ISSN 1686-0209
Discrete and Computational Geometry, Graphs, and Games

Graph of $u v$-Paths in Connected Graphs

Eduardo Rivera-Campo
Departamento de Matemáticas, Universidad Autónoma Metropolitana - Iztapalapa
e-mail : erc@xanum.uam.mx

Abstract

For a connected graph G and vertices u, v of G we define an abstract graph $\mathcal{P}\left(G_{u v}\right)$ whose vertices are the paths joining u and v in G, where paths S and T are adjacent if T is obtained from S by replacing a subpath $S_{x y}$ of S with an internally disjoint subpath $T_{x y}$ of T. Let \mathcal{C} be a set of cycles of G; the uv-path graph of G defined by \mathcal{C} is the spanning subgraph $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ of $\mathcal{P}\left(G_{u v}\right)$ in which two paths S and T are adjacent if and only if the unique cycle σ contained in $S \cup T$ lies in \mathcal{C}. We prove that $\mathcal{P}\left(G_{u v}\right)$ is always connected and give a necessary condition and a sufficient condition for a graph $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ to be connected.

MSC: 05C38; 05C12
Keywords: $u v$-path; path graph: flipping subpaths

Submission date: 21.11.2021 / Acceptance date: 09.03.2023

1. Introduction

For any vertices x, y of a path L, we denote by $L_{x y}$ the subpath of L that joins x and y. Let G be a connected graph and u and v be vertices of G. The uv-path graph of G is the graph $\mathcal{P}\left(G_{u v}\right)$ whose vertices are the paths joining u and v in G, where two paths S and T are adjacent if T is obtained from S by replacing a subpath $S_{x y}$ of S with an internally disjoint subpath $T_{x y}$ of T. See Fig. 1 for a small example.

Let P and f be a polytope and a linear functional f in \mathbb{R}^{d} which is nonconstant on every edge of P. Let x and y be the vertices of P in which f achieves its minimum and maximum, respectively. An f-monotone path on P is a sequence $x=v_{0}, v_{1}, \ldots, v_{m}=y$ of vertices of P such that for $i=0,1, \ldots, m-1, v_{i} v_{i+1}$ is an edge of P with $f\left(v_{i}\right)<f\left(v_{i+1}\right)$.

The uv-path graph $\mathcal{P}\left(G_{u v}\right)$ is closely related to the graph $G(P, f)$ of f-monotone paths on a polytope P (see C. A. Athanasiadis et al $[1,2]$), whose vertices are the f-monotone paths on P and where two paths S and T are adjacent if there is a 2-dimensional face F of P such that T is obtained from S by replacing an f-monotone subpath of S contained in F with the complementary f-monotone subpath of T contained in F.

In Section 2 we show that the graphs $\mathcal{P}\left(G_{u v}\right)$ are always connected as is the case for the graphs $G(P, f)$.

G

Figure 1. A graph G and the corresponding $u v$-path graph $\mathcal{P}\left(G_{u v}\right)$
If S and T are adjacent vertices in a $u v$-path graph $\mathcal{P}\left(G_{u v}\right)$, then $S \cup T$ is a subgraph of G consisting of a unique cycle σ joined to u and v by disjoint paths P_{u} and P_{v}. See Fig. 2.

Figure 2. $S \cup T$
Let \mathcal{C} be a set of cycles of G; the uv-path graph of G defined by \mathcal{C} is the spanning subgraph $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ of $\mathcal{P}\left(G_{u v}\right)$ where two paths S and T are adjacent if and only if the unique cycle σ which is contained in $S \cup T$ lies in \mathcal{C}. A graph $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ may be disconnected.

