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Abstract The robot motion planning problem is one of the most studied problems in computational

geometry in continuous settings. We study the Forklift Motion Planning Problem, which is defined

based on a puzzle called Zaikoban, in a discrete setting of 3-dimensional space. We demonstrate that

the configuration space method can be applied to the discrete case. In particular, we show that the

forklift motion planning problem is solvable in polynomial time for the one-box case, and show that the

general forklift motion planning problem with multiple boxes is PSPACE-complete by reduction to the

nondeterministic constraint logic (Ncl) problem.
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1. Introduction

The study of the robot motion planning problem, sometimes referred to as the geo-
metric path planning problem, the generalized mover’s problem, or the piano mover’s
problem, dates back to the 1970s. We refer to [1] for a recent survey of this problem. In
the robot motion planning problem, we try to guide a robot from one position to another
in a Euclidean space R2 or R3 (the workspace), by avoiding the obstacles in the space.
Note that in general, the robot may consist of several parts, and each part may be moved
independently. A standard way to study the problem is to define the configuration space.
For example, let the robot be a long rectangle that can slide and rotate in the plane.
Then a configuration of this rectangular robot can be exactly described by the coordi-
nates (x, y) of one of its vertices, and the angle θ between its long edge and the x-axis.
So the configuration space is the set of all points (x, y, θ) ∈ R × R × [0, 2π) which are
collision-free with all obstacles. Usually, the configuration space has a higher dimension
than the workspace.
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In general, the continuous version of the robot motion planning problem is PSPACE-
hard. Canny gave the first single exponential-time algorithm in the dimensionality of the
configuration space in his doctoral thesis [2]. As a corollary, if we fix the dimension of
the configuration space, then we will have a polynomial algorithm for the problem.

In real-world applications, there are lots of situations where the robot moves in a
discrete manner. But the problem remains PSPACE-complete for the discrete case. The
sliding block puzzles can be viewed as a discrete type of motion planning problem, and
it is PSPACE-complete, even with blocks of size 1 × 2 and 2 × 1. If all blocks are of size
1 × 1, it becomes a generalization of the Fifteen Puzzle, and the problem is solvable in
polynomial time.

The discrete motion planning problems have also been studied by many scholars, see [3–
8]. But the workspaces of the models in most of these studies are essentially 2-dimensional.
In this paper, we study a 3-dimensional discrete case of the motion planning problem, the
motion planning for a forklift in a warehouse. Unlike the sliding block problem which has
a workspace of dimension 2, the motion planning problem of a forklift has a workspace
of dimension 3. We apply the configuration space method to analyze the problem. As we
shall see, the configuration space becomes a graph in the discrete case.

We use a Japanese game called Zaikoban1 developed by NetFarm in 2007 as a model
for the forklift motion planning problem in a warehouse. The game was also available
temporarily under the name Soko Forklift - Zaikoban for the Android system at Google
Play in 2014, and for the iOS system in 2015. See Figure 1 for screenshots taken from
the Android version.

Figure 1. Screenshots of the game Zaikoban

In the game Zaikoban, a forklift has to transport one or more boxes from their initial
positions to their respective goal positions. The warehouse is a 3-dimensional grid with

1https://www.netfarm.ne.jp/island/release/070713 01.pdf
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walls. The forklift occupies 4 cubes of the grid, and it can move forwards or backwards,
turn 90 degrees to the left or right, raise or lower the fork, and load or unload a box from
the fork. There are a few additional elements in the game of Zaikoban, such as fragile
floors which the forklift can go through only without carrying a box.

Definition 1.1 (Forklift Motion Planning Problem). Given a warehouse with walls, one
forklift, one or more boxes with goal positions, and possibly a few additional elements,
decide whether the transportation of the boxes can be done by the forklift.

The main contribution of this paper is the following Theorem 1.2 and Theorem 1.3. If
there is only one box to be transported, then the configuration space has dimension 4,
and there exists a polynomial-time algorithm to find the shortest path.

Theorem 1.2. The forklift motion planning problem can be solved in polynomial time
for one box.

