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Abstract This is an introductory paper on soft semigraphs. Semigraph is a generalization of graph

introduced by E. Sampathkumar which is different from hypergraph. In 1999, D. Molodtsov initiated

the novel concept of soft set theory. This is an approach for modelling vagueness and uncertainty. It is

a classification of elements of the universe with respect to some given set of parameters. The concept of

soft graph introduced by Rajesh K. Thumbakara and Bobin George is used to provide a parameterized

point of view for graphs. The theory of soft graphs is a fast developing area in graph theory due to its

capability to deal with the parameterization tool. In this paper, we introduce soft semigraph by applying

the concept of soft set in semigraph. Also, we introduce different types of degrees, graphs and matrices

associated with a soft semigraph and investigate some of their properties.
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1. Introduction

The notion of semigraph introduced by E. Sampathkumar [9] is a generalization of
that of a graph. This generalization is different from hypergraphs. In semigraphs, the
vertices contained in each edge are arranged in an order. More contributions to semi-
graph came from C. M. Deshpande, B. Y. Bam, L. Pushpalatha, V. Swaminathan [9],
N. Murugesan [7], A. Paneerselvam and T. B. Rani[8]. D. Molodtsov [6] presented the
innovative concept of soft set theory in 1999. This is a technique in mathematics for
dealing with uncertainties. Many practical problems can be tackled using soft set theory.
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Authors like R. Biswas, P. K. Maji and A. R. Roy [4], [5] have delved deeper into the
idea of soft sets and applied it to various decision-making situations. The notion of soft
graph was first developed in 2014 by R. K. Thumbakara and B. George [13]. They[14] also
discussed soft graph operations and introduced notions such as soft tree, soft subgraph
and soft complete graph. M. Akram and S. Nawas [1] updated R. K. Thumbakara and
B. George’s notion of soft graph in 2015. They [2] also defined many ideas in soft graphs,
such as soft trees, soft bridges, soft cut vertex, soft cycle etc. More contributions to soft
graph came from J. D. Thenge, R. S. Jain and B. S. Reddy[10],[11],[12]. In this paper,
we introduce soft semigraph by applying the concept of soft set in semigraph. Also, we
introduce different types of degrees, graphs and matrices associated with a soft semigraph
and investigate some of their properties.

2. Preliminaries

2.1. Semigraph

A semigraph G∗ is a pair (V,X) where V is a nonempty set whose elements are called
vertices of G∗, and X is a set of n-tuples, called edges of G, of distinct vertices, for various
n ≥ 2, satisfying the following conditions.

(1) Any two edges have at most one vertex in common
(2) Two edges (u1, u2, . . . , un) and (v1, v2, . . . , vm) are considered to be equal if

and only if
(a) m = n and
(b) either ui = vi for 1 ≤ i ≤ n, or ui = vn−i+1 for 1 ≤ i ≤ n.

The idea of a semigraph is a generalisation of the idea of a graph. Semigraphs are more
closely related to graphs than hypergraphs in terms of definition. Edges in a hypergraph
are sets. However, just like in graphs, we can represent the vertices of semigraphs as
points and their edges as lines. Figure 1 shows an example for a semigraph G∗ = (V,X).
The vertex set of this semigraph G∗ is V = {v1, v2, v3, v4, v5, v6, v7, v8, v9} and the edge
set is X = {(v1, v2, v3), (v1, v4, v6), (v3, v6), (v4, v5), (v6, v7, v8)}.

Figure 1. Semigraph G∗ = (V,X)
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Let G∗ = (V,X) be a semigraph and E = (v1, v2, . . . , vn) be an edge of G∗. Then
v1 and vn are the end vertices of E and vi, 2 ≤ i ≤ n − 1 are the middle vertices(or
m-vertices) of E. If a vertex v of a semigraph G appears only as an end vertex then it
is called an end vertex. If a vertex v is only a middle vertex then it is a middle vertex
or m-vertex while a vertex v is called middle-cum-end vertex or (m, e)-vertex if it is a
middle vertex of some edge and an end vertex of some other edge. A subedge of an edge
E = (v1, v2, . . . , vn) is a k-tuple E′ = (vi1 , vi2 , . . . , vik), where 1 ≤ i1 < i2 < · · · < ik ≤ n
or 1 ≤ ik < ik−1 < · · · < i1 ≤ n. We say that the subedge E′ is induced by the set
of vertices {vi1 , vi2 , . . . vik}. A partial edge of E = (v1, v2, . . . , vn) is a (j − i + 1)-tuple
E(vi, vj) = (vi, vi+1, . . . , vj), where 1 ≤ i < j ≤ n. G′∗ = (V ′, X ′) is a partial semigraph
of a semigraph G∗ if the edges of G′∗ are partial edges of G∗. Two vertices u and v in
a semigraph G∗ are said to be adjacent if they belong to the same edge. If u and v are
adjacent and consecutive in order then they are said to be consecutively adjacent. u and
v are said to be e-adjacent if they are the end vertices of an edge and 1e-adjacent if both
the vertices u and v belong to the same edge and at least one of them is an end vertex
of that edge. We can associate three different graphs with a semigraph G∗ = (V,X) each
having the same vertex set V of G∗. The end vertex graph G∗e is a graph having vertex
set V and two vertices in G∗e are adjacent if and only if, they are end vertices of an edge
in G∗. The adjacency graph G∗a is a graph having vertex set V and two vertices in G∗a are
adjacent if and only if, they are adjacent in G∗. The consecutive adjacency graph G∗ca is
a graph having vertex set V and two vertices in G∗ca are adjacent if and only if, they are
consecutively adjacent vertices in G∗. We can define various types of degrees for a vertex
v in a semigraph G∗. Degree of v, denoted by deg v is the number of edges having v as
an end vertex. Edge degree of v is the number of edges containing v, and is denoted by
degev. Adjacent degree of v, denoted by degav is the number of vertices adjacent to v.
Consecutive adjacent degree of v, denoted by degcav is the number of vertices which are
consecutively adjacent to v.

2.2. Soft Set

In 1999 D. Molodtsov [7] initiated the concept of soft sets. Let U be an initial universe
set and let E be a set of parameters. A pair (F,E) is called a soft set (over U) if and only
if F is a mapping of E into the set of all subsets of the set U . That is, F : E → P(U).

3. Soft Semigraph

Definition 3.1. Let V be the vertex set of a semigraph G∗. Consider a subset V1 of V .
Then a partial edge formed by some or all vertices of V1 is said to be a maximum partial
edge or mp edge if it is not a partial edge of any other partial edge formed by some or all
vertices of V1.

