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Abstract A graph is called planar if it admits a planar drawing on the plane, i.e., no two edges create

a crossing except possibly at their common endpoint. In a rectilinear drawing Γ of a planar graph, each

vertex is drawn as a point and each edge is drawn as either horizontal or vertical line segment. A face in

Γ is called orthogonally convex if every horizontal or vertical line segment connecting two points within

the face does not intersect any other face. We examine the decision problem that takes a planar graph as

an input and seeks for a rectilinear drawing where the faces are drawn as orthogonally convex polygons.

A linear-time algorithm for this problem is known for biconnected planar graphs, but the algorithm relies

on complex data structures and linear-time planarity testing, which are challenging to implement. In

this paper, we give a necessary and sufficient condition for a subdivision of a triconnected cubic planar

graph to admit such a drawing, and design a linear-time algorithm to check the condition and compute a

desired drawing, if it exists. As a byproduct of our results we show that if a subdivision of a triconnected

cubic planar graph G admits a rectilinear drawing, then it must also admit a rectilinear drawing with

orthogonally convex faces.
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1. Introduction

Graph drawing is a well known research area that lies at the intersection of graph
theory, topology and geometry. Automatic graph drawings have attracted researchers be-
cause of their vital and important applications in VLSI circuit layout, networks, computer
architecture, circuit schematics etc. [1–3]. Among various drawing styles, ‘orthogonal
drawings’ of planar graphs have occupied a big area due to their practical applications,
specially in circuit schematics, entity relationship diagrams, data flow diagrams etc. [4–
9]. An orthogonal drawing of a planar graph G is a drawing of G in which each vertex
is mapped to a point, each edge is drawn as a sequence of alternate horizontal and ver-
tical line segments, and any two edges do not cross except at their common ends. A
bend is a point where an edge changes its direction in a drawing. Every planar graph
of the maximum degree four has an orthogonal drawing, but may need bends. Finding
an orthogonal drawing of a planar graph of the maximum degree four with the minimum
number of bends is an NP-hard problem [10]. However, polynomial algorithms are known
for finding bend-minimum orthogonal drawings of plane graphs (with fixed embedding)
of maximum degree four and some restricted classes of planar graphs of maximum degree
three [6–9, 11].

An orthogonal drawing D of a plane graph is a no-bend orthogonal drawing or a recti-
linear drawing if D has no bend. Clearly all rectilinear drawings are orthogonal drawings
but not vice versa because of requirements of some bends in some orthogonal drawings.
Figure 1(b) illustrates a rectilinear drawing of the planar graph in Figure 1(a). Not every
plane graph has a rectilinear drawing. The plane graph in Figure 1(c) has no rectilinear
drawing since the triangle abc can not be drawn by horizontal and vertical line segments
without bend, but the plane graph in Figure 1(c) has an orthogonal drawing with some
bends as illustrated in Figure 1(d).
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Figure 1. (a) A plane graph Γ for which a rectilinear drawing exists,
and (b) a corresponding rectilinear drawing of Γ. (c) A plane graph for
which there is no rectilinear drawing, and (d) a corresponding orthogonal
drawing with two bends.

Rahman et al. [11] gave a linear-time algorithm to determine whether a plane graph Γ
with ∆ ≤ 3 has a rectilinear drawing or not and to find a rectilinear drawing of Γ, if it
exists. Since a planar graph G may have an exponential number of planar embeddings,
the problem of finding rectilinear drawings of planar graphs is a non-trivial problem and
is solvable in polynomial time for restricted classes of planar graphs where the maximum
degree is at most 3. Di Battista et al. [12] gave an O(n5 log n)time algorithm to find an
orthogonal drawing of a planar graph G(∆ ≤ 3) with the minimum number of bends.
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Rahman et al. [13] gave a linear-time algorithm for determining whether a subdivision of
a planar triconnected cubic graph has a rectilinear drawing and for finding out a drawing
if it exists. Chang and Yen [14] gave an algorithm for a min-bend orthogonal drawing of
a planar graph of maximum degree three if it exists that runs in O(n17/7) time. One can
find a no-bend orthogonal drawing of a planar graph G of maximum degree 3, if G has
one, in O(n2) time using the algorithm by Didimo et al. [15] for finding a bend-minimum
orthogonal drawing of a planar graph of maximum degree 3.
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Figure 2. (a) A plane graph for which there is no rectilinear orthogo-
nally convex drawing, (b) a plane graph Γ for which a rectilinear orthog-
onally convex drawing exists, and (c) corresponding rectilinear orthogo-
nally convex drawing of Γ.

