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Abstract Suppose G is a simple, undirected, finite, nontrivial, and connected graph and that c : V (G) →
N is a vertex coloring, not necessarily proper, of G. As introduced by Chartrand et al., c is called a set

coloring of G if NC(u) 6= NC(v) for every pair of adjacent vertices u and v; here, NC(x) denotes the

set of colors of all the neighbors of the vertex x. Moreover, the set chromatic number of G, denoted by

χs(G), is the minimum number of colors that can be used to construct a set coloring of G. On the other

hand, the middle graph M(G) of a graph G is defined as the graph whose vertex set is V (G)∪E(G) and

in which two vertices u and v are adjacent if and only if u and v are adjacent edges in G; or u ∈ V (G),

v ∈ E(G), and u is incident to v in G. In this paper, we study set colorings in relation to the middle

graph of some tree families. We establish lower bounds for the set chromatic number of these graphs

and we algorithmically construct set colorings for them. For most cases, we find that the set chromatic

number for these graphs is given by min-max formulas.
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1. Introduction

All the graphs to be considered in this work are simple, undirected, finite, nontrivial,
and connected. As coined in [1], a vertex coloring or edge coloring of a graph is neighbor-
distinguishing if it induces a vertex labelling such that any two adjacent vertices receive
distinct labels. Naturally, the classical proper vertex coloring is neighbor-dsitinguishing.

Among several neighbor-disinguishing colorings that have been introduced (such as
those in [1–6]), the topic of this work is set coloring, which was introduced in [7]. Given
a graph G and c : V (G) → N a vertex coloring of G, we have the following definitions:
For any subset S of V (G), we let c(S) = {c(s) : s ∈ S}. The neighborhood color set of a
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vertex v is defined as the set NC(v) = c(NG(v)), where NG(v) = {w : vw ∈ E(G)}. The
coloring c is called a set coloring of G if NC(v) 6= NC(w) for any two adjacent vertices v
and w. If, in addition, |c(V (G))| = k (i.e. c uses k colors), then we call c a set k-coloring
of G. The set chromatic number of G is denoted by χs(G) and is defined as the smallest
integer k for which G has a set k-coloring.

Set colorings have been previously studied in relation to different graph operations
involving different graph families. For instance, there have been studies in relation to the
join [8, 9], corona and vertex/edge deletions [7], and comb product [9]. Meanwhile, similar
studies have been carried out involving other neighbor-distinguishing colorings [10–13].

Previously, in [14], the authors studied set colorings in relation to a graph operation
called middle graph. Introduced by Hamada and Yoshimura [15], the middle graph M(G)
of a graph G is defined to be the intersection graph of V ′ ∪ E(G), where V ′ is the set of
all singletons each containing a vertex of G. Alternatively, we may think of M(G) as the
graph whose vertex set is V (G)∪E(G) and in which two vertices u and v are adjacent if
and only if u and v are adjacent edges in G; or u ∈ V (G), v ∈ E(G), and u is incident
to v in G. Note that two adjacent vertices of G are not adjacent in M(G). The results
in [14] include bounds for χs(M(G)) as well as the set chromatic number of the middle
graph of stars, double stars, paths, cycles, and tadpoles.

This work aims to continue [14] by considering the middle graph of other families of
trees and to contribute to the literature on the active research area of graph colorings and
graph operations. In particular, the results in this paper reveal that the set chromatic
number of the middle graph of some tree families is given by min-max formulas.

2. Some Known Results on Set Colorings

We will use the following notations: For any positive integer m, we denote by Nm the
set {1, 2, ...,m}. For a vertex v in a graph G, we denote by SG(v) the set of all pendant
neighbors, in G, of v (i.e., all end-vertices of G adjacent to v).

The following family of graphs has been studied in [7]. Let n, t be integers such that
n ≥ 2 and 0 ≤ t ≤ n. The graph Gn,t is the graph whose vertex set may be denoted by
{v1, v2, ..., vn}∪{u1, u2, ..., ut} and whose edge set is {vivj : i 6= j}∪{vkuk : k = 1, 2, ..., t}.
Note that the vertices v1, v2, ..., vn form a complete subgraph of Gn,t with order n. The
set chromatic number of Gn,t is given by the following proposition.

Proposition 2.1 ([7], Proposition 2.6). For n ≥ 2 and 0 ≤ t ≤ n, χs(Gn,t) = n.

Let us now present relevant results from [14]. The first result provides a lower bound
for χs(M(G)), where G is a graph with at least one pendant vertex. We include the proof,
for completeness.

Lemma 2.2 ([14]). Let G be any graph and assume that G has a vertex v that has at
least one pendant neighbor. Then

χs(M(G)) ≥ |SG(v)|+ 1.

Proof. We set Q := the set of all nonpendant neighbors, in G, of v, T := {vq ∈ E(G) :
q ∈ Q}, S := SG(v), and R := {vs ∈ E(G) : s ∈ S}. Note that T and R can also be
viewed as subsets of V (M(G)).

Let c be a set k-coloring of M(G). First, suppose that Q 6= ∅ and let t be a fixed vertex
from T . Then the clique H of M(G) formed by v, t, and all the vertices in R is isomorphic
to K|S|+2. Moreover, permuting colors if necessary, we may assume that c(V (H)) = N`
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for some ` ≤ k. Let X be the maximal subset of V (H) such that for all x ∈ X, there
exists y ∈ X r {x} for which c(x) = c(y). If X = ∅, then |S| + 1 ≤ |V (H)| = ` ≤ k,
and so we may assume that X 6= ∅. Since the remaining vertices in V (H) r X receive
unique colors, we must have |V (H)| − |X|+ 1 ≤ ` and so |X| ≥ |S| − `+ 3. The possible
neighborhood color sets of vertices in X are given as follows:

(1) If v ∈ X, then NC(v) = N` ∪ c(T r {t}).
(2) If t ∈ X, then NC(t) = N` ∪ c(T r {t}) ∪ c

(
NM(G)(t) r (V (H) ∪ T )

)
.

(3) If r ∈ R ∩X and s ∈ S ∩NM(G)(r), then:
(a) If c(s) 6∈ N`, then NC(r) = N` ∪ {c(s)} ∪ c(T r {t}).
(b) If c(s) ∈ N`, then NC(r) = N` ∪ c(T r {t}).

Note that (1) and (3b) provide the same neighborhood color set; aside from these
two, all the other possible neighborhood color sets above may all be distinct from each
other. Since there are k− ` colors not in N`, (3a) provides for k− ` distinct neighborhood
color sets. Hence, the maximum number of possible neighborhood color sets available for
vertices in X is k− `+ 2. So we must have k− `+ 2 ≥ |X|. Then k− `+ 2 ≥ |S| − `+ 3,
which implies that k ≥ |S|+ 1.

Now, suppose Q = ∅. Since G is connected, it must be isomorphic to a star K1,m.
Since M(K1,m) ∼= Gm+1,m, our desired conclusion follows from Proposition 2.1.

