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Abstract For a connected graph G and vertices u, v of G we define an abstract graph P(Guv) whose

vertices are the paths joining u and v in G, where paths S and T are adjacent if T is obtained from S by

replacing a subpath Sxy of S with an internally disjoint subpath Txy of T . Let C be a set of cycles of G;

the uv-path graph of G defined by C is the spanning subgraph PC(Guv) of P(Guv) in which two paths S

and T are adjacent if and only if the unique cycle σ contained in S ∪ T lies in C. We prove that P(Guv)

is always connected and give a necessary condition and a sufficient condition for a graph PC(Guv) to be

connected.
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1. Introduction

For any vertices x, y of a path L, we denote by Lxy the subpath of L that joins x and
y. Let G be a connected graph and u and v be vertices of G. The uv-path graph of G
is the graph P(Guv) whose vertices are the paths joining u and v in G, where two paths
S and T are adjacent if T is obtained from S by replacing a subpath Sxy of S with an
internally disjoint subpath Txy of T . See Fig. 1 for a small example.

Let P and f be a polytope and a linear functional f in Rd which is nonconstant on
every edge of P . Let x and y be the vertices of P in which f achieves its minimum and
maximum, respectively. An f -monotone path on P is a sequence x = v0, v1, . . . , vm = y of
vertices of P such that for i = 0, 1, . . . ,m−1, vivi+1 is an edge of P with f(vi) < f(vi+1).

The uv-path graph P(Guv) is closely related to the graph G(P, f) of f -monotone paths
on a polytope P (see C. A. Athanasiadis et al [1, 2]), whose vertices are the f -monotone
paths on P and where two paths S and T are adjacent if there is a 2-dimensional face F
of P such that T is obtained from S by replacing an f -monotone subpath of S contained
in F with the complementary f -monotone subpath of T contained in F .

In Section 2 we show that the graphs P(Guv) are always connected as is the case for
the graphs G(P, f).
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Figure 1. A graph G and the corresponding uv-path graph P(Guv)

If S and T are adjacent vertices in a uv-path graph P(Guv), then S ∪ T is a subgraph
of G consisting of a unique cycle σ joined to u and v by disjoint paths Pu and Pv. See
Fig. 2.

Figure 2. S ∪ T

Let C be a set of cycles of G; the uv-path graph of G defined by C is the spanning
subgraph PC(Guv) of P(Guv) where two paths S and T are adjacent if and only if the
unique cycle σ which is contained in S∪T lies in C. A graph PC(Guv) may be disconnected.

The uv-path graph P(Guv) is also related to the well-known tree graph T (G) of a
connected graph G, studied by R. L. Cummins [3], in which the vertices are the spanning
trees of G and the edges correspond to pairs of trees S and R which are obtained from
each other by a single edge exchange. As in the uv-path graph, if two trees S and R are
adjacent in T (G), then S∪R is a subgraph of G containing a unique cycle. X. Li et al [5]
define, in an analogous way, a subgraph TC(G) of T (G) for a set of cycles C of G and give
a necessary condition and a sufficient condition for TC(G) to be connected. In Section 3
and Section 4, respectively, we show that the same conditions apply to uv-path graphs
PC(Guv).

Similar results are obtained by A. P. Figueroa et al [4] with respect to the perfect
matching graph M(G) of a graph G where the vertices are the perfect matchings of G
and in which two matchings L and M are adjacent if their symmetric difference is a cycle
of G. Again, if L and M are adjacent matchings inM(G), then L∪M contains a unique
cycle of G.

For any subgraphs F and H of a graph G, we denote by F∆H the subgraph of G
induced by the set of edges (E(F ) \ E(H)) ∪ (E(H) \ E(F )).

2. Preliminary Results

In this section we prove that the uv-path graph is connected for any connected graph
G and give an upper bound for the diameter of a graph P(Guv).
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Theorem 2.1. Let G be a connected graph. The uv-path graph P(Guv) is connected for
every pair of vertices u, v of G.