In a rectilinear drawing of a plane graph Γ, each inner face of Γ is drawn as rectilinear
polygon. A rectilinear polygon P is called orthogonally convex if every horizontal or
vertical segment connecting two points in P lies totally within P . An orthogonally convex
drawing is an orthogonal drawing where each inner face is an orthogonally convex polygon
as illustrated in Figure 2(c). Chang and Yen [16] gave a necessary and sufficient condition
for a biconnected plane graph of maximum degree 3 to have a rectilinear orthogonally
convex drawing and gave a linear-time algorithm to find such a drawing if it exists.

A planar graph is said to have a rectilinear orthogonally convex drawing if at least
one of its plane embeddings has a rectilinear orthogonally convex drawing. For the plane
embeddings Γ1 and Γ2, as illustrated in Figures 3(a) and 3(b) of a planar graph G there is
no rectilinear orthogonally convex drawing. But for the plane embedding Γ3 in Figure 3(c)
of the same planar graph G, there exists a rectilinear orthogonally convex drawing, as
illustrated in Figure 3(d), and hence G has a rectilinear orthogonally convex drawing.

Since a planar graph G may have an exponential number of planar embeddings, de-
termining whether G has a rectilinear orthogonally convex drawing or not using the
algorithm of Chang and Yen [16] by checking each planar embedding of G takes expo-
nential time. Thus to develop an efficient algorithm to examine whether a planar graph
G has a rectilinear orthogonally convex drawing or not is a non-trivial problem. Fortu-
nately, a subdivision of a planar triconnected cubic graph has O(n) embeddings and it
is straightforward to enumerate them in O(n2) time. Therefore, determining whether a
subdivision of planar triconnected cubic graph G has a rectilinear orthogonally convex
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Figure 3. (a)-(b) Two plane embeddings of a planar graph G which
have no rectilinear orthogonally convex drawing, (c) a planar embedding
Γ of G which has a rectilinear orthogonally convex drawing, and (d) a
rectilinear orthogonally convex drawing of Γ.

drawing or not using the algorithm of Chang and Yen [16] by checking each planar em-
bedding of G takes O(n2) time. In addition to the rectilinear constraints, researchers also
focused on restricting the shapes of the faces [16, 17]. Hasan and Rahman presented an
algorithmic outline to extend the idea for biconnected planar graphs, but the technique
is quite involved as it is based on linear-time planarity testing [18]. Very recently Didimo
et al. [19] have developed a linear-time algorithm for bend-minimum orthogonal drawings
of planar graphs but that does not ensure to find orhogonally convex drawings. In this
paper we give a linear-time algorithm to determine whether a subdivision of a planar
triconnected cubic graph G has a rectilinear orthogonally convex drawing or not, and to
find a rectilinear orthogonally convex drawing of G, if it exists. We also show that, if such
a graph G has a rectilinear drawing, then G has a rectilinear orthogonally convex drawing.

The rest of this paper is organized as follows. In Section 2, we give some terminologies
and previous results. In Section 3, we describe a necessary and sufficient condition for
a subdivision of a planar triconnected cubic graph G to have a rectilinear orthogonally
convex drawing leads to a linear-time algorithm to find a drawing, if such one exists. We
also show that if G has a rectilinear drawing, then G has a rectilinear orthogonally convex
drawing. Finally, Section 4 concludes the paper with some future work.