Using Lemma 2.2, the following theorem was proved in [14]. The optimal set coloring
is constructed using Algorithm 1 in [14].

Theorem 2.3 ([14]). Let T be a tree of height 2 rooted at a vertex v0 with deg(v0) ≥ 4. If
there is an internal vertex w with deg(w) = ∆(G) ≥ deg(v0)+1, then χs(M(T )) = deg(w).

3. Extended Stars

In this section, we determine the set chromatic number of the middle graph of extended
star graphs, which we define below. Such graphs have been used, for example, in [16].

Definition 3.1. Let m,n be positive integers. We define the extended star graph Tm,n
as follows: If m = 1, then T1,n is the star graph K1,n+1. If m ≥ 2, then Tm,n is the graph
obtained from the star K1,m by connecting n pendant vertices to each pendant vertex of
K1,m.

By Observation 3.2 in [14], we have χs(M(T1,n)) = n + 2 for any positive integer n.
So we may assume that m ≥ 2.

Recall that n! = 1 × 2 × · · · × n for any positive integer n, while 0! = 1. Moreover,
given non-negative integers n and r, the number of combinations, denoted by C(n, r), of
n objects taken r at a time is given by C(n, r) = n!

r!(n−r)! . We also recall the following

identities: C(n, 0) = 1 and C(n− 1, r − 1) + C(n− 1, r) = C(n, r).
We now introduce the following: For positive integers a, b, c, we denote by q(a, b, c) the

smallest positive integer k for which

min{k−c,b}∑
α=0

C(k − c, α) ≥ a− c.

Note that, necessarily, q(a, b, c) ≥ c; moreover, q(a, b, c) = c if and only if a− c ≤ 1. We
then have the following property:
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Observation 3.1. If a ≤ a′ and c ≤ c′, then q(a, b, c) ≤ q(a′, b, c′).

Proof. If a− c ≤ 1, then q(a, b, c) = c ≤ c′ = q(a′, b′, c′), which is the desired inequality.
From now, we assume that a−c ≥ 2. If a ≤ a′, then it is clear that q(a, b, c) ≤ q(a′, b, c).
Now, suppose c is a positive integer and consider q′ := q(a, b, c+ 1). Set q = q(a, b, c),

r = min{q − c, b}, and r′ = min{q′ − (c+ 1), b}.

Claim 1: If a− c ≥ 3, then C(q′ − (c+ 1), r′) ≤ a− c− 2.
Proof of Claim 1. If r′ = 0, then q′ = c + 1, which can only happen if a − (c + 1) ≤ 1
or a − c ≤ 2 but this contradicts the assumption. Thus, we must have r′ ≥ 1. Suppose,
on the contrary, that C(q′ − (c+ 1), r′) ≥ a− c− 1. Then C((q′ − 1)− (c+ 1), r′ − 1) +
C((q′ − 1)− (c+ 1), r′) = C(q′ − (c+ 1), r′) ≥ a− c− 1 = a− (c+ 1), which contradicts
the minimality of q′.

Claim 2: q ≤ q′
Proof of Claim 2. First, suppose a − c = 2; then a − (c + 1) = 1. It follows that
q = q(a, b, c) = c+ 1 = q(a, b, c+ 1) = q′, as desired.

Now, suppose a− c ≥ 3. We will show that q′ satisfies

min{q′−c,b}∑
α=0

C(q′ − c, α) ≥ a− c.

First, we have

min{q′−c,b}∑
α=0

C(q′ − c, α)

≥
r′∑
α=0

C(q′ − c, α)

= C(q′ − c, 0) +

r′∑
α=1

[C(q′ − (c+ 1), α− 1) + C(q′ − (c+ 1), α)]

= C(q′ − (c+ 1), 0) +

r′∑
α=1

[C(q′ − (c+ 1), α− 1) + C(q′ − (c+ 1), α)]

= 2

 r′∑
α=0

C(q′ − (c+ 1), α)

− C(q′ − (c+ 1), r′)

≥ 2[a− (c+ 1)]− C(q′ − (c+ 1), r′)

≥ a− c (by Claim 1).

Hence, by the minimality of q, we have q ≤ q′.
By Claim 2 and induction, we have q(a, b, c) ≤ q(a, b, c′) whenever c ≤ c′.

For the rest of this section, we will denote the vertices of Tm,n as follows:

(1) The root vertex is v0.
(2) The children of v0 are v1, v2, ..., vm.
(3) For each i ∈ Nm, the children of vi are vi,1, vi,2, ..., vi,n.

We now establish a lower bound for χs(M(Tm,n)).
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Lemma 3.2. Let m ≥ 2 and n ≥ 1 be integers. Then

χs(M(Tm,n)) ≥ min
{

max{n+ 2, q(m+ 2, n+ 1, 1)},max{n+ 1, q(m+ 3, n+ 1, 3)}
}
.

Proof. Let G = M(Tm,n). Let c be a set k-coloring of G. We will consider the following
two subgraphs of G:
H1 = subgraph of G induced by the vertices v0 and v0vi, for i ∈ Nm ,
H2 = subgraph of G induced by v0v1, v1, and v1v1,j for j ∈ Nn.

Then H1
∼= Km+1 and H2

∼= Kn+2. For i ∈ {1, 2}, we define the following:
Ci = c(V (Hi)), `i = |Ci|,
Xi = {x ∈ V (Hi) : c(x) = c(y) for some y ∈ V (Hi) r {x}}.

Moreover, if Xi 6= ∅, then |V (Hi)| − |Xi|+ 1 ≤ `i or |Xi| ≥ |V (Hi)| − `i + 1.
We have the following possible neighborhood color sets for vertices in X1.

(1a) If v0 ∈ X1, then NC(v0) = C1.
(1b) If v0vi ∈ X1, i ∈ Nm, then NC(v0vi) = C1 ∪ {c(vi)} ∪ {c(vivi,j) : j ∈ Nn}.

Similarly, we have the following possible neighborhood color sets for vertices in X2.

(2a) If v0v1 ∈ X2, then NC(v0v1) = C2 ∪ {c(v0)} ∪ {c(v0vi) : i 6= 1}.
(2b) If v1 ∈ X2, then NC(v1) = C2.
(2c) If v1v1,j ∈ X2, j ∈ Nn, then NC(v1v1,j) = C2 ∪ {c(v1,j)}.

Lemma 2.2 implies that k ≥ n + 1. If X1 = ∅ (i.e. `1 = m + 1), then k ≥ m + 1 ≥
q(m+3, n+1, 3). Then k ≥ max {n+ 1, q(m+ 3, n+ 1, 3)}. Now, we assume that X1 6= ∅
(i.e. 1 ≤ `1 ≤ m).