Definition 3.2. Let G∗ = (V,X) be a semigraph having vertex set V and edge set X.
Let Xp be the collection of all partial edges of the semigraph G∗ and A be a nonempty
set. Let a subset R of A× V be an arbitrary relation from A to V . We define a mapping
Q from A to P(V ) by Q(x) = {y ∈ V |xRy}, for all x in A, where P(V ) denotes the power
set of V . Also define a mapping W from A to P(Xp) by W (x) = {mp edges < Q(x) >},
where {mp edges < Q(x) >} denotes the set of all mp edges that can be formed by some
or all vertices of Q(x) and P(Xp) denotes the power set of Xp. Then we define a soft
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semigraph as follows: The 4-tuple G = (G∗, Q,W,A) is called a soft semigraph of G∗ if
the following conditions are satisfied:

(1) G∗ = (V,X) is a semigraph having vertex set V and edge set X,
(2) A is the set of parameters which is nonempty,
(3) (Q,A) is a soft set over V ,
(4) (W,A) is a soft set over Xp,
(5) H(a) = (Q(a),W (a)) is a partial semigraph of G∗, for all a in A.

Example 3.3. We know that the best way to represent the relationship among the
members of a number of families is by a semigraph, where the parents are represented
by the end vertices of the edges and their children are represented by the m-vertices of
edges. Let G∗ = (V,X) given below is a semigraph representing a family relationship.

Figure 2. Semigraph G∗ = (V,X)

Sometimes we may get the semigraph representing a family relationship as a more com-
plicated structure than this. We can separate this into small family structures by using
the concept of soft semigraph.
For example consider the semigraph G∗ = (V,X) given in Figure 2. Let A = {C,M} ⊆ V
be a parameter set. Define Q from A to P(V ) by Q(x) = {y ∈ V |xRy ⇔ x =
y or x and y are adjacent}, for all x in A and W from A to P(Xp) by W (x) = {mp edges
< Q(x) >} , for all x in A. That is, Q(C) = {A,C,D,B,L,E} and Q(M) = {D,M,F,N}.
Also W (C) = {(A,C,D,B), (C,L,E)} and W (M) = {(D,M,F ), (M,N)}. Then H(C) =
(Q(C),W (C)) and H(M) = (Q(M),W (M)) are partial semigraphs of G∗ as shown below
in Figure 3. Hence, G = {H(C), H(M)} is a soft semigraph of G∗.

Here, the soft semigraph reduced family structures to the small families of C and M . The
partial semigraph H(C) contains the parents, sibling, partner and child of the person C.
The partial semigraph H(M) contains the parents and partner of the person M . Also
the relationships are clear from these partial semigraphs.
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Figure 3. Soft Semigraph G = {H(C), H(M)}

Definition 3.4. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ which is also given by {H(x) : x ∈ A}. Then, the partial semigraph
H(x) corresponding to any parameter x in A is called a p-part of the soft semigraph G.

Definition 3.5. An edge present in a soft semigraph G of G∗ is called an f -edge . It
may be a partial edge of some edge in G∗ or an edge in G∗.

Definition 3.6. If the vertex v, coming at the end of an f -edge E is also an end vertex
of the corresponding edge E′ in G∗ whose partial edge is E, then v is called an end vertex
of E. Otherwise it is called a partial end vertex.

Definition 3.7. A partial edge of any f -edge of the soft semigraph G is called a p-edge
of G. An f -edge is a p-edge of itself.

Definition 3.8. An edge is called an fp-edge of the soft semigraph G, if it is an f -edge
or a p-edge of G.

4. Graphs Associated with a Soft Semigraph

We define various types of graphs associated with a soft semigraph as follows.

4.1. Adjacency Graph of a Soft Semigraph

Definition 4.1. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ given by {H(x) : x ∈ A}. Then, the adjacency graph Ga of the soft
semigraph G is given by Ga = {H(x)a : x ∈ A} where H(x)a is a graph having vertex
set Q(x) and two vertices in H(x)a are adjacent if they are adjacent in the p-part H(x).
H(x)a is called p-part adjacency graph of H(x).

Example 4.2. Let G∗ = (V,X) be a semigraph given in Figure 4 having vertex set V =
{v1, v2, v3, v4, v5, v6, v7} and the edge set X = {(v1, v2, v3, v4), (v4, v5, v6, v7), (v3, v6)}.
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Figure 4. Semigraph G∗ = (V,X)

Let the parameter set be A = {v2, v6} ⊆ V . Define Q : A → P(V ) by Q(x) = {y ∈
V |xRy ⇔ x = y or x and y are adjacent}, for all x in A and W : A→ P(Xp) by W (x) =
{mp edges < Q(x) >}, for all x in A. That is, Q(v2) = {v1, v2, v3, v4} and Q(v6) =
{v3, v4, v5, v6, v7}. Also W (v2) = {(v1, v2, v3, v4)} and W (v6) = {(v3, v6), (v4, v3), (v4, v5,
v6, v7)}. Then H(v2) = (Q(v2),W (v2)) and H(v6) = (Q(v6),W (v6)) are partial semi-
graphs of G∗ as shown below in Figure 5. Hence G = {H(v2), H(v6)} is a soft semigraph
of G∗.

Figure 5. Soft Semigraph G = {H(v2), H(v6)}

Figure 6. Adjacency Graph Ga = {H(v2)a, H(v6)a}
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The adjacency graph Ga of this soft semigraph G is given by Ga = {H(v2)a, H(v6)a} and
is shown in Figure 6.

Theorem 4.3. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft sem-
igraph of G∗ given by {H(x) : x ∈ A}. Also let G∗a and Ga = {H(x)a : x ∈ A} be the
adjacency graphs of G∗ and G respectively. Then, the p-part adjacency graph H(x)a is a
subgraph of G∗a, for all x ∈ A.

Proof. If G∗ = (V,X), then V is the vertex set of both G∗ and G∗a. Consider any p-part
H(x) of G. Then, the vertex set of the p-part adjacency graph H(x)a is Q(x) ⊆ V . Also
an f -edge present in H(x) is an edge in G∗ or a partial edge of an edge in G∗. Therefore,
if u and v are adjacent in H(x), they are also adjacent in G∗. So any edge present in
H(x)a is also an edge in G∗a. That is, the vertex set and edge set of H(x)a are subsets
of the vertex set and edge set of G∗a respectively. So H(x)a is a subgraph of G∗a, for all
x ∈ A.

4.2. Consecutive Adjacency Graph of a Soft Semigraph

Definition 4.4. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ given by {H(x) : x ∈ A}. Then, the consecutive adjacency graph Gca of
the soft semigraph G is given by Gca = {H(x)ca : x ∈ A} where H(x)ca is a graph having
vertex set Q(x) and two vertices in H(x)ca are adjacent if they are consecutively adjacent
in the p-part H(x). H(x)ca is called p-part consecutive adjacency graph of H(x).

Example 4.5. Consider the semigraph G∗ = (V,X) and its soft semigraph G = {H(v2),
H(v6)} given in Figure 4 and in Figure 5 respectively. Then, the consecutive adjacency
graph Gca of G is given by Gca = {H(v2)ca, H(v6)ca} and is shown in Figure 7.