The uv-path graph $\mathcal{P}\left(G_{u v}\right)$ is also related to the well-known tree graph $\mathcal{T}(G)$ of a connected graph G, studied by R. L. Cummins [3], in which the vertices are the spanning trees of G and the edges correspond to pairs of trees S and R which are obtained from each other by a single edge exchange. As in the $u v$-path graph, if two trees S and R are adjacent in $\mathcal{T}(G)$, then $S \cup R$ is a subgraph of G containing a unique cycle. X. Li et al [5] define, in an analogous way, a subgraph $\mathcal{T}_{\mathcal{C}}(G)$ of $\mathcal{T}(G)$ for a set of cycles \mathcal{C} of G and give a necessary condition and a sufficient condition for $\mathcal{T}_{\mathcal{C}}(G)$ to be connected. In Section 3 and Section 4, respectively, we show that the same conditions apply to $u v$-path graphs $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$.

Similar results are obtained by A. P. Figueroa et al [4] with respect to the perfect matching graph $\mathcal{M}(G)$ of a graph G where the vertices are the perfect matchings of G and in which two matchings L and M are adjacent if their symmetric difference is a cycle of G. Again, if L and M are adjacent matchings in $\mathcal{M}(G)$, then $L \cup M$ contains a unique cycle of G.

For any subgraphs F and H of a graph G, we denote by $F \Delta H$ the subgraph of G induced by the set of edges $(E(F) \backslash E(H)) \cup(E(H) \backslash E(F))$.

2. Preliminary Results

In this section we prove that the $u v$-path graph is connected for any connected graph G and give an upper bound for the diameter of a graph $\mathcal{P}\left(G_{u v}\right)$.

Theorem 2.1. Let G be a connected graph. The uv-path graph $\mathcal{P}\left(G_{u v}\right)$ is connected for every pair of vertices u, v of G.
Proof. For any different $u v$ paths Q and R in G denote by $n(Q, R)$ the number of consecutive initial edges Q and R have in common. Assume the result is false and choose two $u v$ paths $S: u=x_{0}, x_{1}, \ldots, x_{s}=v$ and $T: u=y_{0}, y_{1}, \ldots, y_{t}=v$ in different components of $\mathcal{P}\left(G_{u v}\right)$ for which $n^{*}=n(S, T)$ is maximum.

Since edges $x_{n^{*}} x_{n^{*}+1}$ and $y_{n^{*}} y_{n^{*}+1}$ are not equal, $x_{n^{*}+1} \neq y_{n^{*}+1}$. Let $j=\min \{i$: $\left.x_{n^{*}+i} \in V(T)\right\}$ and $k=\min \left\{i: y_{n^{*}+i} \in V(S)\right\}$ and let l and m be integers such that $y_{l}=x_{n^{*}+j}, x_{m}=y_{n^{*}+k}$. Consider the path:

$$
S^{\prime}: u=x_{0}, x_{1}, \ldots, x_{n^{*}}, y_{n^{*}+1}, y_{n^{*}+2}, \ldots, y_{n^{*}+k}, x_{m+1}, x_{m+2}, \ldots, x_{s}=v
$$

Paths S and S^{\prime} are adjacent in $\mathcal{P}\left(G_{u v}\right)$ since S^{\prime} is obtained from S by replacing the subpath $x_{n^{*}}, x_{n^{*}+1}, \ldots, x_{m}$ of S with the subpath $y_{n^{*}}, y_{n^{*}+1}, \ldots, y_{n^{*}+k}$ of S^{\prime}. Notice that $n\left(S^{\prime}, T\right) \geq n(S, T)+1$ since $x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{n^{*}-1} x_{n^{*}}, x_{n^{*}} y_{n^{*}+1} \in E\left(S^{\prime}\right) \cap E(T)$. By the choice of S, and T, paths S^{\prime} and T are connected in $P\left(G_{u v}\right)$. This implies that S and T are also connected in $\mathcal{P}\left(G_{u v}\right)$ which is a contradiction.

For any two vertices u and v of a connected graph G we denote by $d_{G}(u, v)$ the distance between u and v in G, that is the length of a shortest $u v$ path in G. The diameter of a connected graph G is the maximum distance among pairs of vertices of G. For a path P, we denote by $l(P)$ the length of P.