Without any other restriction, (1a)-(1b) imply that vertices in X1 will have neigh-
borhood color sets of the form C1 ∪ S, where S ⊆ Nk r C1 and 0 ≤ |S| ≤ n + 1.
Thus, the maximum number of possible neighborhood color sets for vertices in X1 is∑min{k−`1,n+1}
α=0 C(k−`1, α). Since vertices in X1 should have distinct neighborhood color

sets, we must have

min{k−`1,n+1}∑
α=0

C(k − `1, α) ≥ |X1|. (3.1)

Since |X1| ≥ m− `1 + 2, it follows that

min{k−`1,n+1}∑
α=0

C(k − `1, α) ≥ m− `1 + 2 =⇒ k ≥ q(m+ 2, n+ 1, `1). (3.2)

We now proceed by cases based on the value of `1. Note that c(v0v1) ∈ C1 ∩ C2.

Case 1. Suppose `1 ≤ 2.

If X2 = ∅, then k ≥ `2 ≥ n + 2. We now show that k ≥ n + 2 even if X2 6= ∅. Since
|V (H1)| ≥ 3, we may assume that v0v1 ∈ X1, which implies that c(v0v1) ∈ {c(v0)} ∪
{c(v0vi) : i 6= 1}. Moreover, we have |{c(v0)} ∪ {c(v0vi) : i 6= 1}| ≤ 2. Thus, if v0v1 ∈ X2,
then |NC(v0v1)| ≤ |C2| + 1. Thus, given (2a)-(2c), the possible neighborhood color sets
of vertices in X2 are all of the form C2 ∪ {α}, where α may or may not be in C2. Since
k− `2 colors are not used in X2, there are at most 1 + k− `2 possible neighborhood color
sets for the vertices in X2. Therefore, 1 + k − `2 ≥ |X2| ≥ n+ 2− `2 + 1, which implies
that k ≥ n+ 2.

On the other hand, (3.2) and Observation 3.1 imply that k ≥ q(m + 2, n + 1, 1). The
conclusion follows.
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Case 2. Suppose `1 ≥ 3 and |X1| ≥ m.

In this case, (3.1) becomes

min{k−`1,n+1}∑
α=0

C(k − `1, α) ≥ m,

which implies that k ≥ q(m+ `1, n+ 1, `1). Since `1 ≥ 3, we have k ≥ q(m+ 3, n+ 1, 3).
Since Lemma 2.2 implies that k ≥ n+ 1 as well, the conclusion follows.

Case 3. Suppose `1 ≥ 3 and |X1| ≤ m− 1.

We may assume that v0v1 6∈ X1. First, let us assume that v0v1 ∈ X2, which implies
that c(v0v1) ∈ {c(v1)}∪{c(v1v1,j : j ∈ Nn}. Thus, the neighborhood color set of v0v1 has
the same form as (1b) even if v0v1 6∈ X1. So the right-hand side of (3.1) becomes |X1|+ 1
and we obtain

min{k−`1,n+1}∑
α=0

C(k − `1, α) ≥ m− `1 + 3 =⇒ k ≥ q(m+ 3, n+ 1, 3).

With Lemma 2.2, we have k ≥ max{n+ 1, q(m+ 3, n+ 1, 3)}.
On the other hand, suppose v0v1 6∈ X2. If X2 = ∅, then k ≥ n + 2. Now, suppose

X2 6= ∅. Then only (2b) and (2c) are applicable and the maximum number of possible
neighborhood color sets for vertices in X2 is 1 + k − `2, which implies that k ≥ n+ 2 as
well. At the same time, k ≥ q(m+2, n+1, 3) ≥ q(m+2, n+1, 1) by (3.2) and Observation
3.1. Thus, k ≥ max{n+ 2, q(m+ 2, n+ 1, 1)}.

Therefore, in any of the Cases 1-3, we have

k ≥ min
{

max{n+ 2, q(m+ 2, n+ 1, 1)},max{n+ 1, q(m+ 3, n+ 1, 3)}
}
,

as desired.

When n ≥ m ≥ 4, the extended star Tm,n is a tree satisfying the assumptions of
Theorem 2.3. Moreover, when n ≥ m ≥ 4, we have n + 2 ≥ m + 2 ≥ q(m + 2, n + 1, 1)
and n+ 1 ≥ m+ 1 ≥ q(m+ 3, n+ 1, 3). Thus, we have the following.

Corollary 3.3. If n ≥ m ≥ 4, then

χs(M(Tm.n)) = n+ 1

= min
{

max{n+ 2, q(m+ 2, n+ 1, 1)},max{n+ 1, q(m+ 3, n+ 1, 3)}
}
.

With Lemma 3.2, we can actually extend Corollary 3.3 to the general case where m ≥ 2
and n ≥ 1. To show this, we prove the following two lemmas, where we construct set
colorings of M(Tm,n).

Lemma 3.4. Let m ≥ 2 and n ≥ 1 be integers. Set p = max{n + 2, q(m + 2, n + 1, 1)}.
Then M(Tm,n) is set p-colorable.

Proof. Let S1, S2, ..., S2p−1−1 be the nonempty subsets of Npr{1} arranged in such a way
that |Si| ≤ |Si+1| for all i. Let us construct a coloring c : V (M(Tm,n))→ Np as follows:

(A1) Set c(v0) = c(v0vi) = 1 for i ∈ Nm.
(A2) Set c(vi) = minSi for i ∈ Nm.
(A3) Set αi = |Si r {c(vi)}| for i ∈ Nm.

(a) If αi = 0, set c(vivi,j) = 1 for j ∈ Nn.
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Table 1. The neighbors and neighborhood color set of each vertex in
M(Tm,n) under the coloring c (Lemma 3.4)

Vertex Neighbors NC

v0 v0vi ∀i ∈ Nm {1}
v0vi, i ∈ Nm v0, vi, v0vj ∀j 6= i, {1} ∪ Si

vivi,j ∀j ∈ Nn

vi, i ∈ Nm v0vi, vivi,j ∀j ∈ Nn {1} ∪ [Si r {c(vi)}]
vivi,j , (i, j) ∈ Nm × Nn v0vi, vi, vi,j , If c(vivi,j) 6= 1: {1} ∪ [Si r c(vivi,j)]

vivi,q ∀q 6= j If c(vivi,j) = 1: {1, c(vi,j)} ∪ Si

vi,j , (i, j) ∈ Nm × Nn vivi,j If c(vivi,j) 6= 1: {sj}
If c(vivi,j) = 1: {1}

(b) If αi > 0, suppose Si r {c(vi)} = {s1, s2, ..., sαi}. Set c(vivi,j) = sj for
1 ≤ j ≤ αi; set c(vivi,j) = 1 for αi + 1 ≤ j ≤ n.

(A4) For each i ∈ Nm:
(a) For all j ∈ Nn for which c(vivi,j) 6= 1, set c(vi,j) = 1.
(b) Let Wi = {vi,j : c(vivi,j) = 1}. Set c(Wi) so that the vertices in Wi

receive distinct colors from Np r ({1} ∪ Si).
First, we prove that c can always be constructed. For (A2), we need 2p−1 − 1 ≥ m.

Since p ≥ q(m+ 2, n+ 1, 1), we have

p−1∑
α=0

C(p− 1, α) ≥ m+ 1 =⇒ 2p−1 − 1 ≥ m.