Figure 7. Consecutive Adjacency Graph Gca = {H(v2)ca, H(v6)ca}

Theorem 4.6. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semi-
graph of G∗ given by {H(x) : x ∈ A}. Then,
(1) H(x)ca is a spanning subgraph of H(x)a, for all x in A,
(2) H(x)ca is a subgraph of G∗a, for all x in A and
(3) H(x)ca is a subgraph of G∗ca, for all x in A.
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Proof. (1) Consider the p-part H(x) of G for any x ∈ A. The vertex set of both H(x)ca
and H(x)a is Q(x). Also if two vertices u and v are consecutively adjacent then they are
definitely adjacent. Therefore, any edge present in H(x)ca will also be in H(x)a. That
is, vertex sets of both H(x)ca and H(x)a are the same and the edge set of H(x)ca is a
subset of the edge set of H(x)a. So H(x)ca is a spanning subgraph of H(x)a, for all x in
A.
(2) By applying Theorem 4.3 and part (1) of this theorem, we can say H(x)ca is a
subgraph of G∗a, for all x in A.
(3) The vertex set of the p-part consecutive adjacent graph H(x)ca is Q(x) ⊆ V , where V
is the vertex set of G∗ca. Also if two vertices u and v are consecutively adjacent in H(x),
then they are definitely consecutively adjacent in G∗. Therefore, any edge present in
H(x)ca is also an edge in G∗ca. That is, the vertex set and edge set of H(x)ca are subsets
of the vertex set and edge set of G∗ca respectively. Therefore, H(x)ca is a subgraph of
G∗ca, for all x in A.

4.3. One End Vertex Graph of a Soft Semigraph

Definition 4.7. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ given by {H(x) : x ∈ A}. Then, the one end vertex graph G1e of the
soft semigraph G is given by G1e = {H(x)1e : x ∈ A} where H(x)1e is a graph having
vertex set Q(x) and two vertices u and v in H(x)1e are adjacent if one of them is an end
vertex or a partial end vertex of an f -edge containing these vertices in the p-part H(x).
H(x)1e is called p-part one end vertex graph of H(x).

Example 4.8. Consider the semigraph G∗ = (V,X) and its soft semigraph G = {H(v2),
H(v6)} given in Figure 4 and in Figure 5 respectively. Then, the one end vertex graph
G1e of G is given by G1e = {H(v2)1e, H(v6)1e} and is shown in Figure 8.

Figure 8. One End Vertex Graph G1e = {H(v2)1e, H(v6)1e}

Theorem 4.9. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semi-
graph of G∗ given by {H(x) : x ∈ A}. Then,
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(1) H(x)1e is a spanning subgraph of H(x)a, for all x ∈ A and
(2) H(x)1e is a subgraph of G∗a, for all x ∈ A.

Proof. (1) Consider the p-part H(x) of G for any x ∈ A. The vertex set of both H(x)1e
and H(x)a is Q(x). In H(x)1e, two vertices u and v are adjacent if one of them is an end
vertex or a partial end vertex of an f -edge containing these two vertices in H(x). Then
definitely u and v are adjacent in H(x). Therefore, any edge present in H(x)1e is also an
edge in H(x)a. That is, vertex sets of both H(x)1e and H(x)a are the same and the edge
set of H(x)1e is a subset of the edge set of H(x)a. So H(x)1e is a spanning subgraph of
H(x)a, for all x in A.
(2) By applying Theorem 4.3 and part(1) of this theorem we can say H(x)1e is a subgraph
of G∗a, for all x in A.

4.4. End Vertex Graph of a Soft Semigraph

Definition 4.10. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ given by {H(x) : x ∈ A}. Then, the end vertex graph Ge of the soft
semigraph G is given by Ge = {H(x)e : x ∈ A} where H(x)e is a graph having vertex
set Q(x) and two vertices u and v in H(x)e are adjacent if they are the end vertices or a
partial end vertices of an f -edge containing these vertices in the p-part H(x). H(x)e is
called p-part end vertex graph of H(x).

Example 4.11. Consider the semigraph G∗ = (V,X) and its soft semigraph G =
{H(v2), H(v6)} given in Figure 4 and in Figure 5 respectively. Then, the end vertex
graph Ge of G is given by Ge = {H(v2)e, H(v6)e} and is shown in Figure 9.

Figure 9. End Vertex Graph Ge = {H(v2)e, H(v6)e}

Theorem 4.12. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semi-
graph of G∗ given by {H(x) : x ∈ A}. Then,
(1) H(x)e is a spanning subgraph of H(x)a, for all x in A,
(2) H(x)e is a subgraph of G∗a, for all x in A and
(3) H(x)e is a spanning subgraph of H(x)1e, for all x in A.
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Proof. (1) Consider the p-part H(x) of G for any x ∈ A. The vertex set of both H(x)e
and H(x)a is Q(x).In H(x)e, two vertices u and v are adjacent if they are end vertices or
partial end vertices of an f -edge containing these two vertices in H(x). Then definitely
u and v are adjacent in H(x). Therefore, any edge present in H(x)e is also an edge in
H(x)a. That is, vertex sets of both H(x)e and H(x)a are the same and the edge set of
H(x)e is a subset of the edge set of H(x)a. So H(x)e is a spanning subgraph of H(x)a,
for all x in A.
(2) By applying Theorem 4.3 and part (1) of this theorem we can say H(x)e is a subgraph
of G∗a, for all x in A.
(3) Consider the p-part H(x) of G for any x ∈ A. The vertex set of both H(x)e and
H(x)1e is Q(x).In H(x)e, two vertices u and v are adjacent if they are end vertices or
partial end vertices of an f -edge containing these two vertices in H(x). In H(x)1e, two
vertices u and v are adjacent if one of them is an end vertex or a partial end vertex of an
f -edge containing these two vertices in H(x). Definitely if u and v are adjacent in H(x)e,
then they are adjacent in H(x)1e. Therefore, any edge present in H(x)e is also an edge in
H(x)1e. That is, vertex sets of both H(x)e and H(x)1e are the same and the edge set of
H(x)e is a subset of the edge set of H(x)1e. So H(x)e is a spanning subgraph of H(x)1e,
for all x in A.

5. Degrees Associated with a Soft Semigraph

For a vertex v in a soft semigraph G = (G∗, Q,W,A), we define various types of degrees
as follows.

5.1. Degree of a Vertex in a Soft Semigraph

Definition 5.1. Let H(x) be any p-part of the soft semigraph G and let v be any vertex
in H(x). Then, the p-part degree of v in H(x) denoted by deg v[H(x)] is defined as the
number of f -edges having v as an end vertex in H(x). We define deg v[H(x)], for all
v ∈ Q(x).

Definition 5.2. Degree of a vertex v in soft semigraph G, denoted by deg v is defined
as deg v = max{deg v[H(x)] : x ∈ A}, where deg v[H(x)] denotes the p-part degree of v
in H(x). We define deg v, for all v ∈

⋃
x∈A Q(x).

Example 5.3. Consider the semigraph G∗ = (V,X) given in Figure 2 and its soft semi-
graph G = {H(C), H(M)} given in Figure 3. Here

⋃
x∈A Q(x) = {A,B,C,D,E, F, L,M,

N}. We have deg A[H(C)] = 1, deg B[H(C)] = 1, deg C[H(C)] = 1, deg D[H(C)] =
0, deg E[H(C)] = 1, deg L[H(C)] = 0. Also deg D[H(M)] = 1, deg F [H(M)] =
1, deg M [H(M)] = 1, deg N [H(M)] = 1. Then deg A = max{deg A[H(C)]} = max{1} =
1. Similarly deg B = 1, deg C = 1, deg D = 1, deg E = 1, deg F = 1, deg L = 0, deg M =
1 and deg N = 1.

