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Abstract Let G be a simple connected graph and c an edge coloring with colors that are positive

integers. Given a vertex v of G, we define its chromatic mean, denoted by cm(v), as the average of

the colors of the incident edges. If cm(v) is an integer for each v ∈ V (G) and distinct vertices have

distinct chromatic means, then c is called a rainbow mean coloring. The maximum chromatic mean

of a vertex in the coloring c is called the rainbow mean index of c and is denoted by rm(c). On the

other hand, the rainbow mean index of G , denoted by rm(G), is the minimum value of rm(c) among

all rainbow mean colorings c of G. In this paper, we determine the rainbow mean indexes of families of

caterpillars, including brooms, and double brooms.
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1. Introduction

Let G = (V,E) be a simple connected graph and c an edge coloring with colors that
are positive integers. For each vertex v of G, let Ev denote the set of all edges of G that
are incident with v. The chromatic mean of v denoted by cmc (v), or simply cm(v), is
the average of the colors of the edges incident to v:

cm (v) =

∑
e∈Ev

c (e)

deg (v)
.

If cm(v) is an integer for each v ∈ V (G) and distinct vertices have distinct chromatic
means, then c is called a rainbow mean coloring. The maximum chromatic mean of a
vertex in the coloring c is called the rainbow mean index of c and is denoted by rm(c).
On the other hand, the rainbow mean index of G, denoted by rm(G), is the minimum
value of rm(c) among all rainbow mean colorings c of G. Thus, rm(G) ≥ n for a graph G
of order n ≥ 3.
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Figure 1. Rainbow mean colorings with mean indexes 6 and 5

Fig. 1 shows a graph G and two of its rainbow mean colorings with mean indexes 6
and 5. Hence it follows that rm(G) = 5.

The rainbow mean coloring of a graph is an example of a vertex-distinguishing coloring
which has received increased attention in the last few decades [1]. Chartrand et al. [2]
introduced the rainbow mean coloring in 2019. They determined the rainbow mean
indexes of paths, cycles, complete graphs, and stars. In [3], they provided a coloring for
paths to support their result in [2]. Meanwhile, Hallas et al. [4] determined the rainbow
mean indexes of several bipartite graphs including prisms, hypercubes, and complete
bipartite graphs. In [5], the same authors determined the rainbow mean indexes of double
stars, cubic caterpillars of even order, and the subdivision graph of stars.

The following results, among others, are proved in [2], [3] , and [6]. We assume that
n ≥ 3.

Theorem 1.1. [2, 6] Every connected graph of order n has a rainbow mean coloring.

Theorem 1.2. [2, 3] If Pn is the path with order n 6= 4, then rm(Pn) = n. Moreover,
if n is odd, then there is a rainbow mean coloring c with rm(c) = n such that the end
vertices of Pn have chromatic means 1 and n.

Theorem 1.3. [2, 6] If n is odd, then rm(K1,n−1) = n. Moreover, there is a rainbow
mean coloring c of K1,n−1 for which the vertex of maximum degree has chromatic mean
n+1
2 .

Theorem 1.4. [2, 6] If G is connected of order n ≡ 2 (mod 4) and all its vertices have
odd degree, then rm(G) ≥ n + 1.

They also posed the following conjecture:

Conjecture: [2] If G is connected with order n ≥ 3, then n ≤ rm (G) ≤ n + 2.

Illustrations of rainbow mean colorings of paths and stars referred to in Theorems 1.2
and 1.3 are shown in Fig. 2. Observe that in a rainbow mean coloring c of a graph, any
pendant vertex v has cm(v) = c (e) where e is the unique edge incident with v.

Figure 2. Rainbow mean colorings of P5 and K1,4.
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2. Preliminaries

In this section, we derive some general results that will be used later. We also define
the graphs that will be considered in the succeeding sections. From hereon, we assume
that all graphs considered are simple and connected with order at least 3.

Let n and k be positive integers with k ≥ 2 and n−k ≥ 3. Let Pn−k be a path of order
n − k with terminal vertex u, and K1,k the star with central vertex v. Then the graph
of order n obtained from Pn−k and K1,k by identifying the vertices u and v is called a
broom and is denoted by B (n, k) (Fig. 3a). We call the path Pn−k (as a subgraph of
B (n, k)) the handle of the broom, with initial vertex the tip of the broom.