For (A3b), we verify that αi ≤ n so that all colors in Si r {c(vi)} are used. Indeed, if
p = n+2, then αi = |Sir{c(vi)}| ≤ p−2 = n. On the other hand, if p = q(m+2, n+1, 1),
then

min{p−1,n+1}∑
α=0

C(p− 1, α) ≥ m+ 1 =⇒
min{p−1,n+1}∑

α=1

C(p− 1, α) ≥ m.

But
∑min{p−1,n+1}
α=1 C(p− 1, α) is the number of nonempty α-subsets of Np r {1}, where

α ≤ n + 1. Since this number is at least m, we must have |Sm| ≤ n + 1, which implies
that αi ≤ n for all i ∈ Nm. For (A4b), we need |Wi| ≤ |Np r ({1} ∪ Si)|. Indeed,
|Wi| = n− αi ≤ p− (αi + 2) = |Np r ({1} ∪ Si)|. Thus, it is always possible to construct
the coloring c.

Now, we show that c uses exactly p colors. First, suppose p = n+2. Since |S1| = 1, we
have α1 = 0. By (A3a) and (A4b), we haveW1 = {v1,j : j ∈ Nn}; that is, |W1| = n = p−2.
By (A4b), c(W1) = Np r ({1} ∪ S1). Meanwhile, the colors in {1} ∪ S1 are used in (A1)
and (A2). Thus, all colors from Np are used by c in this case. On the other hand, suppose
p = q(m+ 2, n+ 1, 1). Clearly,

min{(m+1)−1,n+1}∑
α=0

C((m+ 1)− 1, α) ≥ m+ 1

for any value of n. By the minimality of p, we must have p ≤ m+1. Thus, in (A2), all the
1-subsets of Np r {1} are used by c. Meanwhile, the color 1 is used in (A1). Therefore,
all colors from Np are also used in this case.
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Finally, we present in Table 1 the neighbors and neighborhood color set of each vertex
in M(Tm,n). Through Table 1, it can be easily verified that c is a set coloring.

As an example, consider T4,2. Since max{4, q(6, 3, 1)} = 4, Lemma 3.4 implies that
M(T4,2) is set 4-colorable. Figure 1 shows a set 4-coloring of M(T4,2) constructed using
(A1)-(A4) from Lemma 3.4.

Figure 1. A set coloring c : V (M(T4,2))→ N4 constructed using (A1)-
(A4) from Lemma 3.4

Lemma 3.5. Let m ≥ 2 and n ≥ 1 be integers. Set p = max{n + 1, q(m + 3, n + 1, 3)}.
Then M(Tm,n) is set p-colorable.

Proof. Note that since m ≥ 2, we have p ≥ q(m + 3, n + 1, 3) ≥ 4. Let S1, S2, ..., S2p−3

be the subsets of Np r N3 arranged in such a way that |Si| ≤ |Si+1| for all i. Note that
S1 = ∅. We construct a coloring c : V (M(Tm,n))→ Np as follows:

(B1) Set c(v0) = 3, c(v0vm) = 2, and c(v0vi) = 1 for all i ∈ Nm−1.
(B2) Set c(v1) = 1 and c(vi) = minSi for i ∈ Nm.
(B3) Set c(v1v1,j) = 1 for j ∈ Nn.

For each i ∈ Nm r {1}, set αi = |Si r {c(vi)}| and
(a) if αi = 0, set c(vivi,j) = 1 for j ∈ Nn if i 6= m; moreover,

set c(vmvm,j) = 2 for j ∈ Nn;
(b) if αi > 0, suppose Si r {c(vi)} = {s1, s2, ..., sαi

}. If 2 ≤ i ≤ m − 1, set
c(vivi,j) = sj for 1 ≤ j ≤ αi and c(vivi,j) = 1 for αi + 1 ≤ j ≤ n. If i = m,
set c(vmvm,j) = sj for 1 ≤ j ≤ αm and c(vmvm,j) = 2 for αm + 1 ≤ j ≤ n.

(B4) For each i ∈ Nm:
(a) If i = 1, set c({v1,j : j ∈ Nn}) ⊆ Np r {1} so that the vertices in {v1,j :
j ∈ Nn} receive different colors.

(b) If 2 ≤ i ≤ m− 1, let Wi = {v1,j : c(vivi,j) 6∈ Si} and set c(Wi) ⊆ Np r Si
so that the vertices in Wi receive different colors.
Then set c({vi,j : j ∈ Nn}rWi) = {1}.

(c) If i = m, let Wm = {vm,j : c(vmvm,j) 6∈ Sm} and set c(Wm) ⊆ Np r Sm
so that the vertices in Wm receive different colors.
Then set c({vm,j : j ∈ Nn}rWm) = {2}.
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Table 2. The neighbors and neighborhood color set of each vertex in
M(Tm,n) under the coloring c (Lemma 3.5)

Vertex Neighbors NC

v0 v0vi ∀i ∈ Nm N2

v0vi

i = 1 v0, v0vj ∀j 6= 1, v1, N3

v1v1,j ∀j ∈ Nn

2 ≤ i ≤ m− 1 v0, v0vj ∀j 6= i, vi, N3 ∪ Si

vivi,j ∀j ∈ Nn

i = m v0, v0vj ∀j 6= m, vm, N3 ∪ Sm if αm ≤ n− 1
vmvm,j ∀j ∈ Nn {1, 3} ∪ Sm if αm = n

vi

i = 1 v0v1, v1v1,j ∀j ∈ Nn {1}
2 ≤ i ≤ m− 1 v0vi, vivi,j ∀j ∈ Nn [{1} ∪ Si]r {c(vi)}
i = m v0vm, vmvm,j ∀j ∈ Nn [{2} ∪ Sm]r {c(vm)}

vivi,j

i = 1, j ∈ Nn v0v1, v1,j , {1, c(v1,j)} where c(v1,j) 6= 1
v1v1,q ∀q 6= j

2 ≤ i ≤ m− 1, v0vi, vi,j , If c(vivi,j) 6∈ Si:
j ∈ Nn vivi,q ∀q 6= j (i.e. αi + 1 ≤ j ≤ n or αi = 0)

{1, c(vi,j)} ∪ Si

where c(vi,j) ∈ Np r Si

If c(vivi,j) ∈ Si:
(i.e. 1 ≤ j ≤ αi)
{1} ∪ [Si r {sj}]

i = m, j ∈ Nn v0vm, vm,j , If c(vmvm,j) 6∈ Sm:
vmvm,q ∀q 6= j (i.e. αm + 1 ≤ j ≤ n or αm = 0)

{2, c(vm,j)} ∪ Sm where
c(vm,j) ∈ Np r Sm

If c(vmvm,j) ∈ Sm:
(i.e. 1 ≤ j ≤ αm)
{2} ∪ [Sm r {sj}]

vi,j

i = 1, j ∈ Nn v1vi,j {1}
2 ≤ i ≤ m− 1, vivi,j {sj} if 1 ≤ j ≤ αi

j ∈ Nn {1} if αi + 1 ≤ j ≤ n
i = m, j ∈ Nn vmvm,j {sj} if 1 ≤ j ≤ αm

{2} if αm + 1 ≤ j ≤ n

As in the previous lemma, we prove that c can always be constructed. In fact, similar
arguments allow us to conclude that: for(B2), we have 2p−3 ≥ m, which follows from
p ≥ q(m + 3, n + 1, 3); for (B3b), we have αi ≤ n so that all colors in Si r {c(vi)} are
used; and for (B4b-c), we have |Wi| ≤ |Np r Si| for i ∈ Nm r {1}.