5.2. End Degree of a Vertex in a Soft Semigraph

Definition 5.4. Let H(x) be any p-part of the soft semigraph G and let v be any vertex
in H(x). Then, the p-part end degree of v in H(x) denoted by degepv[H(x)] is defined
as the number of f -edges having v as an end vertex or partial end vertex in H(x). We
define degepv[H(x)], for all v ∈ Q(x).
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Definition 5.5. End degree of a vertex v in soft semigraph G, denoted by degepv is
defined as degepv = max{degepv[H(x)] : x ∈ A}, where degepv[H(x)] denotes the p-part
end degree of v in H(x). We define degepv, for all v ∈

⋃
x∈A Q(x).

Example 5.6. In Example 5.3, all f -edges of G have end verices on both ends and have
no partial end vertices. So the end degree of a vertex of G coincides with the degree
of that vertex. That is, degepB = 1, degepC = 1, degepD = 1, degepE = 1, degepF =
1, degepL = 0, degepM = 1 and degepN = 1.

5.3. Edge Degree of a Vertex in a Soft Semigraph

Definition 5.7. Let H(x) be any p-part of the soft semigraph G and let v be any vertex
in H(x). Then, the p-part edge degree of v in H(x) denoted by degev[H(x)] is defined as
the number of f -edges containing v in H(x). We define degev[H(x)], for all v ∈ Q(x).

Definition 5.8. Edge degree of a vertex v in a soft semigraph G, denoted by degev is
defined as degev = max{degev[H(x)] : x ∈ A}, where degev[H(x)] denotes the p-part
edge degree of v in H(x). We define degev, for all v ∈

⋃
x∈A Q(x).

Example 5.9. Consider the semigraph G∗ = (V,X) given in Figure 4 and its soft semi-
graph G = {H(v2), H(v6)} given in Figure 5. Here

⋃
x∈A Q(x) = {v1, v2, v3, v4, v5, v6, v7}.

We have degev1[H(v2)] = 1, degev2[H(v2)] = 1, degev3[H(v2)] = 1, degev4[H(v2)] = 1.
Also we have degev3[H(v6)] = 2, degev4[H(v6)] = 2, degev5[H(v6)] = 1, degev6[H(v6)] =
2, degev7[H(v6)] = 1. Then degev1 = max{degev1[H(v2)]} = max{1} = 1. Similarly
degev2 = max{1} = 1, degev3 = max{1, 2} = 2, degev4 = max{1, 2} = 2, degev5 =
max{1} = 1, degev6 = max{2} = 2, degev7 = max{1} = 1.

5.4. Adjacent Degree of a Vertex in a Soft Semigraph

Definition 5.10. Let H(x) be any p-part of the soft semigraph G and let v be any vertex
in H(x). Then, the p-part adjacent degree of v in H(x) denoted by degav[H(x)] is defined
as the number of vertices adjacent to v in H(x). We define degav[H(x)], for all v ∈ Q(x).

Definition 5.11. Adjacent degree of a vertex v in soft semigraph G, denoted by degav
is defined as degav = max{degav[H(x)] : x ∈ A}, where degav[H(x)] denotes the p-part
adjacent degree of v in H(x). We define degav, for all v ∈

⋃
x∈A Q(x).

Example 5.12. Consider the semigraph G∗ = (V,X) given in Figure 4 and its soft semi-
graph G = {H(v2), H(v6)} given in Figure 5. Here

⋃
x∈A Q(x) = {v1, v2, v3, v4, v5, v6, v7}.

We have degav1[H(v2)] = 3, degav2[H(v2)] = 3, degav3[H(v2)] = 3, degav4[H(v2)] = 3.
Also we have degav3[H(v6)] = 2, degav4[H(v6)] = 4, degav5[H(v6)] = 3, degav6[H(v6)] =
4, degav7[H(v6)] = 3. Then degav1 = max{degav1[H(v2)]} = max{3} = 3. Similarly
degav2 = max{3} = 3, degav3 = max{3, 2} = 3, degav4 = max{3, 4} = 4, degav5 =
max{3} = 3, degav6 = max{4} = 4, degav7 = max{3} = 3.

5.5. Consecutive Adjacent Degree of a Vertex in a Soft Semigraph

Definition 5.13. Let H(x) be any p-part of the soft semigraph G and let v be any
vertex in H(x). Then, the p-part consecutive adjacent degree of v in H(x) denoted by
degcav[H(x)] is defined as the number of vertices consecutively adjacent to v in H(x).
We define degcav[H(x)], for all v ∈ Q(x).
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Definition 5.14. Consecutive adjacent degree of a vertex v in soft semigraph G, denoted
by degcav is defined as degcav = max{degcav[H(x)] : x ∈ A}, where degcav[H(x)] denotes
the p-part consecutive adjacent degree of v in H(x). We define degcav, for all v ∈⋃

x∈A Q(x).

Example 5.15. Consider the semigraph G∗ = (V,X) given in Figure 4 and its soft semi-
graph G = {H(v2), H(v6)} given in Figure 5. Here

⋃
x∈A Q(x) = {v1, v2, v3, v4, v5, v6, v7}.

We have degcav1[H(v2)] = 1, degcav2[H(v2)] = 2, degcav3[H(v2)] = 2, degcav4[H(v2)] = 1.
Also we have degcav3[H(v6)] = 2, degcav4[H(v6)] = 2, degcav5[H(v6)] = 2, degcav6[H(v6)]
= 3, degcav7[H(v6)] = 1. Then degcav1 = max{degcav1[H(v2)]} = max{1} = 1. Similarly
degcav2 = max{2} = 2, degcav3 = max{2, 2} = 2, degcav4 = max{1, 2} = 2, degcav5 =
max{2} = 2, degcav6 = max{3} = 3, degcav7 = max{1} = 1.

Theorem 5.16. For any vertex v in the soft semigraph G, deg v ≤ degepv ≤ degev ≤
degcav ≤ degav.

Proof. Consider a soft semigraph G = (G∗, Q,W,A) which is represented by {H(x) : x ∈
A}. Consider any p-part H(x) of G. Let v be any vertex in that p-part. If deg v[H(x)] 6= 0,
v is the end vertex of some f -edge present in H(x). This vertex v may be a par-
tial end vertex of some other f -edges also. Therefore, deg v[H(x)] ≤ degepv[H(x)].
Also v may be a middle vertex of some other f -edges in H(x). So deg v[H(x)] ≤
degepv[H(x)] ≤ degev[H(x)]. If v is an end vertex, partial end vertex or middle ver-
tex of an f -edge in the p-part H(x), it is consecutively adjacent to one or more vertices.
Hence deg v[H(x)] ≤ degepv[H(x)] ≤ degev[H(x)] ≤ degcav[H(x)]. If v is consecutively
adjacent to, say, n vertices in H(x), it is definitely adjacent to these n vertices and there
may be more vertices in H(x) which are adjacent to v, but are not consecutively adjacent
to v. So deg v[H(x)] ≤ degepv[H(x)] ≤ degev[H(x)] ≤ degcav[H(x)] ≤ degav[H(x)].
Clearly max{deg v[H(x)] : x ∈ A} ≤ max{degepv[H(x)] : x ∈ A} ≤ max{degev[H(x)] :
x ∈ A} ≤ max{degcav[H(x)] : x ∈ A} ≤ max{degav[H(x)] : x ∈ A}. That is,
deg v ≤ degepv ≤ degev ≤ degcav ≤ degav, for any vertex v in the soft semigraph
G.