Now, let n, k, and ` be positive integers where n ≥ k + ` + 2, k ≥ 2, and ` ≥ 2. Let
Pn−k−` be a path with order n− k − ` and end vertices u and v. We form a graph G of
order n by identifying u with the central vertex of K1,k and v with the central vertex of
K1,`. If n− k − ` = 2, then G is called a double star and is denoted by DS (k, `) (Fig.
3b). If n − k − ` > 2, then G is called a double broom and is denoted by DB (n, k, `)
(Fig. 3c). We will also call the path Pn−k−` (as a subgraph) the handle of the double
broom.

a. B (n, k) b. DS (k, `)

c. DB (n, k, `)

Figure 3. The broom, double star, and double broom.

For convenience, we call a rainbow mean coloring c of a graph G optimal if rm(c) =
rm(G). If G has order n and rm(G) = n, then we say G is Type 1 as in [4]; in this case,
we will also call an optimal rainbow mean coloring a Type 1 rainbow mean coloring.

We present the following results which will be used later.

Lemma 2.1. Let m be any positive integer and G a graph with rainbow mean coloring
c. Let c′ be an edge coloring of G defined by c′ (e) = c (e) + m, for each edge e ∈ E(G).
Then c′ is a rainbow mean coloring of G. Moreover, rm(c′) = rm(c) + m.

Proof. The result holds since

cmc′ (v) =

∑
e∈Ev

c′ (e)

deg (v)
=

∑
e∈Ev

(c (e) + m)

deg (v)
=

∑
e∈Ev

c (e)

deg (v)
+m = cmc (v) +m.
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Lemma 2.2. For i = 1 and 2, let Gi be a Type 1 graph with order ni, and ci an
optimal rainbow mean coloring of Gi. Let ui be in V (Gi) such that cm1 (u1) = n1 and
cm2 (u2) = 1, where cmi (v) is the chromatic mean of v ∈ V (Gi) relative to the coloring
ci. If G is the graph obtained from G1 and G2 by identifying vertices u1 and u2, then G
is Type 1.

Proof. Define c on E(G) as follows:

c (e) =

{
c1 (e) , if e ∈ E (G1) ,
c2 (e) + (n1 − 1), if e ∈ E (G2) .

Let u be the vertex obtained when u1 and u2 are identified in G, di = degGi
(ui), for

i = 1 or 2. For v ∈ V (G), let cm(v) be the chromatic mean relative to the coloring c and
cmi (v) the chromatic mean of v ∈ V (Gi) relative to the coloring ci, i = 1, 2. Then,

{cm(v) : v ∈ V (G)− {u}} = {1, 2, . . . , n1− 1}∪ {n1 + 1, n1 + 2, . . . , n1 +n2− 1}.
On the other hand,

cm (u) =

∑
e∈Eu

c (e)

d1 + d2
=

cm1 (u1) · d1 + (cm2 (u2) + n1 − 1) · d2
d1 + d2

=
n1 · d1 + n1 · d2

d1 + d2
, since cm1 (u1) = n1 and cm2 (u2) = 1

= n1.

Therefore, c is a rainbow mean coloring of G and G is Type 1.

The next lemma can be proved in a similar way as Lemma 2.1.

Lemma 2.3. Let G be a Type 1 graph of order n and c an optimal rainbow mean coloring
of G such that c (e) is at most n for each e ∈ E (G). Define c′ (e) = n+ 1− c (e) for each
e ∈ E (G). Then c′ is also an optimal rainbow mean coloring of G and the vertex with
chromatic mean 1 (respectively, n) under c, has chromatic mean n (respectively, 1) under
c′.

Recall that a caterpillar is a tree with the property that if all the pendant vertices are
deleted, we obtain a path, called its spine. The rainbow mean indexes of cubic caterpillars
of even order were obtained in [5]. In the following theorem, we present our result for a
particular family of caterpillars in which vertices in the spine have even degree.

Theorem 2.4. Let T be a caterpillar of order n with spine the path (v1, v2, . . . , vr).
Suppose further that r is odd, deg (vi) is even for each i, and, in particular, deg (vi) = 2
if i is even. Then rm (T ) = n.

Proof. (Refer to Fig. 4 for an illustration.)