We also show that c uses exactly p colors. If p = n + 1, then by (B4a), we have
c({v1,j : j ∈ Nn}) = Np r {1}. Since c also uses the color 1, all colors from Np are used
by c. Now, suppose p = q(m+ 3, n+ 1, 3). Note that

min{(m+2)−1,n+1}∑
α=0

C((m+ 2)− 3, α) ≥ m

for any value of n ≥ 2. By the minimality of p, we must have p ≤ m+ 2 or p− 3 ≤ m− 1.
Thus, all 1-subsets of Np r N3 are used in (B2). Since c also uses the colors 1, 2, 3 in
(B1), all colors from Np are also used by c in this case.
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Finally, we present in Table 2 the neighbors and neighborhood color set of each vertex
in M(Tm,n). Through Table 2, it can be easily verified that c is a set coloring.

Consider T4,2 again. Since max{3, q(7, 3, 3)} = 5, Lemma 3.5 implies that M(T4,2) is
set 5-colorable. Figure 2 shows a set 5-coloring of M(T4,2) constructed using (B1)-(B4)
from Lemma 3.4. Note, however, that the coloring in Figure 2 is not optimal since we
have previously found a set 4-coloring for M(T4,2).

Figure 2. A set coloring c : V (M(T4,2))→ N5 constructed using (B1)-
(B4) from Lemma 3.5

Lemma 3.4 and Lemma 3.5 imply that, for integers m ≥ 2 and n ≥ 1, we have
χs(M(Tm,n)) ≤ min

{
max{n+2, q(m+2, n+1, 1)},max{n+1, q(m+3, n+1, 3)}

}
. More-

over, with Lemma 3.2 and our discussion on the case where m = 1, we have completely
determined the set chromatic number of the middle graph of extended stars.

Theorem 3.6. Let m and n be positive integers. Then χs(M(T1,n)) = n+ 2 while

χs(M(Tm,n)) = min
{

max{n+ 2, q(m+ 2, n+ 1, 1)},max{n+ 1, q(m+ 3, n+ 1, 3)}
}

for m ≥ 2.

4. Banana Trees

A natural extension of the family of extended stars is the family of banana trees. In
the literature, an (n, k)-banana tree is a graph obtained by connecting one leaf of each of
n copies of K1,k with a single root vertex that is distinct from all the stars. For the sake
of consistency with the previous section, we will adopt a different notation, presented
below, for banana trees.

Definition 4.1. Let m,n be positive integers We define the banana tree Bm,n to be the
graph with vertex set V = {v0} ∪ {vi, ui : i ∈ Nm} ∪

⋃
i∈Nm

Si, where |Si| = n for all

i ∈ Nm, and edge set E = {v0vi, viui : i ∈ Nm} ∪
⋃
i∈Nm

{uis : s ∈ Si}.

In this section, we completely determine the set chromatic number of M(Bm,n) for
positive integers m and n. To this end, we begin by establishing the following lower
bound.
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Lemma 4.2. Let m ≥ 2 and n ≥ 1 be integers. Then

χs(M(Bm,n)) ≥ min
{

max
{⌈√

8m−7+3
2

⌉
, n+ 1

}
,max

{⌈√
8m+1+1

2

⌉
, n+ 2

}}
.

Proof. Let G = M(Bm,n) and let c be a set k-coloring of G. We will consider the following
two subgraphs of G:
H1 = subgraph of G induced by the vertices v0 and v0vi, for i ∈ Nm,
H2 = subgraph of G induced by v1u1, u1, and u1s for all s ∈ S1.

Then H1
∼= Km+1 and H2

∼= Kn+2. For i ∈ {1, 2}, we define the following:
Ci = c(V (Hi)), `i = |Ci|,
Xi = {x ∈ V (Hi) : c(x) = c(y) for some y ∈ V (Hi) r {x}}. Moreover, if Xi 6= ∅, then

|Xi| ≥ |V (Hi)| − `i + 1.
Lemma 2.2 implies that k ≥ n + 1. If X1 = ∅ (i.e. `1 = m + 1), then k ≥ m +

1 ≥
√
8m−7+3

2 . Then k ≥ max
{√

8m−7+3
2 , n+ 1

}
. Now, we assume that X1 6= ∅ (i.e.

1 ≤ `1 ≤ m).
We have the following possible neighborhood color sets for vertices in X1.

(1a) If v0 ∈ X1, then NC(v0) = C1.
(1b) If v0vi ∈ X1, i ∈ Nm, then NC(v0vi) = C1 ∪ {c(vi), c(viui)}.

Similarly, we have the following possible neighborhood color sets for vertices in X2.

(2a) If v1u1 ∈ X2, then NC(v1u1) = C2 ∪ {c(v1), c(v0v1)}.
(2b) If u1 ∈ X2, then NC(u1) = C2.
(2c) If u1s ∈ X2, s ∈ S1, then NC(u1s) = C2 ∪ {c(s)}.

Given (1a)-(1b) and without other restrictions, the maximum number of possible neigh-
borhood color sets for vertices in X1 is C(k − `1, 0) + C(k − `1, 1) + C(k − `2, 2). Since
|X1| ≥ m+ 2− `1 and vertices in X1 must have distinct neighborhood color sets, we must
have

C(k − `1, 0) + C(k − `1, 1) + C(k − `2, 2) ≥ m+ 2− `1,

which implies that

k ≥
√

8(m− `1) + 9 + 2`1 − 1

2
. (4.1)

We now proceed by cases depending on the value of `1.
Case 1. Suppose `1 = 1. Then X1 = V (H1) and we may assume that C1 = {1}.

Case 1.1. Suppose c has the property that for all i ∈ Nm, |{c(v0vi), c(vi), c(viui)}| = 3.
Thus, for all i ∈ Nm, we have 1 6∈ {c(vi), c(viui)} and |{c(vi), c(viui)}| = 2. Moreover,
since c is a set coloring, we must have {c(vi), c(viui)} 6= {c(vj), c(vjuj)} for all distinct

i, j ∈ Nm. It follows that C(k− 1, 2) ≥ m, which implies that k ≥
√
8m+1+3

2 ≥
√
8m−7+3

2 .

Therefore, k ≥ max
{√

8m−7+3
2 , n+ 1

}
.