Proof. For any different uv paths Q and R in G denote by n(Q,R) the number of consec-
utive initial edges Q and R have in common. Assume the result is false and choose two
uv paths S : u = x0, x1, . . . , xs = v and T : u = y0, y1, . . . , yt = v in different components
of P(Guv) for which n∗ = n(S, T ) is maximum.

Since edges xn∗xn∗+1 and yn∗yn∗+1 are not equal, xn∗+1 6= yn∗+1. Let j = min{i :
xn∗+i ∈ V (T )} and k = min{i : yn∗+i ∈ V (S)} and let l and m be integers such that
yl = xn∗+j , xm = yn∗+k. Consider the path:

S′ : u = x0, x1, . . . , xn∗ , yn∗+1, yn∗+2, . . . , yn∗+k, xm+1, xm+2, . . . , xs = v

Paths S and S′ are adjacent in P(Guv) since S′ is obtained from S by replacing the
subpath xn∗ , xn∗+1, . . . , xm of S with the subpath yn∗ , yn∗+1, . . . , yn∗+k of S′. Notice that
n(S′, T ) ≥ n(S, T ) + 1 since x0x1, x1x2, . . . , xn∗−1xn∗ , xn∗yn∗+1 ∈ E(S′) ∩ E(T ). By the
choice of S, and T , paths S′ and T are connected in P (Guv). This implies that S and T
are also connected in P(Guv) which is a contradiction.

For any two vertices u and v of a connected graph G we denote by dG(u, v) the distance
between u and v in G, that is the length of a shortest uv path in G. The diameter of a
connected graph G is the maximum distance among pairs of vertices of G. For a path P ,
we denote by l(P ) the length of P .

Theorem 2.2. Let u and v be vertices of a connected graph G. The diameter of the
graph P(Guv) is at most 2dG(u, v).

Proof. Let S and T be uv paths in G and let P be a shortest uv path in G. From the
proof of Theorem 2.1 one can see that there are two paths QS and QT in P(Guv), each
with length at most l(P ), joining S to P and T to P , respectively. Clearly QS ∪ QT
contains a path joining S and T in P(Guv) with length at most 2l(P ) = 2dG(u, v).

In Fig. 3 we show a connected graph G and paths S and T joining vertices u and v of
G such that dG(u, v) = 2 and dP(Guv)(S, T ) = 4.

Figure 3. Graph G and paths S and T .

For any positive integer k > 2 the graph G can be extended as in Fig. 4 to a graph
Gk such that dGk

(u, v) = k, while the diameter of the corresponding uv-path graph is 2k.
This shows that Theorem 2.2 is tight.
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Figure 4. Graph Gk.

3. Necessary Condition

Let u and v be vertices of a connected graph G and S and T be two uv paths adjacent
in P(Guv). Since T is obtained from S by replacing a subpath Sxy of S with an internally
disjoint subpath Txy of T , the graph S∆T is the cycle Sxy ∪ Txy.

An even subgraph of a graph G is a subgraph of G with the property that each of
its vertices has even degree. The cycle space of G is the set of all even subgraphs of G,
together with the symmetric difference operator.

Theorem 3.1. Let G be a connected graph, u and v be vertices of G and C be a set of
cycles of G. If the graph PC(Guv) is connected, then C spans the cycle space of G.

Proof. Let σ be a cycle of G. Since G is connected, there are two disjoint paths Pu and
Pv joining, respectively, u and v to σ. Denote by u′ and v′ the unique vertices of Pu
and Pv, respectively, that lie in σ. Vertices u′ and v′ partition cycle σ into two internally
disjoint paths Q and R. Let S = Pu ∪Q∪ Pv and T = Pu ∪R ∪ Pv. Clearly S and T are
two different uv paths in G such that S∆T = σ.

Since PC(Guv) is connected, there are uv paths S = W0,W1, . . . ,Wk = T such that
for i = 1, 2, . . . , k, paths Wi−1 and Wi are adjacent in PC(Guv). For i = 1, 2, . . . k let
αi = Wi−1∆Wi. Then α1, α2, . . . , αk are cycles in C such that:

α1∆α2∆ · · ·∆αk = (W0∆W1)∆(W1∆W2)∆ · · ·∆(Wk−1∆Wk) = W0∆Wk = σ

Therefore C spans σ.

