
ISSN 1686-0209

Thai Journal of Mathematics

Volume 21 Number 4 (2023)

Pages 855–861

http://thaijmath.in.cmu.ac.th

Discrete and Computational Geometry, Graphs, and Games

Non-crossing Monotone Paths and Cycles through

Specified Points of Labeled Point Sets

Toshinori Sakai1 and Jorge Urrutia2

1Department of Mathematical Sciences, School of Science, Tokai University, Japan
e-mail : sakai@tokai-u.jp
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Abstract Let P be a set of n points in convex position in the plane, each of which is assigned a different

number, called a label. A path whose vertices are points of P is called monotone if the labels of its

vertices increase while traversing it starting from one of its end vertices. We show that for any element

q ∈ P , there is a non-crossing monotone path containing q connecting at least
⌈√

2(n− 1)
⌉

elements.

This bound is almost tight. A simple polygon with vertices in P is called monotone if it consists of a

monotone path and the line segment connecting its endpoints. The polygon is monotonically increasing

(respectively decreasing) if when we traverse it in the clockwise direction starting at one of its vertices,

the labels of its vertices increase (respectively decrease). We call such a simple polygon an increasing

(respectively a decreasing) cycle. We also prove that any set P of (l − 1)(m − 1) + 2 labeled points in

general position in the plane, and for any point q ∈ P on the boundary of the convex hull of P , there

exists an increasing cycle containing q with at least l+1 elements, or a decreasing cycle containing q with

at least m + 1 elements.
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1. Introduction

Let P be a set of points in the plane. The elements of P are said to be in general
position if no three of them are collinear; and in convex position if they are all on the
boundary of the convex hull of P . P is called a labeled point set if a number, called a
label, is assigned to each of its elements. The label of p ∈ P will be denoted by `(p).
In this paper, we assume that the labels assigned to each element are all different. We
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denote by Pn the family of labeled point sets P with n elements in general position, and
by Cn the family of labeled point sets P with n elements in convex position.

For P ∈ Pn, a non-crossing polygonal line connecting k (≤ n) elements p1, . . . , pk of
P in this order is called a monotone path of P if the sequence `(p1), `(p2), . . . , `(pk) is
monotonically increasing or decreasing (Figure 1(a)). A simple polygon whose boundary
consists of a monotone path of P and a segment connecting its endpoints is called a
monotone cycle of P (Figure 1(b)). In this paper, we assume that any simple polygon
is oriented clockwise, i.e., when one travels along the cycle, the interior region bounded
by the cycle is on the right-hand side. A monotone cycle is said to be monotonically
increasing (resp. decreasing) if the sequence of the labels is monotonically increasing (resp.
decreasing) when we read the labels in clockwise order from an appropriate element.
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Figure 1. (a) A monotone path and (b) a monotone (monotonically
increasing) cycle.

In 1935, Erdős and Szekeres [1] showed the following theorem:

Theorem 1.1. Any sequence of (l−1)(m−1) + 1 distinct real numbers contains either a
monotonically increasing subsequence with at least l terms, or a monotonically decreasing
subsequence with at least m terms (these bounds are tight).

From Theorem 1.1, it follows that any sequence of n distinct real numbers contains a
monotonically increasing or decreasing subsequence with at least d

√
n e terms.

1.1. Monotone Paths

The problem of finding non-crossing monotone long paths in labeled point sets is a
natural variation of Theorem 1.1, and this problem was first studied by Czyzowicz et
al.[2]. They proved that any P ∈ Cn contains a vertex set of a monotone path with at least⌈√

2n
⌉

elements. This bound was improved by Sakai and Urrutia [3] to
⌈√

3n− 3/4−1/2
⌉

by giving a simple proof for a result by Chung [4] concerning the number of the terms of a
longest unimodal (see the second paragraph of Section 2) or “anti”-unimodal subsequence
in a sequence of numbers, and then applying it to labeled point sets. In this paper, we
show the following result:

Theorem 1.2. For any P ∈ Cn and for any element q ∈ P , there is a monotone path of
P with at least

⌈√
2(n− 1)

⌉
vertices containing q.
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We also construct a point set of Cn that shows that this bound is almost tight.