Theorem 2.2. Let u and v be vertices of a connected graph G. The diameter of the graph $\mathcal{P}\left(G_{u v}\right)$ is at most $2 d_{G}(u, v)$.
Proof. Let S and T be $u v$ paths in G and let P be a shortest $u v$ path in G. From the proof of Theorem 2.1 one can see that there are two paths Q_{S} and Q_{T} in $\mathcal{P}\left(G_{u v}\right)$, each with length at most $l(P)$, joining S to P and T to P, respectively. Clearly $Q_{S} \cup Q_{T}$ contains a path joining S and T in $\mathcal{P}\left(G_{u v}\right)$ with length at most $2 l(P)=2 d_{G}(u, v)$.

In Fig. 3 we show a connected graph G and paths S and T joining vertices u and v of G such that $d_{G}(u, v)=2$ and $d_{\mathcal{P}\left(G_{u v}\right)}(S, T)=4$.

Figure 3. Graph G and paths S and T.
For any positive integer $k>2$ the graph G can be extended as in Fig. 4 to a graph G_{k} such that $d_{G_{k}}(u, v)=k$, while the diameter of the corresponding $u v$-path graph is $2 k$. This shows that Theorem 2.2 is tight.

Figure 4. Graph G_{k}.

3. Necessary Condition

Let u and v be vertices of a connected graph G and S and T be two $u v$ paths adjacent in $\mathcal{P}\left(G_{u v}\right)$. Since T is obtained from S by replacing a subpath $S_{x y}$ of S with an internally disjoint subpath $T_{x y}$ of T, the graph $S \Delta T$ is the cycle $S_{x y} \cup T_{x y}$.

An even subgraph of a graph G is a subgraph of G with the property that each of its vertices has even degree. The cycle space of G is the set of all even subgraphs of G, together with the symmetric difference operator.
Theorem 3.1. Let G be a connected graph, u and v be vertices of G and \mathcal{C} be a set of cycles of G. If the graph $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected, then \mathcal{C} spans the cycle space of G.
Proof. Let σ be a cycle of G. Since G is connected, there are two disjoint paths P_{u} and P_{v} joining, respectively, u and v to σ. Denote by u^{\prime} and v^{\prime} the unique vertices of P_{u} and P_{v}, respectively, that lie in σ. Vertices u^{\prime} and v^{\prime} partition cycle σ into two internally disjoint paths Q and R. Let $S=P_{u} \cup Q \cup P_{v}$ and $T=P_{u} \cup R \cup P_{v}$. Clearly S and T are two different $u v$ paths in G such that $S \Delta T=\sigma$.

Since $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected, there are $u v$ paths $S=W_{0}, W_{1}, \ldots, W_{k}=T$ such that for $i=1,2, \ldots, k$, paths W_{i-1} and W_{i} are adjacent in $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$. For $i=1,2, \ldots k$ let $\alpha_{i}=W_{i-1} \Delta W_{i}$. Then $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are cycles in \mathcal{C} such that:

$$
\alpha_{1} \Delta \alpha_{2} \Delta \cdots \Delta \alpha_{k}=\left(W_{0} \Delta W_{1}\right) \Delta\left(W_{1} \Delta W_{2}\right) \Delta \cdots \Delta\left(W_{k-1} \Delta W_{k}\right)=W_{0} \Delta W_{k}=\sigma
$$

Therefore \mathcal{C} spans σ.
Let G be a complete graph with four vertices u, x, y, v and let $\mathcal{C}=\{\alpha, \beta, \delta\}$, where $\alpha=u x v, \beta=u y v$ and $\delta=u x y v$. Set \mathcal{C} spans the cycle space of G but the graph $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is not connected since the $u v$ path $u y x v$ is an isolated vertex of $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$, see Fig 5. This shows that the condition in Theorem 3.1 is not sufficient for $P_{\mathcal{C}}\left(G_{u v}\right)$ to be connected.

Figure 5. Graph G, set $\mathcal{C}=\{\alpha, \beta, \delta\}$ and graph $\mathcal{P}_{C}\left(G_{u v}\right)$.