Figure 4. A caterpillar with Type 1 rainbow mean coloring

Suppose deg (vi) = di for each i from 1 to r. Then, for each i, the subgraph T [Evi ]
induced by Evi is a star K1,di

. Since deg (vi) = di is even, it follows that K1,di
is
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Type 1 by Theorem 1.3. Hence, we can find an optimal rainbow mean coloring c1 of
H1 = T [Ev1 ] = K1,d1 so that v2 will have chromatic mean d1 + 1. Similarly, we can find
an optimal rainbow mean coloring c2 of T [Ev3 ] = K1,d3

so that v2 will have chromatic
mean 1. Applying Lemma 2.2 on H1 and T [Ev3 ], we obtain a Type 1 rainbow mean
coloring of the subgraph H2 = T [Ev1 ∪ Ev3 ] where cm(v4) = rm(H2) = |V (H2)|. We
then apply the same lemma on H2 and T [ev5 ] = K1,d5 , to obtain a Type 1 rainbow mean
coloring of the subgraph H3 = T [Ev1 ∪ Ev3 ∪ Ev5 ] where cm(v6) = rm(H3) = |V (H3)|.
We repeat the argument until we obtain a Type 1 rainbow mean coloring of

T = T [E1 ∪ E3 ∪ E5 ∪ · · · ∪ Er] ,

showing that rm(T ) = n.

We note that double stars, brooms, and double brooms are examples of caterpillars.
We will determine the rainbow chromatic indexes of brooms and double brooms in the
next two sections. For double stars, Hallas et al. [5], constructed rainbow mean colorings
and as a consequence proved the following result on their rainbow mean indexes.

Theorem 2.5. [5] Let k and ` be integers with k, ` ≥ 2, and G = DS (k, `) with order
n = k + ` + 2. Then

rm (G) =

{
n + 1, if k ≡ ` (mod 4) where k and ` are both even,
n, otherwise.

We provide an alternative proof which considers less cases. To simplify the notations,
let [N ] denote the set {1, 2, . . . , N} and sum(S) the sum of the elements of a subset S of
[N ] for any positive integer N .

Proof. By Theorem 1.4, it is enough to find a rainbow mean coloring c of G with rm(c) =
n + 1 if k ≡ ` (mod 4) and k and ` are both even; and rm(c) = n, otherwise.

Let u and v be the vertices of G that have degrees k + 1 and ` + 1, respectively. We
make the following observation. Suppose {a, b}, S, and T are subsets of [n + 1] that are
mutually disjoint, |S| = k, |T | = `, and

a · (k + 1)− sum (S) = b · (` + 1)− sum (T ) > 0.

Then if c is an edge coloring of G such that

{c (e) : e ∈ Eu − {uv}} = S, {c (e) : e ∈ Ev − {uv}} = T , and

c (uv) = a · (k + 1)− sum (S) ,

then c is a rainbow mean coloring of G with rm(u) = a and rm(v) = b. Moreover,
rm(c) = n + 1 or n, depending on whether or not n + 1 is contained in {a, b} ∪ S ∪ T .
Therefore, to complete the proof, we just need to identify a, b, S, and T that satisfy the
necessary conditions.

Without loss of generality, let ` ≥ k and r = `− k.

Case 1: If r ≡ 0 (mod 4), and k and ` are both even. Let

a = n− 3− r
2 , b = a + 1,

S = {1, 3, 5, . . . , n− 5− r} ∪
{
n− 1− r

4

}
, and

T = [n + 1]− S − {a, b, n} .
First, {a, b} ∩ S = ∅ since

n− 5− r < n− 3− r
2 < n− 2− r

2 < n− 1− r
4 .
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Hence, {a, b} , S, and T are mutually disjoint. Next,

|S| = n−5−r+1
2 + 1 = n−2−r

2 = k,

and so |T | = n + 1− k − 3 = `. Now, since r = n− 2k − 2,

a · (k + 1)− sum (S) =
(
n− 3− r

2

)
(k + 1)−

(
n−4−r

2

)2 − (n− 1− r
4

)
= 1

4 (2k − n + 2kn− 10)

= 1
4 (n (2k − 1) + 2k − 10) .

Since n ≥ 4 and k ≥ 2, a · (k + 1)− sum (S) > 0. Now

b · (` + 1)− sum (T ) =
(
n− 2− r

2

)
· (n− k − 1)−

(
1
4

(
−4k2 − 2k + 2n2 − 5n + 14

))
= 1

4 (2k − n + 2kn− 10) .