Let G be a complete graph with four vertices u, x, y, v and let C = {α, β, δ}, where
α = uxv, β = uyv and δ = uxyv. Set C spans the cycle space of G but the graph PC(Guv)
is not connected since the uv path uyxv is an isolated vertex of PC(Guv), see Fig 5. This
shows that the condition in Theorem 3.1 is not sufficient for PC(Guv) to be connected.

Figure 5. Graph G, set C = {α, β, δ} and graph PC(Guv).
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4. Sufficient Condition

A unicycle of a connected graph G is a spanning subgraph U of G that contains a
unique cycle. Let u and v be vertices of a connected graph G. A uv-monocle of G is
a subgraph of G that consists of a cycle σ and two disjoint paths Pu and Pv that join,
respectively u and v to σ, see Fig. 2. Clearly for each uv-monocle M of a connected
graph G, there is a unicycle U of G that contains M.

Let C be a set of cycles of G. A cycle σ of G has Property ∆∗ with respect to C if for
every unicycle U containing σ there is an edge e of G, not in U and two cycles α, β ∈ C,
contained in U + e, such that σ = α∆β.

Lemma 4.1. Let G be a connected graph and u and v be vertices of G. Also let C be
a set of cycles of G and σ be a cycle having Property ∆∗ with respect to C. The graph
PC∪{σ}(Guv) is connected if and only if PC(Guv) is connected.

Proof. If PC(Guv) is connected, then PC∪{σ}(Guv) is connected since the former is a
subgraph of the latter.

Assume now PC∪{σ}(Guv) is connected and let S and T be uv paths in G which are
adjacent in PC∪{σ}(Guv). We show next that S and T are connected in PC(Guv) by a
path of length at most 2.

If ω = S∆T ∈ C, then S and T are adjacent in PC(Guv). For the case ω = σ denote
by M the uv-monocle given by S ∪ T .

Let U be a unicycle of G containing M. Since σ has Property ∆∗ with respect to C,
there exists an edge e = xy of G, not in U , and two cycles α, β ∈ C contained in U + e
such that σ = α∆β.

Let x′ and y′ denote the vertices inM which are closest in U to x and y, respectively.
Then there exists a path Rx′y′ in G, with edges in E(U + e)\E(M) joining x′ and y′ and
such that cycles α and β are contained inM∪Rx′y′ . We analyze several cases according
to the location of x′ and y′ in M.

Denote by Pu and Pv the unique paths, contained in M, that join u and v to σ and
by u′ and v′ the vertices where Pu and Pv, respectively, meet σ.

Case 1.- x′ ∈ V (Pu), y′ ∈ V (Pv). Without loss of generality we assume α = Sx′y′ ∪Ry′x′
and β = Tx′y′ ∪Ry′x′ , see Fig. 6.

Figure 6. Left: M∪Ry′x′ . Right: Cycles α and β.
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Let Q be the uv-path obtained from S by replacing Sx′y′ with Rx′y′ . Notice that Q
can also be obtained from T by replacing Tx′y′ with Rx′y′ .

Case 2.- x′ ∈ V (Pu), y′ ∈ S ∩ σ. Without loss of generality we assume α = Sx′y′ ∪Ry′x′
and β = Tx′v′ ∪ Sv′y′ ∪Ry′x′ , see Fig. 7.

Figure 7. Left: M∪Ry′x′ . Right: Cycles α and β.

Again let Q be the uv-path obtained from S by replacing Sx′y′ with Rx′y′ . In this case,
Q can also be obtained from T by replacing Tx′v′ with Rx′y′ ∪ Sy′v′ .

Case 3.- x′, y′ ∈ S ∩ σ. Without loss of generality we assume α = Sx′y′ ∪ Ry′x′ and
β = Su′x′ ∪Rx′y′ ∪ Sy′v′ ∪ Tv′u′ , see Fig. 8.