4. Sufficient Condition

A unicycle of a connected graph G is a spanning subgraph \mathcal{U} of G that contains a unique cycle. Let u and v be vertices of a connected graph G. A uv-monocle of G is a subgraph of G that consists of a cycle σ and two disjoint paths P_{u} and P_{v} that join, respectively u and v to σ, see Fig. 2. Clearly for each $u v$-monocle \mathcal{M} of a connected graph G, there is a unicycle \mathcal{U} of G that contains \mathcal{M}.

Let \mathcal{C} be a set of cycles of G. A cycle σ of G has Property Δ^{*} with respect to \mathcal{C} if for every unicycle \mathcal{U} containing σ there is an edge e of G, not in \mathcal{U} and two cycles $\alpha, \beta \in \mathcal{C}$, contained in $\mathcal{U}+e$, such that $\sigma=\alpha \Delta \beta$.

Lemma 4.1. Let G be a connected graph and u and v be vertices of G. Also let \mathcal{C} be a set of cycles of G and σ be a cycle having Property Δ^{*} with respect to \mathcal{C}. The graph $\mathcal{P}_{\mathcal{C} \cup\{\sigma\}}\left(G_{u v}\right)$ is connected if and only if $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected.

Proof. If $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected, then $\mathcal{P}_{\mathcal{C} \cup\{\sigma\}}\left(G_{u v}\right)$ is connected since the former is a subgraph of the latter.

Assume now $\mathcal{P}_{\mathcal{C} \cup\{\sigma\}}\left(G_{u v}\right)$ is connected and let S and T be $u v$ paths in G which are adjacent in $\mathcal{P}_{\mathcal{C} \cup\{\sigma\}}\left(G_{u v}\right)$. We show next that S and T are connected in $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ by a path of length at most 2 .

If $\omega=S \Delta T \in \mathcal{C}$, then S and T are adjacent in $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$. For the case $\omega=\sigma$ denote by \mathcal{M} the $u v$-monocle given by $S \cup T$.

Let \mathcal{U} be a unicycle of G containing \mathcal{M}. Since σ has Property Δ^{*} with respect to \mathcal{C}, there exists an edge $e=x y$ of G, not in \mathcal{U}, and two cycles $\alpha, \beta \in \mathcal{C}$ contained in $\mathcal{U}+e$ such that $\sigma=\alpha \Delta \beta$.

Let x^{\prime} and y^{\prime} denote the vertices in \mathcal{M} which are closest in \mathcal{U} to x and y, respectively. Then there exists a path $R_{x^{\prime} y^{\prime}}$ in G, with edges in $E(\mathcal{U}+e) \backslash E(\mathcal{M})$ joining x^{\prime} and y^{\prime} and such that cycles α and β are contained in $\mathcal{M} \cup R_{x^{\prime} y^{\prime}}$. We analyze several cases according to the location of x^{\prime} and y^{\prime} in \mathcal{M}.

Denote by P_{u} and P_{v} the unique paths, contained in \mathcal{M}, that join u and v to σ and by u^{\prime} and v^{\prime} the vertices where P_{u} and P_{v}, respectively, meet σ.

Case 1.- $x^{\prime} \in V\left(P_{u}\right), y^{\prime} \in V\left(P_{v}\right)$. Without loss of generality we assume $\alpha=S_{x^{\prime} y^{\prime}} \cup R_{y^{\prime} x^{\prime}}$ and $\beta=T_{x^{\prime} y^{\prime}} \cup R_{y^{\prime} x^{\prime}}$, see Fig. 6 .

Figure 6. Left: $\mathcal{M} \cup R_{y^{\prime} x^{\prime}}$. Right: Cycles α and β.

Let Q be the $u v$-path obtained from S by replacing $S_{x^{\prime} y^{\prime}}$ with $R_{x^{\prime} y^{\prime}}$. Notice that Q can also be obtained from T by replacing $T_{x^{\prime} y^{\prime}}$ with $R_{x^{\prime} y^{\prime}}$.