Hence, we can construct a coloring c for G such that rm(c) = n + 1. Therefore, rm(G) =
n + 1.

For the remaining cases, we identify a, b, S, and T , which can be shown to satisfy all
the conditions to prove that rm(G) = n. We omit the computations which are similar to
those done in Case 1.

Case 2: If r ≡ 0 (mod 4), k and ` are both odd, and k 6= `, let

a = 3
2 (k + 1) , b = a + r

2 ,

S =
[
3k+1

2

]
−
[
k+1
2

]
, and T = [n]− S − {a, b} .

Case 3: If r ≡ 0 (mod 4), k and ` are both odd, and k = `, let

a = 3k−4+kmod 4
2 , b = a + 2,

S = {1, 3, 5, . . . , 2k − 3} ∪
{

2k − kmod 4−1
2

}
, and

T = [n]− S − {a, b} .

Case 4: If r ≡ 2 (mod 4) (and so k and ` are both odd or both even), let

a = n− 3− r
2 , b = a + 1,

S = {1, 3, 5, . . . , n− 5− r} ∪
{
n− 1− r+2

4

}
, and

T = [n]− S − {a, b} .

Case 5: If r is odd, let

a = n− r+7
2 , b = a + 1,

S = {1, 3, 5, . . . , n− 5− r} ∪ {n− 1} , and

T = [n]− S − {a, b} .

Fig. 5 shows two examples of double stars with optimal rainbow mean colorings de-
scribed in the proof of Theorem 2.5.

With the above result on double stars, we can apply Lemmas 2.2 and 2.3 repeatedly
to obtain the rainbow mean index of another family of caterpillars.
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a. DS(3, 4) b. DS (4, 4)

Figure 5. Two double stars with optimal rainbow mean colorings.

Theorem 2.6. Let T be a caterpillar of order n with spine the path (v1, v2, . . . , vr) where
r ≡ 2 (mod 3) and di = deg(vi) for i = 1, 2, . . . , r. Suppose that di ≥ 2 for each i, di = 2
if 3 | i, and for each 0 ≤ k ≤ b r3c,

d3k+1d3k+2 is even, or d3k+1 6≡ d3k+2 (mod 4).

Then rm (T ) = n.

To illustrate the proof, refer to the caterpillar in Fig. 6 obtained by applying Lemma
2.3 on DS(2, 3), DS(5, 5), and DS(2, 4).

Figure 6. A Type 1 caterpillar with optimal rainbow mean coloring.

3. Brooms

In this section, we show that all brooms are Type 1 graphs.

Theorem 3.1. Let k and n be positive integers such that k ≥ 2 and n ≥ k + 3. Then
rm(B(n, k)) = n and there is a Type 1 rainbow mean coloring of B(n, k) such that the tip
has chromatic mean 1.

Proof. We take cases. In each case we construct a rainbow mean coloring c of B (n, k)
with rm(c) = n. Let r = n− k and (u1, u2, u3, · · · , ur) be the handle of the broom with
tip u1. We shall call the k pendant edges that are incident to ur bristles of the broom.

Case 1: Suppose n and k are odd. Then the broom B (n, k) is a caterpillar that satisfies
the assumptions in Theorem 2.4. Hence, we can find a Type 1 rainbow mean coloring for
B(n, k), which by construction assigns the chromatic mean 1 to the tip of the broom.

Case 2: Suppose n is odd and k is even. First, we consider the case n = k + 3.
Define an edge coloring c2 as follows. Recall that the handle has vertices u1, u2, and

u3 with u1 the tip. Let c2 (u1u2) = 1 and c2 (u2u3) = k + 3 as in Fig. 7. Color the k
bristles using distinct elements from

T = [k + 3]−
{

1, k+4
2 , k+6

2

}
.
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Figure 7. For the proof of Case 2 of Theorem 3.1.