Case 1.2. Suppose, without loss of generality, that |{c(v0v1), c(v1), c(v1u1)}| ≤ 2. If
X2 = ∅, then k ≥ n + 2. Now, suppose X2 6= ∅. It follows that if v1u1 ∈ X2, then
NC(v1u1) has at most `2 + 1 elements, as the neighborhood color sets in (2c) have.
Thus, the maximum number of possible neighborhood color sets for vertices in X2 is
1 +k− `2. Since vertices in X2 must have distinct neighborhood color sets, we must have
1 + k − `2 ≥ |X2| ≥ n+ 3− `2, which implies that k ≥ n+ 2. Therefore, with (4.1) and

`1 = 1, we have k ≥ max
{√

8m+1+1
2 , n+ 2

}
.
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Case 2. Suppose `1 ≥ 2. Note that, in this case, the right-hand side of (4.1) achieves its

minimum when `1 = 2. Thus, (4.1) and Lemma 2.2 imply k ≥ max
{√

8m−7+3
2 , n+ 1

}
.

Therefore, we have k ≥ min
{

max
{√

8m−7+3
2 , n+ 1

}
,max

{√
8m+1+1

2 , n+ 2
}}

. Since

k must be an integer, the desired conclusion follows.

Let us now briefly discuss the banana trees B1,n and B2,n. First, we define a double-
star graph to be a tree containing exactly two non-pendant vertices; moreover, we denote
by Sα,β the double-star graph with degree sequence (α + 1, β + 1, 1, ..., 1). Clearly, the
banana tree B1,n is isomorphic to Sn,1 for n ≥ 1. Thus, by Proposition 4.1 in [14],
χs(M(B1,1)) = 3 while χs(M(B1,n)) = n+ 1 for n ≥ 2.

Now, let us consider B2,n. For positive integers s, t1, t2 with t1 ≥ t2, we define the
double broom DBs,t1,t2 to be the graph obtained by identifying one vertex of the path
Ps to the central vertex of the star K1,t1 and identifying the other endvertex of Ps to
the central vertex of K1,t2 . Clearly, B2,n is isomorphic to DB5,n,n for n ≥ 1. Thus, by
Theorem 2.2 in [17], we have χs(M(B2,1)) = 3 while χs(M(B2,n)) = n+ 1 for n ≥ 2.

We observe that for m ≤ 2 and n ≥ 1, except when (m,n) = (1, 1), the lower bound
in Lemma 4.2 actually coincides with the set chromatic number of M(Bm,n).

We now algorithmically construct set colorings for M(Bm,n) for m ≥ 3 and n ≥ 1.

Lemma 4.3. Let m ≥ 3 and n ≥ 1 be integers. Set p = max
{⌈√

8m−7+3
2

⌉
, n+ 1

}
. Then

M(Bm,n) is set p-colorable.

Proof. Note that p ≥ 4 since m ≥ 3. Let T1, T2, ..., Tp−2 be the 1-subsets of {3, 4, ..., p} and
Tp−1, Tp, ..., TC(p−2,1)+C(p−2,2) be the 2-subsets of {3, 4, ..., p} . We construct a coloring
c : V (M(Bm,n))→ Np as follows:

(A1) Set c(v0) = 1, c(v0vi) = 1 for all i ∈ Nm−1, and c(v0vm) = 2.
(A2) For each i ∈ Nmin{p−2,m−1}:

(a) Set c(vi) = 2 and {c(viui)} = Ti.
(b) Let ri ∈ Np r {1, 2, c(viui)} and set c(ui) = ri.
(c) Set c(uis) = c(viui) for all s ∈ Si.
(d) Set c(Si) ⊆ Np r {ri} so that the vertices in Si receive different colors.

(A3) Suppose p ≤ m. For each i ∈ {p− 1, ...,m− 1}:
(a) Set c({vi, viui}) = Ti.
(b) Set c(ui) = c(viui) and c(uis) = c(viui) for all s ∈ Si.
(c) Set c(Si) ⊆ Np r {c(viui)} so that vertices in Si receive different colors.

(A4) For i = m:
(a) Set c(vm) = 1 and c(vmum) = 3.
(b) Set c(um) = 3 and c(ums) = 3 for all s ∈ Sm.
(c) Set c(Sm) ⊆ Np r {3} so that vertices in Sm receive different colors.

We show that c can always be constructed. For (A2a) and (A3a), we need C(p−2, 1)+

C(p− 2, 2) ≥ m− 1, which follows from p ≥
√
8m−7+3

2 . For (A2b), we need p ≥ 4, which
follows from m ≥ 3. For (A2d), (A3c), and (A4c), we need p− 1 ≥ n or p ≥ n+ 1, which
is as assumed.

We now show that c uses exactly p colors. First, suppose p = n+ 1. Thus, p−1 = n =
|c(S1)|, which implies c(S1) = Np r {r1} by (A2d). Since c(u1) = r1, all colors from Np
are used. Now, let us suppose that p =

⌈√
8m−7+3

2

⌉
. Since

√
8m−7+3

2 ≤ m+ 1 for m ≥ 2,
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we have p ≤ m+ 1; that is, p− 2 ≤ m− 1. Thus, in (A2), all 1-subsets of {3, 4, ..., p} are
used. Moreover, since the colors 1 and 2 are used in (A1), then c also uses all the colors
from Np in this case.

Finally, we present in Table 3 the neighbors and neighborhood color set of each vertex
in M(Bm,n). Through Table 3, it can be easily verified that c is a set coloring.

Table 3. The neighbors and neighborhood color set of each vertex in
M(Bm,n) under the coloring c (Lemma 4.3)

Vertex Neighbors NC

v0 v0vi, i ∈ Nm {1, 2}
v0vi, i ∈ Nm v0, v0vj (i 6= j), i ∈ Nmin{p−2,m−1}: {1, 2} ∪ Ti

vi, viui i ∈ {p− 1, ...,m− 1}: {1, 2} ∪ Ti

i = m: {1, 3}
vi, i ∈ Nm v0vi, viui i ∈ Nmin{p−2,m−1}: {1} ∪ Ti

i ∈ {p− 1, ...,m− 1}: {1} ∪ [Ti r {c(vi)}]
i = m: {2, 3}

viui, i ∈ Nm v0vi, vi, ui, i ∈ Nmin{p−2,m−1}: {1, 2, ri} ∪ Ti

uis for s ∈ Si i ∈ {p− 1, ...,m− 1}: {1} ∪ Ti

i = m: {1, 2, 3}
ui, i ∈ Nm viui, uis for s ∈ Si i ∈ Nmin{p−2,m−1}: Ti

i ∈ {p− 1, ...,m− 1}: {c(viui)} = Ti r {c(vi)}
i = m: {3}

uis, i ∈ Nm viui, ui, s, i ∈ Nmin{p−2,m−1}: Ti ∪ {ri, c(s)}
& s ∈ Si uit for t ∈ Si r {s} i ∈ {p− 1, ...,m− 1}: {c(viui), c(s)}

i = m: {3, c(s)}
s ∈ Si, i ∈ Nm uis i ∈ Nmin{p−2,m−1}: {c(viui)}

i ∈ {p− 1, ...,m− 1}: {c(viui)}
i = m: {3}

As an example, consider B4,3. Since max
{⌈√

25+3
2

⌉
, 4
}

= 4, then M(B4,3) is set 4-

colorable by Lemma 4.3. In Figure 3, we present the set coloring c : V (M(B4,3)) → N4

constructed using the algorithm (A1)-(A4) from Lemma 4.3.