2. Preliminaries

In this section, we give some definitions that will be used throughout the paper and
present some preliminary results.
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Graphs and Degrees of Vertices: Let G = (V,E) be a connected simple graph with
vertex set V and edge set E. The degree d(v) of a vertex v is the number of neighbors of
v in G. We call a vertex of degree k in G a degree-k vertex of G. We denote the maximum
degree of a graph G by ∆(G) or simply by ∆. A graph G is called cubic if d(v) = 3 for
every vertex v.
Paths, Subdivisions, and Connectivity: A path in a graph G is a finite sequence
P = v1, e1, v2, e2, . . . , vk−1, ek−1, vk of alternating vertices and edges with no repeated
vertex (except end vertices) such that, for 1 ≤ i ≤ k − 1, the edge ei has ends vi and
vi+1. For V ′ ⊆ V , G − V ′ denotes a graph obtained from G by deleting all vertices
in V ′ together with all edges incident to them. For a subgraph G′ of G, we denote
by G − G′ the graph obtained from G by deleting all vertices in G′. Subdividing an
edge (u, v) of a graph G is the operation of deleting the edge (u, v) and adding a path
u(= w0), w1, w2, . . . , wk, v(= wk+1) passing through new vertices w1, w2, . . . , wk, k ≥ 1,
of degree 2. A graph G is called a subdivision of a graph G′ if G is obtained from G′ by
subdividing some of the edges of G′ as illustrated in Figure 4. The connectivity κ(G) of a
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Figure 4. A subdivision of a planar triconnected cubic graph.

graph G is the minimum number of vertices whose deletion results in a disconnected graph
or a single-vertex graph K1. We say that G is k-connected if κ(G) ≥ k. A subdivision of
a triconnected cubic graph is biconnected, and the degree of any vertex is either 2 or 3.
Figure 4 presents a subdivision of a planar triconnected cubic graph.
Faces and Cycles: A planar drawing Γ of a planar graph G, where there is no edge
crossing, divides the plane into a set of open connected regions, called faces. The un-
bounded region is called the the outer face Fo(Γ) and the regions that are bounded are
called inner faces of Γ. There exists exactly one outer face in Γ. A subdivision of a planar
triconnected cubic graph satisfies the following fact regarding faces [20].

Fact 1. Let G be a subdivision of a planar triconnected cubic graph. Let Γ1 and Γ2 be
two different arbitrary plane embeddings of G. Then every face in Γ1 is a face in Γ2 and
vice versa.

A sequence v1, e1, v2, e2, . . . , vk, ek, v1(= vk+1) of vertices and edges, where ei connects
vi and v(i+1) and no vertex or edge appears more than once except the endpoint v1(=
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vk+1), is called a cycle. The contour of a face F of Γ is the cycle formed by vertices and
edges along the boundary of F . Such a cycle is also called a facial cycle. A facial cycle
is sometimes called a face for simplicity. Sometimes we refer to the contour of the outer
face Fo as the boundary contour and denote it by Co. If G is biconnected, then all facial
cycles are simple cycles. Let G be a planar graph, and Γ be an arbitrary plane embedding
of G. For a cycle C of Γ, we call the plane subgraph of Γ inside C (including C) the inner
subgraph ΓI(C) for C, and call the plane subgraph of Γ outside C (including C) the outer
subgraph ΓO(C) for C. Any face of Γ is either in ΓI(C) or in ΓO(C). If an inner face or
a cycle contains a vertex on Fo, then we call it a boundary face or a boundary cycle. If
an inner face or a cycle does not contain a vertex on Fo, then we call it a non-boundary
face or a non-boundary cycle.
Legs, Hands, Tracks, Regular Cycles, and Bad Cycles: An edge e is called a leg
of a cycle C if e is located outside of C and exactly one endpoint of e is included in C.
The vertex of C to which a leg is incident to is called a leg-vertex of C. We refer to e as a
hand of C if e is located inside of C and exactly one endpoint of e is included in C. The
vertex of C to which a hand is incident to is called a hand-vertex of C.

A cycle C in Γ is called a k-legged cycle of Γ if C has exactly k legs and satisfies
an additional condition that there is no edge which joins two vertices on C in the outer
subgraph ΓO(C). We define a k-handed cycle C symmetrically, i.e., C has exactly k hands
and there is no edge which joins two vertices on C in the inner subgraph ΓI(C). The
cycle mnopqrstu in Figure 4 is a 3-handed cycle, whereas the same cycle is 5-legged in
the embedding. A k-legged cycle (similarly, k-handed cycle) C in Γ is called regular if
the plane graph Γ−ΓI(C) (similarly, Γ−ΓO(C)) has a cycle. A k-legged cycle (similarly,
k-handed cycle) is called bad if it does not have any degree-2 vertex.