If there is no limit on the number of boxes, which is equivalent to that there is no
limit on the dimensionality of the configuration space, then we show that the problem
is PSPACE-complete, by an application of the Ncl model [9] developed by Hearn and
Demaine.

Theorem 1.3. The forklift motion planning problem is PSPACE-complete in the general
case.

The rest of the paper is organized as follows. We give a detailed description of the
model of the forklift motion planning problem in Section 2. The configuration graph
method is applied to show that the one-box case of the forklift motion planning problem
can be solved by a polynomial-time algorithm in Section 3. The general case of the
problem is shown to be PSPACE-complete in Section 4. We conclude with a few remarks
on future work in Section 5.

2. The Forklift Motion Planning Problem

In this section, we give a formal definition of the Forklift Motion Planning Prob-
lem. The problem takes place in a warehouse which can be represented by a finite 3-
dimensional1 grid of size a× b×2 (see Figure 2). Each unit cube of the grid can be either
unoccupied or occupied by (parts of) the forklift, a box, or a fixed wall.

The forklift occupies 4 cubes in the warehouse. When the fork is in the raised position,
the forklift occupies the cubes (x, y, 1), (x+1, y, 1), (x+1, y, 2) and (x+2, y, 2), see Figure
3. When the fork is in the lowered position, the forklift occupies the cubes (x, y, 1), (x+
1, y, 1), (x + 1, y, 2) and (x + 2, y, 1), see Figure 4. Note that there are four different
orientations for the forklift, the figures only show the case in which the forklift is facing
east.

There are four kinds of possible basic motions for the forklift. The first kind is to lower
or to raise the fork of the forklift, either with or without carrying a box. That is switching
between the states illustrated in Figure 3 and Figure 4.

The second kind of motion is to move forward or backward. For example in Figure 3,
if both of the two cubes (x + 2, y, 1) and (x + 3, y, 2) are unoccupied, then the forklift
can move one step forward. Another situation in which the forklift in Figure 3 can move

1There is a constant number of vertical layers, so it can be considered as essentially 2-dimensional.
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Figure 2. The working space

(x, y, 1)

(x+ 1, y, 1)

(x+ 1, y, 2)

(x+ 2, y, 2)

Figure 3. The forklift when the fork is raised

(x, y, 1)

(x+ 1, y, 1)

(x+ 1, y, 2)

(x+ 2, y, 1)

Figure 4. The forklift when the fork is lowered

forward is when the cube (x+ 2, y, 1) is unoccupied and the cube (x+ 3, y, 2) is occupied
by a box (which is on top of a wall of height 1). In this case, the fork goes underneath
the box (see also Figure 6a,6b).

The third kind of motion is to turn left or turn right by 90 degrees. Some cubes in the
warehouse must be unoccupied to make a turn feasible. In Figure 3, the forklift can make
a right turn if and only if the 4 cubes (x + 2, y − 1, 2), (x + 1, y − 1, 2), (x, y + 1, 1) and
(x + 1, y + 1, 1) are not occupied by boxes or walls. After the turn, the forklift occupies
the cubes (x+ 1, y + 1, 1), (x+ 1, y, 1), (x+ 1, y, 2) and (x+ 1, y − 1, 2) (see also Figure
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6c,6d). The two parts at (x + 1, y, 1) and (x + 1, y, 2) of the forklift remain in the same
locations before and after the turn, so we call them the central parts of the forklift.

The fourth kind of motion is to load or unload a box from the fork. This motion can
be performed when the fork is either raised or lowered (see Figure 6b,6c). Note that the
fork should be facing the box and positioned at the same height as the box before loading
it.

In each step, the forklift can perform one of the above four kinds of motion. Also,
there are one or more boxes in the warehouse, each of which occupies exactly one cube of
the grid. Boxes can only be put down in places with storage marks, either on the floor
or on top of a wall of height 1 (see Figure 5). The goal is to transfer all the boxes to the
goal positions.

Besides the basic elements of the forklift motion planning problem mentioned above, we
introduce yet another element called the fragile floor. The forklift can only pass through
the fragile floor when it isn’t carrying a box. To be more exact, when carrying a box, the
central parts cannot be on top of the fragile floor.