Figure 8. Left: M∪Ry′x′ . Right: Cycles α and β.

Let Q be the uv-path obtained from S by replacing Sx′y′ with Rx′y′ . Path Q is also
obtained from T by replacing Tu′v′ with Su′x′ ∪Rx′y′ ∪ Sy′v′ .

Case 4.- x′ ∈ S ∩ σ and y′ ∈ T ∩ σ. Without loss of generality we assume α = Su′x′ ∪
Rx′y′ ∪ Ty′u′ and β = Ty′v′ ∪ Sv′x′ ∪Rx′y′ . , see Fig. 9.

Let Q be the uv-path obtained from S by replacing Su′x′ with Tu′y′ ∪ Ry′x′ . Now Q
can also be obtained from T by replacing Ty′v′ with Ry′,x′ ∪ Sx′v′

In each case S∆Q = α and Q∆T = β. Since α, β ∈ C, path S is adjacent to Q and
path Q is adjacent to T in PC(Guv). Therefore S and T are connected in PC(Guv) by a
path with length at most 2.
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Figure 9. Left: M∪Ry′x′ . Right: Cycles α and β.

All remaining cases are analogous to either Case 2 or to Case 3.

Consider a connected graph G with two specified vertices u and v and let C be a set of
cycles of G. Construct a sequence of sets of cycles C = C0, C1, . . . , Ck as follows: If there
is a cycle σ1 not in C0 that has Property ∆∗ with respect to C0 add σ1 to C0 to obtain C1.
At step t add to Ct a new cycle σt+1 (if it exists) that has Property ∆∗ with respect to
Ct to obtain Ct+1. Stop at a step k where there are no cycles, not in Ck, having Property
∆∗ with respect to Ck. We denote by Cl(C) the final set obtained with this process. Li
et al [5] proved that the final set of cycles obtained is independent of which cycle σt is
added at each step in the case of multiple possibilities.

A set of cycles of G is ∆∗-dense if Cl(C) is the whole set of cycles of G.

Theorem 4.2. If C is ∆∗-dense, then PC(Guv) is connected.

Proof. Since C is ∆∗-dense, Cl(C) is the set of cycles of G and therefore PCl(C)(Guv) =
P(Guv) which is connected by Theorem 2.1.

Let C = C0, C1, . . . , Ck = Cl(C) be a sequence of sets of cycles obtained from C as above.
By Lemma 4.1, all graphs PCl(C)(Guv) = PCk(Guv),PCk−1

(Guv), . . . ,PC0(Guv) = PC(Guv)
are connected.

Li et al [5] proved the following:

Theorem 4.3. If G is a plane connected graph and C is the set of internal faces of G,
then C is ∆∗-dense.

Theorem 4.4. If G is a connected graph and C is the set of cycles that contain a given
edge e of G, then C is ∆∗-dense.

We end this section with the following immediate corollaries.

Corollary 4.5. Let u and v be vertices of a connected plane graph G. If C is the set of
internal faces of G, then PC(Guv) is connected.

Proof. By Theorem 4.3, C is ∆∗-dense and by Theorem 4.2, PC(Guv) is connected.

Corollary 4.6. Let u and v be vertices of a connected graph G. If C is the set of cycles
of G that contain a given edge e, then PC(Guv) is connected.
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Proof. By Theorem 4.4, C is ∆∗-dense and by Theorem 4.2, PC(Guv) is connected.

Corollary 4.7. Let u and v be vertices of a connected graph G. If Cu is the set of cycles
of G that contain vertex u, then PCu(Guv) is connected.

Proof. Let e be an edge of G incident with vertex u. Clearly the set C(e) of cycles that
contain edge e is a subset of the set Cu. Therefore PC(e)(Guv) is a subgraph of PCu(Guv).
By Corollary 4.6, the graph PC(e)(Guv) is connected.

Acknowledgements

We thank the referees for their comments and suggestions on the manuscript. This
work was partially supported by CONACyT, México (project A1-S-12891).
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