A track of a cycle C is a path P on C such that P includes exactly two leg-vertices x
and y of C, and x and y are the two endpoints of P . Therefore, each k-legged cycle has
exactly k tracks. If a track (of a cycle which is not necessarily Co) intersects (i.e., shares
one or more edges) with the boundary contour, we call it boundary track. In fact, each
boundary track is a sub-path of Co.

We say that cycles C and C ′ in Γ are independent if ΓI(C) and ΓI(C ′) do not have any
common vertex. A set S of cycles is independent if every pair of cycles in S is independent.
In Figure 4, the cycles abdefghi, jkl (enclosed by long-dashed lines) are independent of
the cycle mnopqrstu (enclosed by dotted line) and vice versa.
Chains and Supports: Each track P of C is incident to exactly one face, denoted as
FC,P , in the outer region of C. Let P = w0, w1, w2, . . . , wk+1, k ≥ 1, be a path of G such
that d(w0) ≥ 3, d(w1) = d(w2) = · · · = d(wk) = 2, and d(wk+1) ≥ 3. Then we call the
subpath P ′ = w1, w2, . . . , wk of P a chain of G, and we call vertices w0 and wk+1 the
supports of the chain P ′. A degree-2 vertex belongs to exactly one chain in G.
Vertex Smoothing and Graph Homeomorphism: Two graphs G1 and G2 are called
homeomorphic if they are subdivisions of the same graph. We now give a definition of
smoothing degree-2 vertices from a graph. We often construct a new graph from a graph
as follows. Let v be a degree-2 vertex in a connected graph G. We replace the two edges
u1v and u2v incident to v with a single edge u1u2 and delete v. We call the operation
above an smoothing operation and say that the vertex v is smoothed out. If all degree-2
vertices are smoothed out from a subdivision of a planar triconnected cubic graph G, then
the resulting graph will be a planar triconnected cubic graph G′, and removal of any two
edges from a planar triconnected cubic graph G′ does not disconnect G′.
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Rahman et al. [11] gave a linear-time algorithm for a plane graph to have a rectilinear
drawing and to find out a drawing if such one exists, as in the following lemma.

Lemma 2.1. Assume that Γ is a biconnected plane graph with ∆ ≤ 3 and there are four
or more degree-2 vertices of Γ on Co(Γ). Then Γ has a rectilinear drawing if and only if
every 2-legged cycle contains at least two degree-2 vertices of Γ and every 3-legged cycle
contains at least one degree-2 vertex of Γ.

Chang and Yen [16] gave a necessary and sufficient condition for a plane graph to have
a rectilinear orthogonally convex drawing, as in the following lemma.

Lemma 2.2. A biconnected plane graph Γ with ∆ ≤ 3 has a rectilinear orthogonally
convex drawing if and only if Γ satisfies all of the following conditions.

(oc1) There are four or more degree-2 vertices of Γ on Co(Γ),
(oc2) every 2-legged cycle contains at least two degree-2 vertices,
(oc3) every 3-legged cycle contains at least one degree-2 vertex,
(oc4) every non-boundary 2-legged cycle contains at least one degree-2 vertex on each

of its tracks, and
(oc5) every boundary 2-legged cycle contains at least one degree-2 vertex on its bound-

ary track.

We also need the following observations regarding subdivisions of planar triconnected
cubic graphs described in [13] stated in the following lemma.

Lemma 2.3. Let G be a subdivision of a planar triconnected cubic graph, and let Γ be
an arbitrary plane embedding of the planar graph G. Then the following (a) and (b) hold.

(a) For any 2-legged cycle C of Γ, the set of all degree-2 vertices not in ΓI(C)
induces a chain of G on Fo(Γ).

(b) For any chain P on Fo(Γ), the outer face of the plane graph Γ−P is a 2-legged
cycle in Γ.

The following lemma [13] gives a necessary and sufficient condition for a subdivision
of a planar triconnected cubic graph G to have a rectilinear drawing.

Figure 5. (a) Illustration of (nb4) in Lemma 2.4: degree-2 vertices are
drawn by white circles, (b) a rectilinear orthogonal drawing taken the
face F as outer face, and (c) a rectilinear orthogonal drawing taken the
face F ′ as outer face.
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Figure 6. Illustration of (nb5) in Lemma 2.4 and of (iv) in Theorem 3.1:
degree-2 vertices are drawn by white circles.