Definition 5.17. Consider the collection of all vertices in the soft semigraph G which is
a subset of V given by

⋃
x∈A Q(x). A vertex v is said to be a pure end vertex of G if it

is an end vertex of an f -edge in H(x) for some x ∈ A and is not a partial end vertex or
middle vertex of an f -edge in any p-part H(x) of G, where x ∈ A .

Definition 5.18. Consider the collection of all vertices in the soft semigraph G which is
a subset of V given by

⋃
x∈A Q(x). A vertex v is said to be a pure middle vertex of G if

it is a middle vertex of an f -edge in H(x) for some x ∈ A and is not an end vertex or a
partial end vertex of an f -edge in any p-part H(x) of G, where x ∈ A .

Theorem 5.19. Let Ve be the collection of pure end vertices of the soft semigraph G.
Then deg v = degev = degcav, for all v ∈ Ve.

Proof. Consider a soft semigraph G represented by {H(x) : x ∈ A}. Consider any p-
part H(x) of G. Since v ∈ Ve, the number of edges whose end vertex is v is the same
as the number of edges containing the vertex v in H(x). Also if v is an end vertex
of p edges, say, E1, E2, . . . , Ep, then there is exactly one vertex vi in each Ei which is
consecutively adjacent to the vertex v. Hence deg v[H(x)] = degev[H(x)] = degcav[H(x)].
So max{deg v[H(x)] : x ∈ A} = max{degev[H(x)] : x ∈ A} = max{degcav[H(x)] : x ∈
A}, for all v ∈ Ve. That is, deg v = degev = degcav, for all v ∈ Ve.
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Theorem 5.20. Let Vm be the collection of pure middle vertices of the soft semigraph
G. Then, for all v in Vm,
(1) deg v = 0,
(2) degepv = 0,
(3) degev ≥ 1.

Proof. (1) Since v ∈ Vm, no f -edge E exists in G such that v is an end vertex of E.
Hence deg v[H(x)] = 0, for all x in A. Therefore, max{deg v[H(x)] : x ∈ A} = 0. That
is, deg v = 0, for all v ∈ Vm.
(2) Since v ∈ Vm, no f -edge E exists in G such that v is an end vertex or partial end vertex
of E. Hence degepv[H(x)] = 0, for all x in A. Therefore, max{degepv[H(x)] : x ∈ A} = 0.
That is, degepv = 0, for all v ∈ Vm.
(3) Since v ∈ Vm, v belongs to at least one f -edge in the p-part H(x), for some x ∈ A.
Therefore, degev[H(x)] ≥ 1, for some x ∈ A. So max{degev[H(x)] : x ∈ A} ≥ 1. That is,
degev ≥ 1, for all v ∈ Vm.

6. Matrices Associated with a Soft Semigraph

We define various types of matrices associated with a soft semigraph as follows.

6.1. Consecutive Adjacency Matrix of a Soft Semigraph

Definition 6.1. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ which is represented by {H(x) : x ∈ A}. Let H(x) = (Q(x),W (x))
be any p-part of G. If Q(x) contains m vertices v1, v2, . . . , vm, then then the p-part
consecutive adjacency matrix Mca[H(x)] is an m×m matrix [cij ], where

cij =

{
1, if vi and vj are consecutively adjacent in H(x)

0, if not.

Then the consecutive adjacency matrix Mca(G) of the soft semigraph G is given by
Mca(G) = {Mca[H(x)] : x ∈ A}.

Example 6.2. Consider the semigraph G∗ = (V,X) given in Figure 4 and its soft semi-
graph G = {H(v2), H(v6)} given in Figure 5. For this soft semigraph G, the consecutive
adjacency matrix is given by Mca(G) = {Mca[H(v2)],Mca[H(v6)]}, where the p-part con-
secutive adjacency matrices Mca[H(v2)] and Mca[H(v6)] are as given below:

Mca[H(v2)] =

v1 v2 v3 v4


0 1 0 0 v1

1 0 1 0 v2

0 1 0 1 v3

0 0 1 0 v4

,Mca[H(v6)] =

v3 v4 v5 v6 v7


0 1 0 1 0 v3

1 0 1 0 0 v4

0 1 0 1 0 v5

1 0 1 0 1 v6

0 0 0 1 0 v7

Remark 6.3. The p-part consecutive adjacency matrix Mca[H(x)] has the following
properties:
(1) Mca[H(x)] is a symmetric matrix of order m, for all x in A, where m is the total
number of vertices in Q(x).
(2) Mca[H(x)] contains only 0 and 1 as its entries, for all x in A.
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(3) The diagonal entries of Mca[H(x)] are zeros, for all x in A.
(4) In each Mca[H(x)], sum of a row or column gives the p-part consecutive adjacent
degree of the corresponding vertex in that p-part H(x).
(5) Maximum of row sums of the rows or column sums of the columns, corresponding to a
vertex v among all p-part adjacency matrices Mca[H(x)], gives the consecutive adjacent
degree of that vertex in the soft semigraph G.
(6) The p-part consecutive adjacency matrix Mca[H(x)] is same as the adjacency matrix
of the p-part consecutive adjacency graph H(x)ca, for all x in A.

6.2. Adjacency Matrix of a Soft Semigraph

Definition 6.4. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ which is represented by {H(x) : x ∈ A}. Let H(x) = (Q(x),W (x)) be
any p-part of G. If Q(x) contains m vertices v1, v2, . . . , vm, then then the p-part adjacency
matrix Mad[H(x)] is an m×m matrix [aij ], where

aij =

{
1, if vi and vj are adjacent in H(x)

0, if not.

Then, the adjacency matrix Mad(G) of the soft semigraph G is given by Mad(G) =
{Mad[H(x)] : x ∈ A}.