Figure 3. A set coloring c : V (M(B4,3)) → N4 constructed using the
algorithm (A1)-(A4) from Lemma 4.3
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Lemma 4.4. Let m ≥ 3 and n ≥ 1 be integers. Set p = max
{⌈√

8m+1+1
2

⌉
, n+ 2

}
. Then

M(Bm,n) is set p-colorable.

Proof. Note that p ≥ 4 since m ≥ 3. Let T1, T2, ..., Tp−1 be the 1-subsets of {2, 3, ..., p} and
Tp, Tp+1, ..., TC(p−1,1)+C(p−1,2) be the 2-subsets of {2, 3, ..., p} . We construct a coloring
c : V (M(Bm,n))→ Np as follows:

(B1) Set c(v0) = 1 and c(v0vi) = 1 for all i ∈ Nm.
(B2) For each i ∈ Nmin{p−1,m}:

(a) Set {c(vi)} = Ti and c(viui) = 1.
(b) Let ri ∈ Np r [{1} ∪ Ti] and set c(ui) = ri.
(c) Set c(uis) = 1 for all s ∈ Si.
(d) Set c(Si) ⊆ Np r [Ti ∪ {ri}] so that the vertices in Si receive different

colors.
(B3) Suppose p ≤ m. For each i ∈ {p, ...,m}:

(a) Set c({vi, viui}) = Ti.
(b) Set c(ui) = c(vi) and c(uis) = c(vi) for all s ∈ Si.
(c) Set c(Ti) ⊆ Np r Si so that vertices in Si receive different colors.

We show that c can always be constructed. For (B2a) and (B3a), we need C(p−1, 1)+

C(p − 1, 2) ≥ m, which follows from p ≥
√
8m+1+1

2 . For (B2b), we need p ≥ 3, which
follows from m ≥ 3. For (B2d) and (B3c), we need p − 2 ≥ n or p ≥ n + 2, which is as
assumed.

We now show that c uses exactly p colors. We proceed by cases. First, suppose
p = n + 2. Thus, p − 2 = n = |c(S1)|, which implies c(S1) = Np r [T1 ∪ {r1}] by (B2d).
Since c(u1) = r1 and {c(v1)} = T1, all colors from Np are used. Now, let us suppose

that p =
⌈√

8m+1+1
2

⌉
. Since

√
8m+1+1

2 ≤ m + 1 for m ≥ 1, we have p ≤ m + 1; that is,

p− 1 ≤ m. Thus, in (B2), all 1-subsets of {2, 3, ..., p} are used. Moreover, since the color
1 is used in (A1), then c also uses all the colors from Np in this case.

Finally, we present in Table 4 the neighbors and neighborhood color set of each vertex
in M(Bm,n). Through Table 4, it can be easily verified that c is a set coloring.

Table 4. The neighbors and neighborhood color set of each vertex in
M(Bm,n) under the coloring c (Lemma 4.4)

Vertex Neighbors NC

v0 v0vi, i ∈ Nm {1}
v0vi, i ∈ Nm v0, v0vj (i 6= j), i ∈ Nmin{p−1,m}: {1} ∪ Ti

vi, viui i ∈ {p, ...,m}: {1} ∪ Ti

vi, i ∈ Nm v0vi, viui i ∈ Nmin{p−1,m}: {1}
i ∈ {p, ...,m}: {1} ∪ [Ti r {c(vi)}]

viui, i ∈ Nm v0vi, vi, ui, i ∈ Nmin{p−1,m}: {1, ri} ∪ Ti

uis for s ∈ Si i ∈ {p, ...,m}: {1} ∪ [Ti r {c(viui)}]
ui, i ∈ Nm viui, uis for s ∈ Si i ∈ Nmin{p−1,m}: {1}

i ∈ {p, ...,m}: Ti

uis, i ∈ Nm viui, ui, s, i ∈ Nmin{p−1,m}: {1, ri, c(s)}
& s ∈ Si uit for t ∈ Si r {s} i ∈ {p, ...,m}: Ti ∪ {c(s)}

s ∈ Si, i ∈ Nm uis i ∈ Nmin{p−1,m}: {1}
i ∈ {p, ...,m}: {c(vi)}
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We consider B4,3 again. Since max
{⌈√

33+1
2

⌉
, 5
}

= 5, then M(B4,3) is set 5-colorable

by Lemma 4.4. In Figure 3, we present the set coloring c : V (M(B4,3))→ N5 constructed
using the algorithm (B1)-(B3) from Lemma 4.4. Note, however, that the coloring in
Figure 4 is not optimal since we have previously found a set 4-coloring for M(B4,3).

Figure 4. A set coloring c : V (M(B4,3)) → N5 constructed using the
algorithm (B1)-(B3) from Lemma 4.4

Lemma 4.3 and Lemma 4.4 imply that, for integers m ≥ 3 and n ≥ 1, we have

χs(M(Bm,n)) ≥ min
{

max
{⌈√

8m−7+3
2

⌉
, n+ 1

}
,max

{⌈√
8m+1+1

2

⌉
, n+ 2

}}
. Moreover,

with Lemma 4.2 and our discussion for the cases where m ≤ 2, we have the following
result.

Theorem 4.5. Let m and n be positive integers. Then χs(M(B1,1)) = 3 while for
(m,n) 6= (1, 1), we have

χs(M(Bm,n)) = min
{

max
{⌈√

8m−7+3
2

⌉
, n+ 1

}
,max

{⌈√
8m+1+1

2

⌉
, n+ 2

}}
.

Extended Banana Trees

We conclude this section by considering an extension of banana trees. Let p,m, n be
positive integers. Suppose H1, H2, ...,Hm are m copies of the path Pp+2 and J1, J2, ..., Jm
are m copies of the star K1,n. Moreover, suppose Hi = vi,1vi,2 · · · vi,p+2 for i ∈ Nm. We
define the graph BTp,m,n to be the graph obtained by identifying all the vertices vi,1,
i ∈ Nm, to be a single vertex v0 and then, for each i ∈ Nm, identifying vi,p+2 to the
central vertex of Ji. The graph BT3,4,4 is shown in Figure 5.

For positive integers s and t, we define the broom Brms,t to be the graph obtained
by identifiying an endvertex of the path Ps and the central vertex of the star K1,t. It is
clear that BTp,1,n is isomorphic to Brmp+2,n. In fact, when n = 1, BTp,1,1 is isomorphic
to the path Pp+3. Thus, by Proposition 3.4 in [14] and Theorem 2.1 in [17], we have
χs(M(BTp,1,1)) = 3 while χs(M(BTp,1,n)) = n+ 1 for n ≥ 2.