1.2. Monotone Cycles

Each point set P of Cn, or the cycle connecting the vertices of the convex hull of P , can
be identified with a circular permutation. A circular permutation is said to be monotone
(resp. monotonically increasing, monotonically decreasing) if it corresponds to a monotone
(resp. monotonically increasing, monotonically decreasing) cycle. Using Theorem 1.1, we
see that for any P ∈ Cn, there is a monotone cycle with at least

⌈√
n− 1

⌉
+ 1 vertices,

and this bound is tight [3]. This result implies that any circular permutation of n distinct
real numbers contains a monotone circular subpermutation with at least

⌈√
n− 1

⌉
+ 1

terms. Czabarka and Wang [5] gave a result for circular permutations in the following
style that is similar to Theorem 1.1, and they also characterize all circular permutations
that show that these bounds are tight:

Theorem 1.3. Let C be a circular permutation of (l−1)(m−1)+2 distinct real numbers.
Then C contains either a monotonically increasing circular subpermutation with at least
l + 1 terms, or a monotonically decreasing circular subpermutation with at least m + 1
terms.

In this paper, we show the following Theorem 1.4 concerning monotone cycles for sets
of points in general position, from which Corollary 1.5, an extension of Theorem 1.3
follows.

Theorem 1.4. For any P ∈ P(l−1)(m−1)+2 and for any q ∈ P on the boundary of the
convex hull of P , there exists either a monotonically increasing cycle of P with at least
l + 1 vertices containing q, or a monotonically decreasing cycle of P with at least m + 1
vertices containing q. These bounds are tight.

Corollary 1.5. Let C be a circular permutation of (l−1)(m−1)+2 distinct real numbers.
Then for any term k of C, there exists either a monotonically increasing circular subper-
mutation with at least l + 1 terms including k, or a monotonically decreasing circular
subpermutation with at least m+ 1 terms including k. These bounds are tight.

The tightness of Theorem 1.4 and Corollary 1.5 follows from the tightness of Theorem 1.3.

2. Proof of Theorem 1.2

Let P ∈ Cn and denote by p1, p2, . . . , pn the elements of P in clockwise order along
the boundary of the convex hull of P from an element. We say that P and the sequence
of the labels `(p1), `(p2), . . . , `(pk) are corresponding. Depending on the choice of the
element for p1, there are n sequences corresponding to P in general.

Let S = {ak}1≤k≤n be a sequence of n distinct real numbers. S is called a unimodal
sequence if a1 < a2 < · · · < ai and ai > ai+1 > · · · > an for some i (we allow the
possibility that i = 1 or i = n, i.e., a1 > a2 > · · · > an or a1 < a2 < · · · < an). Sequences
obtained by circular shifts of a unimodal sequence are called bitonic sequences: to be
more precise, S is bitonic if

(i) a1 > a2 > · · · > ai < ai+1 < · · · < aj > aj+1 > · · · > an(> a1); or

(ii) a1 < a2 < · · · < ai > ai+1 > · · · > aj < aj+1 < · · · < an(< a1)
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for some i and j, where we allow the possibility that i = 1 or j = n for each case. If
P ∈ Cn is corresponding to some bitonic sequence, then P is also corresponding to a
unimodal sequence.

Observation 2.1. Let P ∈ Cn, S = {ai}1≤i≤n a sequence corresponding to P , and
S′ : ai1 , ai2 , . . . , aik a bitonic subsequence of S. Then the path connecting the elements
in increasing (or decreasing) order of their labels is a monotone path of P . Conversely,
by reading the labels of the vertices of a monotone path of P along the boundary of the
convex hull of P , we obtain a bitonic subsequence of S.

Thus to prove Theorem 1.2, it suffices to show:

Theorem 2.1. Let P ∈ Cn and q ∈ P . Then a sequence corresponding to P contains a
bitonic subsequence with at least

⌈√
2(n− 1)

⌉
terms including `(q).

Proof. We may assume that the labels assigned to the points are 1, 2, . . . , n. Starting
from q, write the elements of P as p0(= q), p1, . . . , pn−1 in clockwise order along the
boundary of the convex hull of P . Write `(pi) = ai for 0 ≤ i ≤ n − 1, and define a
sequence S = {bi}1≤i≤2(n−1) as follows:

b2i−1 = ai and b2i =

{
1− ai (if ai < a0),

2n+ 1− ai (if ai > a0)
for 1 ≤ i ≤ n− 1.

By Theorem 1.1, there is a monotone subsequence S′ of S with L terms, where L ≥⌈√
2(n− 1)

⌉
. First consider the case where S′ is increasing. In this case,

1− ai1< · · · < 1− aik−1
< 0 < aik< · · · < aim< n < 2n+ 1− aim+1

< · · · < 2n+ 1− aiL
for some k and m (we allow the possibility that k = 1 or m = L). Thus

(i) a0 > ai1 and ai1 , . . . , aik−1
is decreasing if k ≥ 2;

(ii) aik , . . . , aim is increasing;

(iii) aim+1 , . . . , aiL is decreasing and aiL > a0 if m ≤ L− 1.