Then it can be shown that(
k+6
2

)
(k + 1) = k + 3 + sum(T ),

or, equivalently, cm(u3) = k+6
2 . Therefore, c2 is a rainbow mean coloring and rm(B(k +

3, k)) = k + 3 = n.
Now, suppose n > k + 3. Then n − k − 2 > 1 is odd. By Theorem 1.2, we can find

a Type 1 rainbow mean coloring c1 of the path Pn−k−2 so that the chromatic mean of
the terminal vertex is the order of the path. Let c2 be the Type 1 rainbow mean coloring
of B(k + 3, k) described above, and which assigns the chromatic mean 1 to the tip of
the broom. Applying Lemma 2.2 on (Pn−k−2, c1) and (B (k + 3, k) , c2), we get a Type 1
rainbow mean coloring of B (n, k) such that the tip has chromatic mean 1.

Case 3: Suppose n is even and k is odd. First, suppose n = k + 5 and k ≥ 5. We
define an edge coloring c2 on B(k + 5, k) as follows. Let the edges on the handle of the
broom be colored 1, 3, 5, and 7 as shown in Fig. 8(a). We then color the k bristles using
distinct elements from T = [k + 5] −

{
1, 2, 4, 6, k+9

2

}
. Then the four vertices u1, u2, u3,

and u4 of the handle have chromatic means 1, 2, 4, and 6, as shown in Fig. 8(a). We
may now check that

(
k+9
2

)
(k + 1) = 7 + sum(T ), or, equivalently cm(u5) = k+9

2 . Hence,
rm(B(k + 5, k)) = k + 5 = n.

Now, suppose n > k + 5, and k ≥ 5. Then n− k − 4 > 1 is odd. By Theorem 1.2, we
can find a Type 1 rainbow mean coloring c1 of the path Pn−k−4 so that the chromatic
mean of the terminal vertex is the order of the path. Let c2 be the Type 1 rainbow mean
coloring constructed above for B(k + 5, k), and which assigns the chromatic mean 1 to
the tip. By applying Lemma 2.2 on (Pn−k−4, c1) and (B (k + 5, k) , c2), we get the desired
result.

So far, we have proved Case 3 if 5 ≤ k ≤ n− 5. Since 3 ≤ k ≤ n− 3, we just need to
consider the following subcases.

Subcase 3.1. Suppose k = n − 3. Then n ≥ 6. Define the coloring c (Fig. 8b) so that
c (u1u2) = 1, c (u2u3) = 2n − 1, and the bristles are colored using distinct elements
from T = [n] −

{
1, n, n+4

2

}
. Then cm(u1) = 1, cm(u2) = n. It can be verified that(

n+4
2

)
(n− 2) = 2n− 1 + sum(T ), or, equivalently, cm(u3) = n+4

2 , so the result holds.

Subcase 3.2. Suppose k = 3. We just need to consider the values of n ≥ 8. A Type 1
rainbow mean coloring c2 for B(8, 3) with the tip having chromatic mean 1 is shown in
Fig. 8(c). Now if n ≥ 10, then n− 7 ≥ 3 is odd. By Theorem 1.2, we can find a Type 1
rainbow mean coloring c1 of the path Pn−7 so that the chromatic mean of the terminal
vertex is the order of the path. If we apply Lemma 2.2 on (Pn−7, c1) and (B (8, 3) , c2),
we get the desired result.

Case 4: Suppose n and k are even. First, suppose n = k + 4 and k ≥ 4.
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(a) (b) (c)

Figure 8. For the proof of Theorem 3.1 Case 3.

Let c2 be an edge coloring for B(k + 4, k) defined as follows. Let c2 (u1u2) = 1,
c2 (u2u3) = k + 3, c2 (u3u4) = k + 1 while the bristles are colored using distinct elements
from T = [k + 4]−

{
1, k+4

2 , k + 2, k+6
2

}
(Refer to Fig. 9(a).) Then cm(u1) = 1, cm(u2) =

k+4
2 , and cm(u3) = k + 2. It can be shown that

(
k+6
2

)
(k + 1) = k + 1 + sum(T ), or,

equivalently, cm(u4) = k+6
2 . Hence, rm(B(k + 4, k)) = k + 4 = n.

As in the previous case, we can show that rm(B(n, k)) = n if n > k + 4 and k ≥ 4 by
applying Lemma 2.2 on Pn−k−3 and B (k + 4, k). Since 2 ≤ k ≤ n − 4, we just need to
consider the case k = 2. A Type 1 rainbow mean coloring c2 for B (6, 2) is shown in Fig.
9(b). If n ≥ 8, then n − 5 ≥ 3 is odd. As in the previous case, we can then construct
a Type 1 rainbow mean coloring of B(n, 2) by applying Lemma 2.2 on (Pn−5, c1) and
(B(6, 2), c2) where c1 is an appropriate Type 1 rainbow mean coloring.