Lemma 2.4. Let G be a subdivision of a planar triconnected cubic graph, and let Γ be
an arbitrary plane embedding of G. Then the planar graph G has a rectilinear drawing if
and only if Γ has a face F satisfying the following conditions (nb1)− (nb5).

(nb1) There are at least four degree-2 vertices on F ,
(nb2) F is contained in ΓI(C) for any bad 3-legged cycle C in Γ,
(nb3) F is contained in ΓO(C) for any bad 3-handed cycle C in Γ,
(nb4) if there is exactly one chain P on F , then the face F ′ which contains P and is

different from F contains at least two degree-2 vertices which are not on P (see
Figure 5); and

(nb5) if there are exactly two chains P1 and P2 on F , and one of them, say P1,
contains exactly one vertex, then the face F ′ which contains P2 and is different
from F contains at least one degree-2 vertex which is not on P2 (see Figure 6).

3. Rectilinear Orthogonally Convex Drawings

In this section, we give a necessary and sufficient condition for a subdivision of a planar
triconnected cubic graph to have a rectilinear orthogonally convex drawing.

Theorem 3.1. Let G be a subdivision of a planar triconnected cubic graph, and let Γ
be an arbitrary plane embedding of G. G has a rectilinear orthogonally convex drawing if
and only if Γ has a face F satisfying the following conditions (i)− (iv).

(i) There are at least four degree-2 vertices on F ,
(ii) F is contained in ΓI(C) for any bad 3-legged cycle C in Γ,

(iii) F is contained in ΓO(C) for any bad 3-handed cycle C in Γ, and
(iv) there are at least two chains on the facial cycle for F in Γ. If there are exactly

two chains P1 and P2 on F , and any of them, say P1, contains exactly one vertex,
then the face F ′ which contains P2 and is different from F contains at least one
degree-2 vertex which is not on P2 (illustrated in Figure 6).

To prove Theorem 3.1 we need the following two lemmas which were stated as facts
in [13] without proofs. Here we include the proofs for completeness.

Lemma 3.2. Let G be a subdivision of a planar triconnected cubic graph and let Γ1 and
Γ2 be two different arbitrary plane embeddings of G. Let F be the face of Γ1 such that
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F = Fo(Γ2). Assume that C is a 3-legged cycle in Γ1 and ΓI(C) of Γ1 contains F . Then
C is a 3-handed cycle in Γ2, and vice versa.

Proof. Let G be a subdivision of a planar triconnected cubic graph. Let Γ1 and Γ2 be
two different arbitrary plane embeddings of G. Since G be a subdivision of a planar
triconnected cubic graph, by Fact 1, every face in Γ1 is a face in Γ2 and vice versa. Let
F be a face in Γ1 which is the outer face in Γ2.

Assume that C is a 3-legged cycle or a 3-handed cycle in Γ1 and ΓI(C) contains F in
Γ1.

If C is a 3-legged cycle in Γ1, then the subgraph of Γ1 outside C is folded inside of
C in Γ2, and hence C is 3-handed cycle in Γ2. To observe this more formally, consider
a path P that contains exactly one vertex from C and exactly one vertex from F , and
lies entirely inside C in Γ1. Since F is an outer face in Γ2, the path must be inside F .
If P remains outside of C in Γ2, then the required property is satisfied. If P enters the
interior of C and then exists C, then it must contain two vertices of C, which contradicts
our initial assumption.

Similarly, if C is a 3-handed cycle in Γ1, then the subgraph of Γ1 inside C but outside
of F , is folded outside of C in Γ2, and hence C is 3-legged cycle in Γ2.

Lemma 3.3. Let G be a subdivision of a planar triconnected cubic graph and let Γ1 and
Γ2 be two different arbitrary plane embeddings of G. Let F be the face of Γ1 such that
F = Fo(Γ2). Assume that C is a cycle in Γ1, and ΓI(C) of Γ1 does not contain F . If C
is a 3-legged cycle in Γ1, then C is a 3-legged cycle in Γ2. If C is a 3-handed cycle in Γ1,
then C is a 3-handed cycle in Γ2.