Example 6.5. Consider the semigraph G∗ = (V,X) given in Figure 4 and its soft sem-
igraph G = {H(v2), H(v6)} given in Figure 5. For this soft semigraph G, the adjacency
matrix is given by Mad(G) = {Mad[H(v2)],Mad[H(v6)]}, where the p-part adjacency
matrices Mad[H(v2)] and Mad[H(v6)] are as given below:

Mad[H(v2)] =

v1 v2 v3 v4


0 1 1 1 v1

1 0 1 1 v2

1 1 0 1 v3

1 1 1 0 v4

,Mad[H(v6)] =

v3 v4 v5 v6 v7


0 1 0 1 0 v3

1 0 1 1 1 v4

0 1 0 1 1 v5

1 1 1 0 1 v6

0 1 1 1 0 v7

Remark 6.6. The p-part adjacency matrix Mad[H(x)] has the following properties:
(1) Mad[H(x)] is a symmetric matrix of order m, for all x in A, where m is the total
number of vertices in Q(x).
(2) Mad[H(x)] contains only 0 and 1 as its entries, for all x in A.
(3) The diagonal entries of Mad[H(x)] are zeros, for all x in A.
(4) In each Mad[H(x)], sum of a row or column gives the p-part adjacent degree of the
corresponding vertex in that p-part H(x).
(5) Maximum of row sums of the rows or column sums of the columns, corresponding to
a vertex v among all p-part adjacency matrices Mad[H(x)], gives the adjacent degree of
that vertex in the soft semigraph G.
(6) The p-part adjacency matrix Mad[H(x)] is same as the adjacency matrix of the p-part
adjacency graph H(x)a, for all x in A.

Remark 6.7. The adjacency matrix Mad(G) does not represent the soft semigraph G
uniquely. To see this, consider the following example. Here, we give two different soft
semigraphs with identical adjacency matrices.
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Example 6.8. Let G∗1 = (V1, X1) be a semigraph given in Figure 10 having vertex set
V1 = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9} and the edge set X1 = {(v3, v4, v2, v5), (v0, v2, v1),
(v4, v6), (v3, v8, v9), (v7, v8)}.

Figure 10. Semigraph G∗1 = (V1, X1)

Let the parameter set be A1 = {v2, v8} ⊆ V . Define Q1 : A1 → P(V1) by Q1(x) = {y ∈
V1|xRy ⇔ x = y or x and y are adjacent}, for all x in A1 and W1 : A1 → P(X1p) by
W1(x) = {mp edges < Q1(x) >}, for all x in A1. That is, Q1(v2) = {v0, v1, v2, v3, v4, v5}
and Q1(v8) = {v3, v7, v8, v9}. Also W1(v2) = {(v3, v4, v2, v5), (v0, v2, v1)} and W1(v8) =
{(v7, v8), (v3, v8, v9)}. Then H1(v2) = (Q1(v2),W1(v2)) and H1(v8) = (Q1(v8),W1(v8))
are partial semigraphs of G∗1 as shown below in Figure 11. Hence G1 = {H1(v2), H1(v8)}
is a soft semigraph of G∗1.

Figure 11. Soft Semigraph G1 = {H1(v2), H1(v8)}
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The adjacency matrix of G1 is given by Mad(G1) = {Mad[H1(v2)],
Mad[H1(v8)]}, where Mad[H1(v2)] and Mad[H1(v8)] are as given below:

Mad[H1(v2)] =

v0 v1 v2 v3 v4 v5


0 1 1 0 0 0 v0

1 0 1 0 0 0 v1

1 1 0 1 1 1 v2

0 0 1 0 1 1 v3

0 0 1 1 0 1 v4

0 0 1 1 1 0 v5

,Mad[H1(v8)] =

v3 v7 v8 v9


0 0 1 1 v3

0 0 1 0 v7

1 1 0 1 v8

1 0 1 0 v9

Let G∗2 = (V2, X2) be a semigraph given in Figure 12 having vertex set V2 = {v0, v1, v2, v3,
v4, v5, v6, v7, v8, v9} and edge set X2 = {(v2, v3, v4, v5), (v0, v1, v2), (v0, v6, v7), (v7, v8), (v3,
v9, v8)}.

Figure 12. Semigraph G∗2 = (V2, X2)

Let the parameter set be A2 = {v2, v8} ⊆ V . Define Q2 : A2 → P(V2) by Q2(x) = {y ∈
V2|xRy ⇔ x = y or x and y are adjacent}, for all x in A2 and W2 : A2 → P(X2p) by
W2(x) = {mp edges < Q2(x) >}, for all x in A2. That is, Q2(v2) = {v0, v1, v2, v3, v4, v5}
and Q2(v8) = {v3, v7, v8, v9}. Also W2(v2) = {(v2, v3, v4, v5), (v0, v1,
v2)} and W2(v8) = {(v7, v8), (v3, v9, v8)}. Then H2(v2) = (Q2(v2),W2(v2)) and H2(v8) =
(Q2(v8),W2(v8)) are partial semigraphs of G∗2 as shown below in Figure 13. Hence G2 =
{H2(v2), H2(v8)} is a soft semigraph of G∗2.

The adjacency matrix of G2 is given by Mad(G2) = {Mad[H2(v2)],Mad[H2(v8)]}, where
Mad[H2(v2)] and Mad[H2(v8)] are as given below:

Mad[H2(v2)] =

v0 v1 v2 v3 v4 v5


0 1 1 0 0 0 v0

1 0 1 0 0 0 v1

1 1 0 1 1 1 v2

0 0 1 0 1 1 v3

0 0 1 1 0 1 v4

0 0 1 1 1 0 v5

,Mad[H2(v8)] =

v3 v7 v8 v9


0 0 1 1 v3

0 0 1 0 v7

1 1 0 1 v8

1 0 1 0 v9

That is, the adjacency matrices Mad(G1) and Mad(G2) are exactly same, even though
the semigraphs G1 and G2 are entirely different.
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Figure 13. Soft Semigraph G2 = {H2(v2), H2(v8)}

6.3. Unique Adjacency Matrix of a Soft Semigraph

We can extend the unique representation of the adjacency matrix of a semigraph given
in [10] to a soft semigraph as given below.

Definition 6.9. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semi-
graph of G∗ given by {H(x) : x ∈ A}. Then, the unique adjacency matrix Mud(G) of the
soft semigraph G is given by Mud(G) = {Mud[H(x)] : x ∈ A}, where Mud[H(x)] denotes
the unique adjacency matrix of the p-part H(x) which is defined as given below.
Let H(x) = (Q(x),W (x)) be a p-part of G, where Q(x) = {v1, v2, . . . , vm} and W (x) =
{E1, E2, . . . , En}. Then, the unique adjacency matrix, Mud[H(x)] of H(x) is an m ×m
matrix [uij ], which is defined as follows:

(1) For every f -edge Ei = (vi1 , vi2 , . . . , viq ) of the p-part H(x),
(a) ui1ip = p− 1,∀vip ∈ Ei; p = 1, 2, . . . , q.
(b) uiqip = q − p,∀vip ∈ Ei; p = 1, 2, . . . , q.

(2) All other entries of Mud[H(x)] are zeros.

We can see that if vertices vi and vj are not adjacent in H(x), uij = 0 in Mud[H(x)]. If
the vertices vi and vj are adjacent in H(x), then there is precisely one f -edge in H(x)
containing these vertices since, the p-part H(x) is a partial semigraph of G∗ and in a
semigraph two edges have at most one vertex in common. Therefore, the entry uij is
defined precisely by one f -edge.

