is a finite CC-ring, then
k(T'r) = MTgr) = §(T'g). Then the more general problem is to determine the following
conjecture.

Conjecture: Let R be a finite non-commutative ring. Then x(I'r) = AM(I'r) = 6(T'r).
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