Proof. Let G be a subdivision of a planar triconnected cubic graph. Let Γ1 and Γ2 be
two different arbitrary plane embeddings of G. Since G be a subdivision of a planar
triconnected cubic graph, by Fact 1, every face in Γ1 is a face in Γ2 and vice versa. Let
F be a face in Γ1 which is the outer face in Γ2.

Assume that, C is either a 3-legged cycle or a 3-handed cycle in Γ1 and ΓI(C) does
not contain F in Γ1.

If C is a 3-legged cycle in Γ1, then all the three legs remain same in Γ2, induces a
3-legged cycle C in Γ2. If C is a 3-handed cycle in Γ1, then all the three hands remain
same in Γ2, induces a 3-handed cycle C in Γ2.

We now prove another lemma before giving a proof of Theorem 3.1.

Lemma 3.4. Let G be a subdivision of a planar triconnected cubic graph and let Γ be an
arbitrary plane embedding of G. Then the following properties hold.

(pr1) Γ does not contain any regular 2-legged cycle.
(pr2) Every 2-legged cycle in Γ has an edge on Co(Γ).
(pr3) Γ does not contain two independent 2-legged cycles.
(pr4) If Γ has three or more chains on Co(Γ), then every 2-legged cycle has at least

two degree-2 vertices on Co(Γ).

Proof. Let G be a subdivision of a planar triconnected cubic graph and Γ be an arbitrary
plane of G.

(pr1) Let G′ be the graph obtained by smoothing out all degree-2 vertices of G.
G′ is a planar triconnected cubic graph, and G and G′ are homeomorphic to
each other. If Γ has a regular 2-legged cycle C, then by the definition of regular
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2-legged cycles, the deletion of the two legs of C, i.e., the edges incident to C
but not their end vertices, results in a disconnected graph with two connected
components having cycles. Then G′ cannot be a planar triconnected cubic graph.

(pr2) Assume for a contradiction that any 2-legged cycle C does not have any edge
on Co(Γ). Then removal of the two legs of C induces two connected components
in Γ, each of them has cycle, and hence G would not be a subdivision of a planar
triconnected cubic graph, a contradiction.

(pr3) Since there is no regular 2-legged cycle C in Γ, Γ cannot contain two indepen-
dent 2-legged cycles.

(pr4) By property pr(1), every 2-legged cycle in Γ has an edge on Co(Γ), and by
property pr(3), Γ has exactly one independent 2-legged cycle. By Lemma 2.3(b),
for any chain P on Fo(Γ), the outer face of the plane graph Γ − P is a 2-legged
cycle in Γ. Hence the induced 2-legged cycle for P has two or more chains, thus
at least two degree-2 vertices on Co(Γ).

Since all the properties are necessary, the proof of the lemma is now complete.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1
Necessity: Let G be a subdivision of a planar triconnected cubic graph and Γ be an
arbitrary plane embedding of G. Assume that a planar embedding Γ′ of G has a rectilinear
orthogonally convex drawing. Let F be the face of Γ such that F = Fo(Γ′). We now show
that F satisfies (i) to (iv) of Theorem 3.1, as follows.

(i) Lemma 2.2 gives a necessary and sufficient condition for a biconnected plane
graph with ∆ ≤ 3 to have a rectilinear orthogonally convex drawing. Since a
subdivision of a triconnected cubic plane graph is a subclass of biconnected plane
graphs with ∆ ≤ 3, the conditions in Lemma 2.2 are necessary and sufficient
conditions for a subdivision of triconnected cubic plane graph to have a rectilin-
ear orthogonally convex drawing. Since Γ′ has a rectilinear orthogonally convex
drawing, by (oc1) of Lemma 2.2, the outer face F of Γ′ has at least four degree-2
vertices. By Fact 1, F is also face in Γ and hence the face F for Γ must contain
at least four degree-2 vertices.

(ii) Assume for a contradiction that there exists a bad 3-legged cycle C such that F
is not contained in ΓI(C) in Γ, i.e. Γ has a 3-legged cycle C such that ΓI(C) does
not contain F and C does not contain any degree-2vertex. Then by Lemma 3.3,
in Γ′, C is a 3-legged cycle without any degree-2 vertex, a contradiction with the
(oc3) of Lemma 2.2.