Example 6.10. The unique adjacency matrix of the soft semigraph G1 given in Figure 11
is given by Mud(G1) = {Mud[H1(v2)],Mud[H1(v8)]}, where Mud[H1(v2)] and Mud[H1(v8)]
are as given below:
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Mud[H1(v2)] =

v0 v1 v2 v3 v4 v5


0 2 1 0 0 0 v0

2 0 1 0 0 0 v1

0 0 0 0 0 0 v2

0 0 2 0 1 3 v3

0 0 0 0 0 0 v4

0 0 1 3 2 0 v5

,Mud[H1(v8)] =

v3 v7 v8 v9


0 0 1 2 v3

0 0 1 0 v7

0 1 0 0 v8

2 0 1 0 v9

The unique adjacency matrix of the soft semigraph G2 given in Figure 13 is given by
Mud(G2) = {Mud[H2(v2)],Mud[H2(v8)]}, where Mud[H2(v2)] and Mud[H2(v8)] are as
given below:

Mud[H2(v2)] =

v0 v1 v2 v3 v4 v5


0 1 2 0 0 0 v0

0 0 0 0 0 0 v1

2 1 0 1 2 3 v2

0 0 0 0 0 0 v3

0 0 0 0 0 0 v4

0 0 3 2 1 0 v5

,Mud[H2(v8)] =

v3 v7 v8 v9


0 0 2 1 v3

0 0 1 0 v7

2 1 0 1 v8

0 0 0 0 v9

So,we can observe that the unique adjacency matrices Mud(G1) and Mud(G2) are different
even though the adjacency matrices Mad(G1) and Mad(G2) are exactly same.

Remark 6.11. The unique adjacency matrix Mud(G) = {Mud[H(x)] : x ∈ A} of the soft
semigraph G has the following properties:
(1) Entries in the unique adjacency matrix due to one edge are not altered by any other
edge. Therefore, while writing entries in Mud[H(x)] for some x in A, the order of consid-
ering the f -edges in H(x) is not important.
(2) If vertices vi and vj are not adjacent in H(x) for some x in A, uij = 0 in Mud[H(x)].
(3) If the vertices vi and vj are adjacent in a p-part H(x) for some x in A, then there is
precisely one f -edge in H(x) containing these vertices since, H(x) is a partial semigraph
of G∗. Therefore, the entry uij is defined precisely by one f -edge in H(x).
(4) If Q(x) contains m vertices for some x in A, then Mud[H(x)] will be an m×m matrix.
(5) Mud[H(x)] is not a symmetric matrix, in general. Mud[H(x)] will be symmetric for
some x in A, if W (x) contains only f -edges having two vertices.
(6) If Q(x) contains m vertices for some x in A then, the entries in Mud[H(x)] are any
numbers between 0 and m− 1.
(7) A vertex vi in Q(x) is an isolated vertex in H(x) for some x in A if and only if all the
entries in the ith row and ith column of Mud[H(x)] are zeros.
(8) The ith row and ith column of Mud[H(x)] contain non zero entries for some x in A
if and only if the corresponding vertex vi is the end vertex or partial end vertex of some
f -edge in H(x).
(9) vi is a pure middle vertex of the p-part H(x) for some x in A, that is, vi is not an end
vertex or a partial end vertex of an f -edge in H(x) if and only if ith row of Mud[H(x)]
contains only zero entries and ith column contains non-zero entries.
(10) If ith row of Mud[H(x)] has only zero entries and the ith column contains 2r non-zero
entries for some x in A, then vi is a pure middle vertex and exactly r f -edges contain vi
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as a middle vertex in that p-part H(x) of the soft semigraph G.
(11) Number of 1′s (that is, number of entries equal to 1) in the ith row of Mud[H(x)]
gives the number of f -edges in H(x) which contain vi as an end vertex or a partial end
vertex.
(12) Number of f -edges containing vi as a middle vertex in H(x) for some x in A, is the
half of the difference between the number of non zero entries in the ith column and the
number of 1′s in the ith row in Mud[H(x)].
(13) Total number of f -edges in a p-part H(x) for some x in A is the half of the total
number of entries equal to 1 in Mud[H(x)].
(14) Total number of f -edges in the soft semigraph G is the total number of entries equal
to 1 in Mud(G), that is, total number of 1′s in Mud[H(x)] for all x in A.

6.4. Incidence Matrix of a Soft Semigraph

Definition 6.12. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ which is represented by {H(x) : x ∈ A}. Let H(x) = (Q(x),W (x)) be
any p-part of G. If H(x) contains m vertices v1, v2, . . . , vm, and n f -edges e1, e2, . . . , en
then then the p-part incidence matrix Min[H(x)] is an m× n matrix [bij ], where

bij =

{
1, if the vertex vi belongs to the f -edge ej in H(x)

0, if not.

Then, the incidence matrix Min(G) of the soft semigraph G is given by Min(G) =
{Min[H(x)] : x ∈ A}.

Example 6.13. Consider the semigraph G∗ = (V,X) given in Figure 4 and its soft
semigraph G = {H(v2), H(v6)} given in Figure 5. The p-part H(v2) contains 4 vertices
v1, v2, v3, v4 and an f -edge e1 = (v1, v2, v3, v4). The p-part H(v6) contains 5 vertices
v3, v4, v5, v6, v7 and 3 f -edges e2 = (v3, v4), e3 = (v4, v5, v6, v7) and e4 = (v3, v6). For this
soft semigraph G, the incidence matrix is given by Min(G) = {Min[H(v2)],Min[H(v6)]},
where the p-part incidence matrices Min[H(v2)] and Min[H(v6)] are as given below:

Min[H(v2)] =

e1


1 v1

1 v2

1 v3

1 v4

,Min[H(v6)] =

e2 e3 e4


1 0 1 v3

1 1 0 v4

0 1 0 v5

0 1 1 v6

0 1 0 v7

Remark 6.14. The p-part incidence matrix Min[H(x)] has the following properties:
(1) Min[H(x)] is an m× n matrix, if H(x) contains m vertices and n f -edges.
(2) Min[H(x)] contains only 0 and 1 as its entries, for all x in A.
(3) In each Min[H(x)], sum of entries in each column gives the number of vertices in the
corresponding f -edge in H(x).
(4) Sum of entries in each column of Min[H(x)] will be at least two.

Remark 6.15. The incidence matrix Min(G) does not represent the soft semigraph G
uniquely. To see this, consider the following example. Here, we give two different soft
semigraphs with identical incidence matrices.
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Example 6.16. Let G∗1 = (V1, X1) be a semigraph given in Figure 14 having vertex set
V1 = {v1, v2, v3, v4, v5, v6, v7} and the edge set X1 = {(v2, v1, v3), (v2, v4, v5), (v3, v6), (v5,
v7, v6)}.

Figure 14. Semigraph G∗1 = (V1, X1)

Let the parameter set be A1 = {v1, v6} ⊆ V . Define Q1 : A1 → P(V1) by Q1(x) =
{y ∈ V1|xRy ⇔ x = y or x and y are adjacent}, for all x in A1 and W1 : A1 →
P(X1p) by W1(x) = {mp edges < Q1(x) >}, for all x in A1. That is, Q1(v1) =
{v1, v2, v3} and Q1(v6) = {v3, v5, v6, v7}. Also W1(v1) = {(v2, v1, v3)} and W1(v6) =
{(v3, v6), (v5, v7, v6)}. Then H1(v1) = (Q1(v1),W1(v1)) and H1(v6) = (Q1(v6),W1(v6))
are partial semigraphs of G∗1 as shown below in Figure 15. Hence G1 = {H1(v1), H1(v6)}
is a soft semigraph of G∗1.