To summarize, we give a symbolic, top-down view representation of all the elements of
the forklift motion planning problem (Figure 5).

floor

fragile floor

wall of height 1

wall of height 2

storage mark on floor

storage mark on wall

goal storage mark

goal storage mark on wall

box on storage mark

box on goal storage mark

forklift with lowered fork

forklift with raised fork

Figure 5. The Legend

To conclude this section, we give a concrete example of a sequence of motion performed
by the forklift illustrated in Figure 6. Initially, the fork of the forklift is raised (Figure
6a). Then the forklift moves one step forward, which places the fork between the wall of
height 1 and the box at height 2 (Figure 6b), and loads the box (Figure 6c). After that,
the forklift turns 90 degrees to the right (Figure 6d) and moves one step backward (Figure
6e). Note that the forklift must load the box before making the turn, according to the
conditions that allow the forklift to turn right by 90 degrees when the fork is raised.
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a b c d e

Figure 6. Loading a box and turning at the corner

3. The One-Box Case

We prove our first main result in this section. We will prove a simpler case when there
are no fragile floors. The proof method can be extended to the case including the fragile
floors without much difficulty, because the number of possible configurations remains
polynomial.

Proof of Theorem 1.2. To show that the Forklift Motion Planning Problem with one box
can be solved by a polynomial algorithm, we construct a configuration graph.

Obviously, in the one-box case, the forklift can just load the box at its initial position
and unload it at the goal position, there is no need to put the box down at any moment in
between. A configuration during this process can be represented by a 4-tuple (x, y, d, f),
where x and y denote the x-coordinate and y-coordinate of the central parts of the forklift,
d denotes one of the directions (UP, DOWN, LEFT, RIGHT) the fork of the forklift is
facing, and f denotes one of the states (RAISED or LOWERED) of the fork. Each 4-tuple
is a vertex of the configuration graph.

Two vertices of the configuration graph are adjacent if and only if the corresponding
configurations can be changed from each other by exactly one of the following three
basic motions: raising or lowering the fork, moving one step forwards or backwards,
and turning left or right. We ignore the fourth kind of motion of loading or unloading
a box, because we only need to load the box at the beginning and unload the box in
the end for the one-box case. For example, two configurations (2, 3,UP,RAISED) and
(2, 3,RIGHT,RAISED) are adjacent because they differ by just a left or right turn of the
forklift. The configuration graph we construct is a subgraph of the Cartesian product
graph Pa�Pb�C4� P2, where Pk denotes the path of order k and C4 denotes the cycle
of order 4. So the configuration graph has at most 8ab vertices.

Let s be the vertex representing the configuration after the forklift loads the box at
the initial position, and let t be the vertex representing the configuration of the forklift
at the goal position before unloading the box. To find the best sequence of motions for
the forklift, we just need to find the shortest path between s and t in the configuration
graph. Finding the shortest path between two vertices in an unweighted graph is known
to be solvable in polynomial time [10]. Hence, the one-box case for the forklift motion
planning problem is also solvable in polynomial time.

4. The General Case

In theory, the configuration graph method used in the one-box case can also be applied
to the multiple-box case. However, in the multi-box case, the boxes may block the way
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of the forklift such that the boxes need to be transferred to several intermediate positions
before finally reaching their goal positions. As a result, there are far more configurations
in the multi-box case than in the one-box case. In fact, the number of vertices of the
configuration graph may grow exponentially with respect to the number of boxes. This
implies that the problem may be harder in the general case. We will prove that it is indeed
more difficult and show that the general Forklift Motion Planning Problem is PSPACE-
complete by using the Ncl (Nondeterministic Constraint Logic) model introduced by
Hearn and Demaine [9].

There are several variations of the Ncl decision problems, and all of them are PSPACE-
complete. For our purpose, we will use the version for the configuration-to-configuration
planar Ncl.