(a) (b)

Figure 9. For the proof of Theorem 3.1 Case 4.

We observe that Lemma 2.3 applies in all the Type 1 rainbow mean colorings con-
structed in the proof of Theorem 3.1, except for the following cases: B(n, 2) and B(n, n−3)
when n ≥ 6 is even. Therefore, except for these cases, we can find a Type 1 rainbow mean
coloring such that the tip has chromatic mean equal to its order.

However, B(8, 2) has a Type 1 rainbow mean coloring c1 such that the tip has chromatic
mean equal to its order, and one such coloring is shown in Fig. 10. If n ≥ 10 and n is even,
then n− 7 ≥ 3 is odd, so by Theorem 1.2, Pn−7 has a Type 1 rainbow mean coloring c2
such that the initial vertex has chromatic mean 1. By applying Lemma 2.3 on (B(8, 2), c1)
and (Pn−7, c2), we obtain a Type 1 rainbow mean coloring for B(n, 2) such that the tip
of the broom has chromatic mean n. Therefore, we can make the following remark which
will be important in computing the rainbow mean indexes of the double brooms in the
next section.

Remark 3.2. Let k and n be positive integers such that k ≥ 2 and n ≥ k + 3. Then
there exists a Type 1 rainbow mean coloring of B(n, k) such that the tip has chromatic
mean equal to its order if (n, k) 6= (6, 2), n is odd, or n 6= k + 3.
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Figure 10. A Type 1 rainbow mean coloring of B(8, 2) where the tip
has chromatic mean 8.

4. Double Brooms

Theorem 4.1. Let k, `, and n be positive integers with k ≥ 2, ` ≥ 2, and n ≥ k + ` + 3.
Then rm(DB (n, k, `)) = n.

Proof. We consider cases.

Case 1: Suppose at least one of k and `, say `, is odd. To obtain a Type 1 rainbow mean
coloring for DB(n, k, `), we apply Lemma 2.2 on one of the following pairs of graphs with
appropriate Type 1 rainbow mean colorings c1 and c2:

(A) (K1,k+1, c1) and (B (n− k − 1, `) , c2) if k is odd
(B) (B (n− `− 1, k) , c1) and (K1,`+1, c2), and
(C) (B (n− `− 2, k) , c1) and (B (` + 3, `) , c2).

The existence of the coloring c1 in (A), and of c2 in (A), (B), and (C), is guaranteed
by Theorems 1.3 and 3.1. Hence, the result holds when k is odd. So we may assume
that k is even. Now, Remark 3.2 guarantees the existence of c1 in (B) or (C), so long as
n− k− ` ≥ 4. Since n− k− ` ≥ 3, we are then left with the case n = k + `+ 3, which we
assume for the rest of Case 1. We divide the possibilities into subcases. Let u, v, and w
be the vertices in the handle of the double broom, that have degrees k + 1, 2, and ` + 1,
respectively.

Subcase 1.1: If ` = k + 1, then n = 2k + 4. Let S = {2, 4, . . . , 2k + 2} − {k + 2} and
T = [n]− (S ∪ {1, k + 1, k + 3}). Then, {1, k + 1, k + 3}, S, and T are mutually disjoint,
|S| = k and |T | = k + 1. Define the edge coloring c so that the k pendant edges incident
to u are colored using all the elements of S, the pendant edges incident to w are colored
using T , while the edges incident to v are colored 1(See Fig. 11.). Then cm(v) = 1. It

can then be shown that (k + 1)
2

= 1 + sum (S) and (k + 3) (k + 2) = 1 + sum (T ), or,
equivalently, cm(u) = k + 1 and cm(w) = k + 3, so the result follows.

Figure 11. For the proof of Theorem 4.1 Subcase 1.1.