(iii) Assume for a contradiction that there exists a bad 3-handed cycle C such that
F is not contained in ΓO(C) in Γ, i.e. Γ has a 3-handed cycle C and ΓI(C)
contains F but C does not contain any degree-2 vertex. Then by Lemma 3.2, in
Γ′, C is a 3-legged cycle without any degree-2 vertex, a contradiction with the
(oc3) of Lemma 2.2.

(iv) Assume for a contradiction that there is exactly one chain P on F in Γ. The
chain P on F induces a 2-legged cycle F (C) − P on F . The 2-legged cycle
F (C) − P does not contain any degree-2 vertex on F . Since Fo(Γ′) = F , the
2-legged cycle F (C) − P does not contain any degree-2 vertex on its boundary
track, a contradiction with the (oc5) of Lemma 2.2. We now assume that F has
exactly two chains P1 and P2, and P1 contains exactly one vertex, as illustrated
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in Figure 6. Since Fo(Γ′) = F contains at least four degree-2 vertices, P2 contains
at least three degree-2 vertices. By Lemma 2.3(b), Γ′ has two 2-legged cycles
C1 = Fo(Γ′ − P1) and C2 = Fo(Γ′ − P2) as illustrated in Figure 6, where C1

is indicated by small dotted lines and C2 is indicated by big dotted lines. By
Lemma 2.3, Γ′ does not have any boundary 2-legged cycle other than C1 and C2.
By (oc2) of Lemma 2.2, C2 contains at least two degree-2 vertices. The maximal
subpath Q1 of C2 that is on Fo(Γ′) contains exactly one degree-2 vertex, and
hence the maximal subpath Q2 of C2 that is not on Fo(Γ′) contains at least one
degree-2 vertex. Clearly Q2 is on F ′ and is not on P2, and hence F ′ contains at
least one degree-2 vertex which is not on P2.

Sufficiency: Assume that Γ has a face F satisfying conditions (i)− (iv) of Theorem 3.1.
Let Γ′ be an embedding of G such that F = Fo(Γ′). It is sufficient to prove that Γ′

satisfies Conditions (oc1)− (oc5) in Lemma 2.2.

(i) By Condition (i), Fo(Γ′) = F contains at least four degree-2 vertices, and hence
Γ′ satisfies condition (oc1) in Lemma 2.2.

(ii) By Lemma 3.4, every 2-legged cycle has an edge on the outer face of Γ′ and
the number of independent 2-legged cycles in Γ′ is exactly one. By condition (iv),
Fo(Γ′) = F contains at least two chains. Assume there are exactly two chains P1

and P2 on Fo(Γ′) = F . By Condition (iv), if any of P1 and P2, say P1 contains
exactly one vertex, then the face F ′ which contains P2 and is different from F
contains at least one degree-2 vertex which is not on P2. The 2-legged cycle
Co(Γ′)−P2 has two degree-2 vertices, one is on Fo(Γ′) and another is on F ′. The
2-legged cycle Co(Γ′)−P1 has two degree-2 vertices, both are on Fo(Γ′). Thus Γ′

satisfies (oc2) in Lemma 2.2.
(iii) By Conditions (ii) and (iii), F is contained in ΓI(C) for any bad 3-legged cycle
C in Γ, and F is contained in ΓO(C) for any bad 3-handed cycle C in Γ, i.e. every
3-legged cycle C in Γ whose ΓI(C) does not contain F , has at least one egree-2
vertex and every 3-handed cycle C in Γ whose ΓI(C) contains F , has at least one
degree-2 vertex. Since Fo(Γ′) = F , then by Lemma 3.2 and by Lemma 3.3, Γ′

satisfies the condition (oc3) of Lemma 2.2.
(iv) By property (pr2) of Lemma 3.4, all 2-legged cycles have edges on the outer

face of Γ′. Condition (oc4) is void for Γ′.
(v) By properties (pr2) and (pr3) of Lemma 3.4, every 2-legged cycle has an edge

on the outer face of Γ′ and the number of independent 2-legged cycles in Γ′

is exactly one. By condition (iv), there are at least two chains on F . Since
Fo(Γ′) = F , every boundary 2-legged cycle contains at least one degree-2 vertex
on its boundary track.

Since all the conditions are necessary and sufficient, the proof of the theorem is now
complete.