Figure 15. Soft Semigraph G1 = {H1(v1), H1(v6)}

Suppose that the f -edge (v2, v1, v3) in H1(v1) is e1 and the f -edges (v3, v6) and (v5, v7, v6)
in H1(v6) are respectively e2 and e3. Then, the incidence matrix of G1 is given by
Min(G1) = {Min[H1(v1)],Min[H1(v6)]}, where Min[H1(v1)] and Min[H1(v6)] are as given
below:

Min[H1(v1)] =

e1[ ]1 v1

1 v2

1 v3

, Min[H1(v6)] =

e2 e3


1 0 v3

0 1 v5

1 1 v6

0 1 v7
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Let G∗2 = (V2, X2) be a semigraph given in Figure 16 having vertex set V2 = {v1, v2, v3, v4,
v5, v6, v7, v8} and the edge set X2 = {(v4, v3, v2, v1), (v3, v6), (v8, v5, v6, v7)}.

Figure 16. Semigraph G∗2 = (V2, X2)

Let the parameter set be A2 = {v2, v6} ⊆ V . Define Q2 : A2 → P(V2) by Q2(x) =
{y ∈ V2|xRy ⇔ x = y or x and y are consecutively adjacent}, for all x in A2 and
W2 : A2 → P(X2p) by W2(x) = {mp edges < Q2(x) >}, for all x in A2. That is, Q2(v2) =
{v1, v2, v3} and Q2(v6) = {v3, v5, v6, v7}. Also W2(v2) = {(v3, v2, v1)} and W2(v6) =
{(v3, v6), (v5, v6, v7)}. Then H2(v2) = (Q2(v2),W2(v2)) and H2(v6) = (Q2(v6),W2(v6))
are partial semigraphs of G∗2 as shown below in Figure 17. Hence G2 = {H2(v2), H2(v6)}
is a soft semigraph of G∗2.

Figure 17. Soft Semigraph G2 = {H2(v2), H2(v6)}

Suppose that the f -edge (v3, v2, v1) in H2(v2) is e1 and the f -edges (v3, v6) and (v5, v6, v7)
in H2(v6) are respectively e2 and e3. Then, the incidence matrix of G2 is given by
Min(G2) = {Min[H2(v2)],Min[H2(v6)]}, where Min[H2(v2)] and Min[H2(v6)] are as given
below:

Min[H2(v2)] =

e1[ ]1 v1

1 v2

1 v3

, Min[H2(v6)] =

e2 e3


1 0 v3

0 1 v5

1 1 v6

0 1 v7
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That is, the incidence matrices Min(G1) and Min(G2) are exactly same, even though the
semigraphs G1 and G2 are entirely different.

6.5. Unique Incidence Matrix of a Soft Semigraph

We can extend the unique representation of the incidence matrix of a semigraph given
in [10] to a soft semigraph as given below.

Definition 6.17. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft
semigraph of G∗ given by {H(x) : x ∈ A}. Then, the unique incidence matrix Mun(G)
of the soft semigraph G is given by Mun(G) = {Mun[H(x)] : x ∈ A}, where Mun[H(x)]
denotes the unique incidence matrix of the p-part H(x) which is defined as given below.
Let H(x) = (Q(x),W (x)) be a p-part of G, where Q(x) = {v1, v2, . . . , vm} and W (x) =
{E1, E2, . . . , En} where Ej = (vi1 , vi2 , . . . , viqj ). For each f -edge Ej , j = 1, 2, . . . , n, define

hij =


0, if vi /∈ {vi1, vi2, . . . viqj}
1, if vi = vi1, vi2; and qj = 2

s, if vi = vis , for s = 1, 2, 3, . . . , qj and qj ≥ 3.

The m× n matrix given by Mun[H(x)] = [hij ] is the unique incidence matrix associated
with the p-part H(x) of the soft semigraph G.

Example 6.18. The unique incidence matrix of the soft semigraph G1 given in Fig-
ure 15 is given by Mun(G1) = {Mun[H1(v1)],Mun[H1(v6)]}, where Mun[H1(v1)] and
Mun[H1(v6)] are as given below:

Mun[H1(v1)] =

e1[ ]
2 v1

1 v2

3 v3

, Mun[H1(v6)] =

e2 e3


1 0 v3

0 1 v5

1 3 v6

0 2 v7

The unique incidence matrix of the soft semigraph G2 given in Figure 17 is given by
Mun(G2) = {Mun[H2(v2)],Mun[H2(v6)]}, where Mun[H2(v2)] and Mun[H2(v6)] are as
given below:

Mun[H2(v2)] =

e1[ ]1 v1

2 v2

3 v3

, Mun[H2(v6)] =

e2 e3


1 0 v3

0 1 v5

1 2 v6

0 3 v7

So,we can observe that the unique incidence matrices Mun(G1) and Mun(G2) are different
even though the incidence matrices Min(G1) and Min(G2) are exactly same.

Remark 6.19. The unique incidence matrix Mun(G) = {Mun[H(x)] : x ∈ A} of the soft
semigraph G has the following properties:
(1) If the p-part H(x) = (Q(x),W (x)) of G for some x in A contains m vertices and n
f -edges then, Mun[H(x)] will be an m× n matrix.
(2) If Q(x) contains m vertices for some x in A, then, the entries in Mun[H(x)] are any
number between 0 and m.



Soft Semigraphs and Different Types of Degrees, ... 885

(3) If any column of Mun[H(x)] contains two 1′s (that is, two entries equal to 1) for some
x in A, then, all other entries in that column are zeros.
(4) If any column of Mun[H(x)] contains only one entry equal to 1 for some x in A, then,
the number of non zero entries of that column is greater than 2 and the non zero entries
are 1, 2, . . . , qj where qj is the largest entry in that column.
(5) The number of non zero entries in the jth column of Mun[H(x)] for some x in A gives
the number of vertices present in the f -edge Ej in W (x).
(6) If all entries in the ith row of Mun[H(x)] are zeros for some x in A, then, the corre-
sponding vertex vi in H(x) is an isolated vertex.
(7) Interchanging of any two columns or rows in Mun[H(x)] for some x in A corresponds
to the re-labeling of f -edges or vertices of H(x).
(8) Number of non-zero entries in the ith row of Mun[H(x)] for some x in A gives the
edge degree of vi in H(x), that is, degevi[H(x)].

7. Conclusion

Soft semigraph was introduced by applying the concept of soft set in semigraph. By
means of parameterization, a soft semigraph produces a series of descriptions of a re-
lationship described using a semigraph. Definitely, the theory of soft semigraphs will
become an important part of semigraph theory due to its capability to deal with the
parameterization tool.
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