Case 2.- $x^{\prime} \in V\left(P_{u}\right), y^{\prime} \in S \cap \sigma$. Without loss of generality we assume $\alpha=S_{x^{\prime} y^{\prime}} \cup R_{y^{\prime} x^{\prime}}$ and $\beta=T_{x^{\prime} v^{\prime}} \cup S_{v^{\prime} y^{\prime}} \cup R_{y^{\prime} x^{\prime}}$, see Fig. 7.

Figure 7. Left: $\mathcal{M} \cup R_{y^{\prime} x^{\prime}}$. Right: Cycles α and β.
Again let Q be the $u v$-path obtained from S by replacing $S_{x^{\prime} y^{\prime}}$ with $R_{x^{\prime} y^{\prime}}$. In this case, Q can also be obtained from T by replacing $T_{x^{\prime} v^{\prime}}$ with $R_{x^{\prime} y^{\prime}} \cup S_{y^{\prime} v^{\prime}}$.

Case 3.- $x^{\prime}, y^{\prime} \in S \cap \sigma$. Without loss of generality we assume $\alpha=S_{x^{\prime} y^{\prime}} \cup R_{y^{\prime} x^{\prime}}$ and $\beta=S_{u^{\prime} x^{\prime}} \cup R_{x^{\prime} y^{\prime}} \cup S_{y^{\prime} v^{\prime}} \cup T_{v^{\prime} u^{\prime}}$, see Fig. 8.

Figure 8. Left: $\mathcal{M} \cup R_{y^{\prime} x^{\prime}}$. Right: Cycles α and β.
Let Q be the $u v$-path obtained from S by replacing $S_{x^{\prime} y^{\prime}}$ with $R_{x^{\prime} y^{\prime}}$. Path Q is also obtained from T by replacing $T_{u^{\prime} v^{\prime}}$ with $S_{u^{\prime} x^{\prime}} \cup R_{x^{\prime} y^{\prime}} \cup S_{y^{\prime} v^{\prime}}$.

Case 4.- $x^{\prime} \in S \cap \sigma$ and $y^{\prime} \in T \cap \sigma$. Without loss of generality we assume $\alpha=S_{u^{\prime} x^{\prime}} \cup$ $R_{x^{\prime} y^{\prime}} \cup T_{y^{\prime} u^{\prime}}$ and $\beta=T_{y^{\prime} v^{\prime}} \cup S_{v^{\prime} x^{\prime}} \cup R_{x^{\prime} y^{\prime}}$., see Fig. 9 .

Let Q be the $u v$-path obtained from S by replacing $S_{u^{\prime} x^{\prime}}$ with $T_{u^{\prime} y^{\prime}} \cup R_{y^{\prime} x^{\prime}}$. Now Q can also be obtained from T by replacing $T_{y^{\prime} v^{\prime}}$ with $R_{y^{\prime}, x^{\prime}} \cup S_{x^{\prime} v^{\prime}}$

In each case $S \Delta Q=\alpha$ and $Q \Delta T=\beta$. Since $\alpha, \beta \in \mathcal{C}$, path S is adjacent to Q and path Q is adjacent to T in $P_{\mathcal{C}}\left(G_{u v}\right)$. Therefore S and T are connected in $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ by a path with length at most 2 .

Figure 9. Left: $\mathcal{M} \cup R_{y^{\prime} x^{\prime}}$. Right: Cycles α and β.

All remaining cases are analogous to either Case 2 or to Case 3 .
Consider a connected graph G with two specified vertices u and v and let \mathcal{C} be a set of cycles of G. Construct a sequence of sets of cycles $\mathcal{C}=\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ as follows: If there is a cycle σ_{1} not in \mathcal{C}_{0} that has Property Δ^{*} with respect to \mathcal{C}_{0} add σ_{1} to \mathcal{C}_{0} to obtain \mathcal{C}_{1}. At step t add to \mathcal{C}_{t} a new cycle σ_{t+1} (if it exists) that has Property Δ^{*} with respect to \mathcal{C}_{t} to obtain \mathcal{C}_{t+1}. Stop at a step k where there are no cycles, not in \mathcal{C}_{k}, having Property Δ^{*} with respect to \mathcal{C}_{k}. We denote by $C l(\mathcal{C})$ the final set obtained with this process. Li et al [5] proved that the final set of cycles obtained is independent of which cycle σ_{t} is added at each step in the case of multiple possibilities.