Subcase 1.2: If ` = k − 1, then n = 2k + 2. Let T = {3, 5, 7, . . . , 2k − 1} and S =
[n] − (T ∪ {1, k, k + 2}). Then {1, k, k + 2}, S, and T are mutually disjoint, |T | = k − 1
and |S| = k. As in Subcase 1.1, define the edge coloring c so that the k pendant edges
incident to u are colored using S, the pendant edges incident to w are colored using T ,
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while the edges incident to v are colored 1. Then cm(v) = 1. It can then be shown that
(k + 2) (k + 1) = 1 + sum (S) and k2 = 1 + sum (T ), or, equivalently, cm(u) = k + 2 and
cm(w) = k, so the result follows.

Subcase 1.3: If ` ≥ k + 3, let ` = k + 2m + 1 where m ≥ 1. Then n = 2k + 2m + 4. Let

S = [k+2]−
{

k
2 + 1, k

2 + 2
}

and T = [n]−
(
S ∪

{
k
2 + 1, 2m + 3k

2 + 4,m + 3k
2 + 4

})
.

Then S, T , and
{

k
2 + 1, 2m + 3k

2 + 4,m + 3k
2 + 4

}
are mutually disjoint, |S| = k and

|T | = k + 2m + 1 = `. Define the edge coloring c so that the k pendant edges incident
to u are colored using S, the pendant edges incident to w are colored using T , while
the edges uv and vw are colored 1 and 4m + 3k + 7, as in Fig. 12. Then cm(v) =
2m + 3k

2 + 4. To complete the proof, it can be shown that
(
k
2 + 1

)
(k + 1) = 1 + sum (S)

and
(
m + 3k

2 + 4
)

(k + 2m + 2) = 4m+ 3k + 7 + sum (T ), or, equivalently, cm(u) = k
2 + 1

and cm(w) = m + 3k
2 + 4.

Figure 12. For the proof of Theorem 4.1 Subcase 1.3.

Subcase 1.4: If k ≥ ` + 3, let k = ` + 2m + 1, where m ≥ 1. Then n = 2` + 2m + 4. Let

T = {2, 4, . . . , 2` + 2m + 2} − {` + 3, ` + 5, . . . , ` + 2m + 3} and

S = [n]− (T ∪ {` + m + 2, ` + 2m + 3, ` + m + 3}) .

Note that S, T , and {` + m + 2, ` + 2m + 3, ` + m + 3} are mutually disjoint and |T | = `
while |S| = k. Define the edge coloring c so that the k pendant edges incident to u are
colored using S, the pendant edges incident to w are colored using T , while the edges uv
and vw are both colored ` + 2m + 3 as in Fig. 13. Then cm(v) = ` + 2m + 3. It can be
shown that (` + m + 2) (` + 1) = ` + 2m + 3 + sum (T ) and (` + m + 3) (` + 2m + 2) =
`+ 2m+ 3 + sum (S), or, equivalently, cm(u) = `+m+ 3 and cm(w) = `+m+ 2, thereby
proving the result.

Figure 13. For the proof of Theorem 4.1 Subcase 1.4.

Case 2: Suppose k and ` are both even. As in Case 1, we apply Lemma 2.2, on the
following pair of graphs with appropriate Type 1 rainbow mean colorings c1 and c2:

(B (n− `− 2, k) , c1) and (B (` + 3, `) , c2) .
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By Theorem 3.1, the Type 1 rainbow mean coloring c2 exists. Now, by Remark 3.2, c1
exists if n−k− `−2 ≥ 3 and either k 6= 2 or n−k− `−2 6= 4. We consider the remaining
cases below.

Subcase 2.1: Suppose n− k− ` = 3 and k = `. Then n = 2k + 3. As in the previous case,
let u, v, and w be the vertices in the handle of the double broom that have degrees k+ 1,
2, and ` + 1, respectively. Let

T = {2, 4, . . . , k} ∪ {k + 5, k + 7, . . . , 2k + 3} and S = [n]− (T ∪ {k + 1, k + 2, k + 3}) .

Then S, T , and {k + 1, k + 2, k + 3} are mutually disjoint, |S| = k, and |T | = k = `.
Define the edge coloring c so that the k pendant edges incident to u are colored using
S, the pendant edges incident to w are colored using T , while the edges uv and vw are
colored k

2 + 1 and 3k
2 + 3 as in Fig. 14. Then cm(v) = k + 2. It can be shown that

(k + 3) (k + 1) = 3k
2 + 3 + sum (T ) and (k + 1)

2
= k

2 + 1 + sum (S), or, equivalently,
cm(u) = k + 1 and cm(w) = k + 3, thereby proving the result.