When m = 2, we observe that BTp,2,n is isomorphic to the double broom DB2p+3,n,n.
Moreover, BTp,2,1 is isomorphic to the path P2p+5. Thus, by Proposition 3.4 in [14] and
Theorem 2.2 in [17], we have χs(M(BTp,2,1)) = 3 while χs(M(BTp,2,n)) = n+1 for n ≥ 2.

Now, BT1,m,n is isomorphic to the banana tree Bm,n. Thus, combined with the pre-
ceding discussion, we may assume that p ≥ 2 and m ≥ 3. Using a similar argument as in
Lemma 4.2, we obtain the following lower bound.
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Figure 5. The graph BT3,4,4

Lemma 4.6. Let p ≥ 2 and m ≥ 3 be integers. Then

χs(M(BTp,m,n)) ≥ max
{⌈√

8m+1+1
2

⌉
, n+ 1

}
.

As an example, consider BT2,3,1. We have χs(M(BT2,3,1)) ≥ max
{⌈√

25+1
2

⌉
, 2
}

= 3,

by Lemma 4.6. Moreover, Figure 6 shows a set 3-coloring of M(BT2,3,1). Therefore,
χs(M(BT2,3,1)) = 3.

Figure 6. A set 3-coloring of M(BT2,3,1) (left) and a set 4-coloring of
M(BT2,3,2) (right)

On the other hand, consider BT2,3,2, for which χs(M(BT2,3,2)) ≥ max
{⌈√

25+1
2

⌉
, 3
}

=

3, by Lemma 4.6. However, it can be easily shown that M(BT2,3,2) does not have a set
3-coloring but has a set 4-coloring as shown in Figure 6. Therefore, χs(M(BT2,3,2)) = 4.

In fact, the inequality in Lemma 4.6 is actually an equality except only for the case
(p,m, n) = (2, 3, 2). This will be shown through the following two lemmas, where we
construct optimal set colorings of M(BTp,m,n). The first lemma is for the case where
p = 2.

Lemma 4.7. Let m ≥ 3 and n ≥ 1 be integers such that (m,n) 6= (3, 2). Set k =

max
{⌈√

8m+1+1
2

⌉
, n+ 1

}
. Then M(BT2,m,n) is set k-colorable.
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Proof. The case (m,n) = (3, 1) has been discussed earlier. So we only consider the
following cases: (m = 3;n ≥ 3) and (m ≥ 4;n ≥ 1). In either case, we have k ≥ 4.
Suppose

V (BT2,m,n) = {v0} ∪ {vi, ui, wi : i ∈ Nm} ∪
⋃
i∈Nm

Si,

where |Si| = n for all i ∈ Nm, and with

E(BT2,m,n) = {v0vi, viui, uiwi : i ∈ Nm} ∪
⋃
i∈Nm

{wis : s ∈ Si}.

Recall that V (M(BT2,m,n)) = V (BT2,m,n)∪E(BT2,m,n). Let T1, T2, ..., Tk−1 be the 1-
subsets of {2, 3, ..., k} and let Tk, Tk+1, ..., TC(k−1,1)+C(k−1,2) be the 2-subsets of {2, 3, ..., k}.
We now construct a coloring c : V (M(BT2,m,n))→ Nk as follows:

(C1) Set c(v0) = 1 and c(v0vi) = 1 for all i ∈ Nm.
(C2) For each i ∈ Nmin{k−1,m}:

(a) Set {c(vi)} = Ti and c(viui) = 1.
(b) Let ri ∈ Nk r [{1} ∪ Ti]. Set c(ui) = ri.
(c) Let zi ∈ Nk r [{1, ri} ∪ Ti]. Set c(uiwi), c(wi), and c(wis), for all s ∈ Si,
to be all equal to zi.

(d) Set c(Si) ⊆ Nk r {zi} so that the vertices in Si receive different colors.
(C3) Suppose k ≤ m. Then for each i ∈ {k, ...,m}:

(a) Set c({vi, viui}) = Ti.
(b) Set c(ui) = 1.
(c) Set c(uiwi), c(wi), and c(wis), for all s ∈ Si, to be all equal to c(vi).
(d) Set c(Si) ⊆ Nk r {c(vi)} so that the vertices in Si receive different colors.

Similar to earlier proofs, it can be easily verified that c is a set k-coloring.

As an example, consider BT2,4,3. Since max
{⌈√

33+1
2

⌉
, 4
}

= 4, then M(BT2,4,3) is set

4-colorable by Lemma 4.7. In Figure 7, we present the set coloring c : V (M(BT2,4,3))→
N4 constructed using the algorithm (C1)-(C3) from Lemma 4.7.

Figure 7. A set coloring c : V (M(BT2,4,3)) → N4 constructed using
the algorithm (C1)-(C3) from Lemma 4.7

We now construct optimal set colorings of M(BTp,m,n) for the general case p ≥ 3.
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Lemma 4.8. Let p ≥ 3, m ≥ 3, and n ≥ 1 be integers. Set k = max
{⌈√

8m+1+1
2

⌉
, n+ 1

}
.

Then M(BTp,m,n) is set k-colorable.

Proof. We will use the vertex labels shown in Figure 8 to refer to the vertices ofM(BTp,m,n).
In Figure 8, each Si, i ∈ Nm, is a set of n pendant vertices. Note that M(BTp,m,n) also
has vertices of the form v0xi,1, for i ∈ Nm, and vertices of the form wis, for i ∈ Nm and
s ∈ Si.

Figure 8. Vertex labels of M(BTp,m,n)

Let T1, T2, ..., TC(k−1,1)+C(k−1,2) be the 1-subsets and 2-subsets of {2, 3, ..., k}. We now
construct a coloring c : V (M(BTp,m,n))→ Nk as follows:

(D1) Set c(v0) = 1 and c(v0xi,1) = 1 for all i ∈ Nm.
(D2) For each i ∈ Nm:

(a) If |Ti| = 1, let αi ∈ Ti, βi = 1, and γi ∈ Nk r {αi, βi}.
On the other hand, if |Ti| = 2, let αi ∈ Ti, βi ∈ Ti r {αi}, and γi = 1.

(b) For each j ∈ N2p, set

c(xi,j) =

 αi, j ≡ 1 (mod 3),
βi, j ≡ 2 (mod 3),
γi, j ≡ 0 (mod 3).

(c) Set c(wi) = c(xi,2p) and c(wis) = c(xi,2p) for all s ∈ Si.
(d) Set c(Si) ⊆ Nk r {c(xi,2p)} so that the vertices in Si receive different

colors.

Similar to earlier proofs, it can be easily verified that c is a set k-coloring.

With Lemma 4.6, Lemma 4.7, and Lemma 4.8, as well as the discussion on the cases
where m ≤ 2, we have the following result.

Theorem 4.9. Let p ≥ 2,m ≥ 1, n ≥ 1 be integers. Then

χs(M(BTp,m,n)) =


3, if m = n = 1,
4, if (p,m, n) = (2, 3, 2),

max
{⌈√

8m+1+1
2

⌉
, n+ 1

}
, otherwise.
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