A set of cycles of G is Δ^{*}-dense if $C l(\mathcal{C})$ is the whole set of cycles of G.
Theorem 4.2. If \mathcal{C} is Δ^{*}-dense, then $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected.
Proof. Since \mathcal{C} is Δ^{*}-dense, $C l(\mathcal{C})$ is the set of cycles of G and therefore $\mathcal{P}_{C l(\mathcal{C})}\left(G_{u v}\right)=$ $\mathcal{P}\left(G_{u v}\right)$ which is connected by Theorem 2.1.

Let $\mathcal{C}=\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{k}=C l(\mathcal{C})$ be a sequence of sets of cycles obtained from \mathcal{C} as above. By Lemma 4.1, all graphs $\mathcal{P}_{C l(\mathcal{C})}\left(G_{u v}\right)=\mathcal{P}_{\mathcal{C}_{k}}\left(G_{u v}\right), \mathcal{P}_{\mathcal{C}_{k-1}}\left(G_{u v}\right), \ldots, \mathcal{P}_{\mathcal{C}_{0}}\left(G_{u v}\right)=\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ are connected.

Li et al [5] proved the following:
Theorem 4.3. If G is a plane connected graph and \mathcal{C} is the set of internal faces of G, then \mathcal{C} is Δ^{*}-dense.

Theorem 4.4. If G is a connected graph and \mathcal{C} is the set of cycles that contain a given edge e of G, then \mathcal{C} is Δ^{*}-dense.

We end this section with the following immediate corollaries.
Corollary 4.5. Let u and v be vertices of a connected plane graph G. If \mathcal{C} is the set of internal faces of G, then $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected.
Proof. By Theorem 4.3, \mathcal{C} is Δ^{*}-dense and by Theorem 4.2, $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected.
Corollary 4.6. Let u and v be vertices of a connected graph G. If \mathcal{C} is the set of cycles of G that contain a given edge e, then $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected.

Proof. By Theorem 4.4, \mathcal{C} is Δ^{*}-dense and by Theorem 4.2, $\mathcal{P}_{\mathcal{C}}\left(G_{u v}\right)$ is connected.
Corollary 4.7. Let u and v be vertices of a connected graph G. If \mathcal{C}_{u} is the set of cycles of G that contain vertex u, then $\mathcal{P}_{\mathcal{C}_{u}}\left(G_{u v}\right)$ is connected.

Proof. Let e be an edge of G incident with vertex u. Clearly the set $\mathcal{C}(e)$ of cycles that contain edge e is a subset of the set \mathcal{C}_{u}. Therefore $\mathcal{P}_{\mathcal{C}(e)}\left(G_{u v}\right)$ is a subgraph of $\mathcal{P}_{\mathcal{C}_{u}}\left(G_{u v}\right)$. By Corollary 4.6, the graph $\mathcal{P}_{\mathcal{C}(e)}\left(G_{u v}\right)$ is connected.

Acknowledgements

We thank the referees for their comments and suggestions on the manuscript. This work was partially supported by CONACyT, México (project A1-S-12891).

References

[1] C.A. Athanasiadis, J.A. de Loera, Z. Zhang, Enumerative problems for arborescences and monotone paths on polytopes, arXiv:2002.00999v1 [math.CO].
[2] C.A. Athanasiadis, P.H. Edelman, V. Reiner, Monotone paths on polytopes, Math. Z. 235 (2000) 315-334.
[3] R.L. Cummins, Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory CT-13 (1966) 82-90.
[4] A.P. Figueroa, J. Fresán-Figueroa, E. Rivera-Campo, On the perfect matching graph defined by a set of cycles, Bol. Soc. Mat. Mex. 23 (2) (2017) 549-556.
[5] X. Li, V. Neumann-Lara, E. Rivera-Campo, On a tree graph defined by a set of cycles, Discrete Math. 271 (2003) 303-310.