Note that the last term aim in (ii) and the first term aim+1
in (iii) can be an identical

term in the sequence {ai}0≤i≤n−1 (this occurs when consecutive terms b2im−1(= aim)
and b2im(= 2n + 1 − aim) of S are contained in S′). Now by removing aim+1

from
{aij}1≤j≤L and adding a0 = `(p0) as the first term, we obtain a bitonic subsequence with

L ≥
⌈√

2(n− 1)
⌉

terms.
We can argue similarly in the case where S′ is decreasing.

The bound stated in Theorem 2.1 (or Theorem 1.2) is almost tight. To show this, we
construct a sequence S corresponding to P ∈ Cn such that any bitonic subsequence that
contains the maximum term of S has at most

√
2n− 1+1 terms for n = 2k2+2k+1, where

k ≥ 0 is an integer. For a sequence A : a1, a2, . . . , ak(k+1)/2, we define its permutation
P(A) as follows: first we relabel the terms of A as

α11, α21, α31, α41, . . . , αk1,

α22, α32, α42, . . . , αk2,

α33, α43, . . . , αk3,

. . . . . . . . .

αkk
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in the same order as A. Denote by P(A) the sequence obtained by rearranging these
terms as follows:

α11, α22, α21, α33, α32, α31, . . . , αkk, . . . , αk2, αk1.

For instance, P(A) for the sequence A of consecutive integers 1, 2, . . . , 10 is

P(A) : 1, 5, 2, 8, 6, 3, 10, 9, 7, 4 (Figure 2).

We denote by P(A)
−1

the sequence obtained by arranging the terms of P(A) in reverse
order.

Now let A1 and A2 be the sequences of k(k + 1)/2 consecutive odd integers:

A1 : 1, 3, . . . , k(k + 1)− 1,

A2 : k(k + 1) + 1, k(k + 1) + 3, . . . , 2k(k + 1)− 1;

and let A3 and A4 be the sequences of k(k + 1)/2 consecutive even integers:

A3 : 2, 4, . . . , k(k + 1),

A4 : k(k + 1) + 2, k(k + 1) + 4, . . . , 2k(k + 1).

Let S be the sequence obtained by arranging the terms of the sequence P(A2), followed
by the terms of P(A1), the integer n = 2k(k + 1) + 1, and the terms of P(A3)−1 and
P(A4)−1, see Figure 3. Then we can verify that any bitonic subsequence containing n
has at most 2k + 2 =

√
2n− 1 + 1 terms.
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Figure 2. P(A) for
A : 1, 2, 3, . . . , 10.
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Figure 3. The broken line rep-
resents a bitonic subsequence
with 2k + 2 terms.

3. Proof of Theorem 1.4

Let n = (l − 1)(m − 1) + 2, p0 = q, and denote by p1, p2, . . . , pn−1 the elements of
P − {p0} in clockwise order around p0, where pn−1, p0 and p1 are consecutive vertices
that appear in this order along the boundary of the convex hull of P , see Figure 4. We
may assume again that the labels assigned to the points are 1, 2, . . . , n.
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Figure 4. p0 = q and p1, p2, . . . , pn−1 in clockwise order.

Write `(pi) = ai for 0 ≤ i ≤ n− 1, and define a sequence S = {bi}1≤i≤n−1 by

bi =

{
ai (if ai > a0),

ai + n (if ai < a0)
for 1 ≤ i ≤ n− 1 (3.1)

(so, S is a permutation of n− 1 integers a0 + 1, a0 + 2, . . . (a0 − 1) + n). Since S contains
n−1 = (l−1)(m−1)+1 terms, it follows from Theorem 1.1 that S contains an increasing
subsequence with at least l terms, or a decreasing subsequence with at least m terms.
First consider the case where there is an increasing subsequence with L ≥ l terms. In this
case, the subsequence S′ = {bij}1≤j≤L is in the following form:

ai1 , ai2 , . . . , aih−1
, aih + n, aih+1

+ n, . . . , aiL + n

(we allow the possibility that h = 1 or h = L+ 1). In this case, we have

a0 < ai1 < ai2 < · · · < aih−1
and aih < aih+1

< · · · < aiL < a0

by (3.1), and hence

aih < aih+1
< · · · < aiL < a0 < ai1 < ai2 < · · · < aih−1

.

Therefore the cycle connecting the points pih , pih+1
, . . . , piL , p0, pi1 , pi2 , . . . , pih−1

and
pih in this order is a monotonically increasing cycle of P with L + 1 ≥ l + 1 vertices
containing p0 = q.

Similarly, in the case where S contains a decreasing subsequence with at least m terms,
we obtain a monotonically decreasing cycle of P with at least m + 1 vertices containing
q.
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