Figure 14. For the proof of Theorem 4.1 Subcase 2.1.

Subcase 2.2: Suppose n − k − ` = 3 and k 6= `. Suppose k < `, and ` = k + 2m where
m ≥ 1. Then n = 2k + 2m + 3. To simplify notations, we write

[N . .M ] = {N,N + 1, N + 2, . . . ,M − 1,M} ,
for integers N and M if N ≤M ; if N > M , we take [N . .M ] = ∅. Let

S =
{

k
2

}
∪
[(

k
2 + m + 2

)
. . (k + m)

]
∪
[
(k + m + 4) . .

(
3k
2 + m + 3

)]
, and

T = [n]− (S ∪ {k + m + 2, k + m + 3, 2k + m + 4}) .

Then S, T , and {k + m + 2, k + m + 3, 2k + m + 4} are mutually disjoint, |S| = k and
|T | = n− 3 = `. Define the edge coloring c so that the k pendant edges incident to u are
colored using S, the pendant edges incident to w are colored using T , while the edges uv
and vw are colored 2k+2m+4 and 2k+4 as in Fig. 15. Then cm(v) = 2k+m+4. It can be
shown that (k + m + 3) (k + 1) = 2k + 2m+ 4+ sum(S) and (k + m + 2) (k + 2m + 1) =
2k + 4 + sum (T ), or, equivalently, cm(u) = k + m + 3 and cm(w) = k + m + 2, thereby
proving the result.

Figure 15. For the proof of Theorem 4.1 Subcase 2.2.
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Subcase 2.3: Suppose n − k − ` = 4 and k 6= `. Suppose k < ` and ` = k + 2m, m ≥ 1.
Then n = 2k+ 2m+ 4. In Subcase 2.2, we considered DB (2k + 2m + 3, k, `) and found a
Type 1 rainbow mean coloring c. Suppose the edge uv in Fig. 15 is replaced with a path
(u, z, v) where z is a new vertex. Then the resulting graph is DB (n, k, `). If we modify
c so that both uz and zv are colored 2k + 2m + 4 = n, then we obtain a Type 1 rainbow
mean coloring for DB (n, k, `) (See Fig. 16.).

Figure 16. For the proof of Theorem 4.1 Subcase 2.3.

Subcase 2.4: Suppose n− k − ` = 4 and k = `. Then n = 2k + 4. Suppose the handle of
the double broom has vertices u, z, v, and w as in the previous subcase. Let

S =
[(

k
2 + 2

)
. . (k + 1)

]
∪
[
(k + 5) . .

(
3k
2 + 3

)]
∪
{

3k
2 + 5

}
and

T = [n]− (S ∪ {1, k + 2, k + 3, k + 4}) .

Then S, T , and {1, k + 2, k + 3, k + 4} are mutually disjoint, |S| = k and |T | = k.
Define the edge coloring c so that the k pendant edges incident to u are colored using S,
the pendant edges incident to w are colored using T , while the edges uz, zv, and vw are
colored 1, 1, and 2k+5, respectively, as in Fig. 17. Then cm(z) = 1 and cm(v) = k+3. It
can be shown that (k + 2) (k + 1) = 1 + sum (S) and (k + 4) (k + 1) = 2k + 5 + sum (T ),
or, equivalently, cm(u) = k + 2 and cm(w) = k + 4, thereby proving the result.

Figure 17. For the proof of Theorem 4.1 Subcase 2.4.

Subcase 2.5: Suppose n − k − ` = 6 and k = ` = 2. Hence, n = 10, and we can find a
Type 1 rainbow mean coloring of DB (10, 2, 2) (See Fig. 18.)

Figure 18. For the proof of Theorem 4.1 Subcase 2.5.
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5. Conclusion

Since the concept of a rainbow mean coloring of a graph is a fairly new type of graph
labeling, there are still many families of graphs whose rainbow chromatic means are
unknown. While the focus of this paper is on caterpillars, brooms and double brooms, the
lemmas used in the proofs provide creative tools for constructing rainbow mean colorings
based on particular optimal colorings of subgraphs. These may also be used to determine
the rainbow mean indexes of other graphs not covered in this or past papers. Note that
the results given in this paper support the conjecture posed in [2]. Further investigations
on other families of trees and determining their type will be a good step towards a more
general result on trees.
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