Traversing the contours of all faces in Γ, one can check in linear time whether G satisfies
the conditions (i)− (iv) in Theorem 3.1. We refer the readers to [13, 21–23] for contour
traversal approaches to check whether a planar embedding Γ of a planar graph G has a
face F that satisfies a similar set of conditions. A planar embedding Γ′ can be computed
from Γ making F as outer face in linear time [20]. Thus, if G satisfies the conditions
(i)− (iv) of Theorem 3.1 then G has a planar embedding Γ′ which satisfies the conditions
in Lemma 2.2, and hence using the drawing algorithm of Chang and Yen [16], one can
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also find a rectilinear orthogonally convex drawing of the planar embedding Γ′ of G in
linear time. Thus the following theorem holds.

Theorem 3.5. Let G be a subdivision of a planar triconnected cubic graph. Then one
can determine in linear time whether G has a rectilinear orthogonally convex drawing or
not and find a drawing of G, if it exists.

The following theorem shows an interesting relationship between rectilinear drawings
and rectilinear orthogonally convex drawings of subdivisions of planar triconnected cubic
graphs.

Theorem 3.6. Let G be a subdivision of a triconnected cubic planar graph. G has a
rectilinear drawing if and only if G has a rectilinear orthogonally convex drawing.

Proof. Since all rectilinear orthogonally convex drawings are rectilinear drawings, suffi-
ciency of the theorem is satisfied. Hence here we prove the necessity only. Let G be a
subdivision of a planar triconnected cubic graph and Γ be an arbitrary planar embedding
of G. Assume that G has a rectilinear drawing. Then Γ has a face F satisfying conditions
(nb1) − (nb5) of Lemma 2.4. We now show that Γ has a face F ∗ satisfying conditions
(i)− (iv) of Theorem 3.1. We need to consider the following three cases.
case 1: F has three or more chains.
F satisfies conditions (nb1) − (nb3) of Lemma 2.4. Since conditions (i) − (iii) of The-
orem 3.1 are same to (nb1) − (nb3) of Lemma 2.4 respectively, F satisfies conditions
(i)− (iii) of Theorem 3.1. Condition (iv) of Theorem 3.1 is void. Hence F ∗ = F .
case 2: F has exactly two chains.
F satisfies conditions (nb1) − (nb3) and (nb5) of Lemma 2.4. In this case, F satisfies
conditions (i)− (iv) of Theorem 3.1. Therefore F ∗ = F .
case 3: F has exactly one chain.
F satisfies conditions (nb1) − (nb4) of Lemma 2.4 as illustrated in Figure 5(a). Corre-
sponding rectilinear drawing for the plane embedding of Γ′ is illustrated in Figure 5(b),
where F = Fo(Γ′). In this case F 6= F ∗. In Figure 5(b), every 3-legged cycles in the
sub-graph shown by shaded region has at least one degree-2 vertex. Hence, there is no
bad 3-legged cycle in Γ′. Every bad 3-handed cycle is in the shaded region, if any bad
3-handed cycle exists. One can observe that, the face F induces another face F ′ that
satisfies conditions (i) − (iv) of Theorem 3.1. F ′ has at least two chains and if F ′ has
exactly two chains then every chain has at least two vertices. The orthogonal drawing
taken the face F ′ as outer face is orthogonally convex as illustrated in Figure 5(c). In
this case F ∗ = F ′.

4. Conclusions

In this paper we have presented a necessary and sufficient condition for a subdivision
of a triconnected cubic planar graph G to have a rectilinear orthogonally convex draw-
ing. Our condition leads to a linear-time algorithm to examine whether G satisfies the
conditions and to find a rectilinear orthogonally convex drawing, if it exists. We have
shown an interesting relationship that such a graph G has a rectilinear drawing if and
only if G has a rectilinear orthogonally convex drawing. Finding linear-time algorithms
for rectilinear orthogonally convex drawings for remaining larger classes of planar graphs
may be a nice future work. We have given an outline of a linear algorithm for no-bend



Linear-Time Rectilinear Drawings of Subdivisions ... 819

orthogonal drawings and no-bend orthogonally convex drawings of general planar graphs
of maximum degree three [18]. However, the algorithm presented in this paper is a simpler
one for a special class of graphs.
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