An instance of the configuration-to-configuration planar Ncl problem is defined on a
3-regular planar directed graph, which is called an Ncl graph. Each edge of the graph
has a weight of either 1 or 2. Moreover, the Ncl graph consists of only two kinds of
vertices, the AND vertices and the OR vertices. An AND vertex is incident with two
edges of weight 1 and one edge of weight 2, and an OR vertex is incident with three edges
of weight 2 (Figure 7).

(a)AND

C

A B

(b)OR

C

A B

Figure 7. Ncl (a) an AND vertex, (b) an OR vertex

A configuration of the Ncl graph is a specific orientation of the edges, and the configu-
ration is valid if and only if the sum of weights of the incoming edges is at least 2 for each
vertex. A valid move for the Ncl graph changes the orientation of a single edge, while
keeping the configurations valid before and after the change. Given a planar Ncl graph,
with a valid initial configuration and a valid target configuration for that graph, the Ncl
problem asks whether there is a sequence of valid moves from the initial configuration to
the target configuration such that all intermediate configurations are valid.

Definition 4.1 (Ncl Problem).
Input. A planar Ncl graph with an initial configuration and a target configuration.
Output. Is there a sequence of valid moves leading the Ncl graph from the initial
configuration to the target configuration?

Theorem 4.2 ([9]). Ncl is PSPACE-complete.

With the help of the Ncl problem, we are ready to prove our second main result.
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Proof of Theorem 1.3. Given any instance of the Ncl problem, we construct an equiva-
lent instance of the forklift motion planning problem such that the instance of the Ncl
problem is solvable if and only if the instance of forklift motion planning problem is solv-
able. Our proof is divided into several subsections. In each of the following subsections,
we emulate the edges and vertices of the Ncl problem by edge gadgets, vertex gadgets,
and several kinds of helper gadgets. These gadgets are put together to form a complete
instance of the forklift motion planning problem.

4.1. The Edge Gadget

The edge gadget illustrated in Figure 8 emulates an edge of the Ncl problem. It is a
half-enclosed area with walls of height 1. The area inside the edge gadget can be of any
size or shape, as long as it is large enough for the forklift to turn around. In particular,
the edge gadget can turn and split into parallel corridors, as we will need later to form
the vertex gadgets. We call the gadget half-enclosed because it has two or more doors
with fragile floors. With these doors, the forklift can freely get in or out of the internal
area of the gadget empty-handed, but cannot get in or out with a box. As a result, the
box inside an edge gadget will remain in the gadget. Also, with these doors, the forklift
can enter and exit the edge gadget and visit any other part of the warehouse.

p q

Figure 8. The edge gadget

Inside the edge gadget, there are two storage marks atop the walls of height 1 and one
box. Exactly one of the two storage marks is the goal (marked in red), and eventually
the box needs to be placed in the goal position. But during the motion planning process,
the forklift can always go inside the gadget and change the location of the box between
the two marks if the internal passage is not blocked by meet gadgets (see Subsection 4.3).
This emulates an edge changing its orientation in the Ncl problem. More precisely, the
edge gadget illustrated in Figure 8 emulates a directed edge from the vertex q to p. The
two storage marks play the role of the two ends of the edge (i.e. linking two vertices),
and a box on one of the storage marks means the edge is pointing to the other storage
mark.

4.2. The Crossing Gadget

When putting the edge gadgets together, the internal passage of one edge gadget may
cross with the internal passage of another gadget. Yet the two edge gadgets need to be
independent of each other. In other words, the internal area of two edge gadgets may
intersect, but the forklift cannot go from the inside area of one edge gadget to another.
This can be easily achieved by the crossing gadget illustrated in Figure 9, where the
crossing gadget is defined by the area enclosed by the dashed square. Since there is not
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enough space for the forklift to turn at the intersecting point between the two edge gadgets
A and B, the forklift must remain in the passage of the gadget it initially entered. Many
crossing gadgets are needed to form an AND or OR vertex gadget later, so we introduce
the symbolic representations of the crossing gadget in Figure 10.

A

B

Figure 9. The crossing of two gadget A and B

Figure 10. The symbolic representations of the crossing gadget
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4.3. The Meet Gadget

C

A

B

C

A

Figure 11. Three edge gadgets A, B and C (left), two edge gadgets (right)

In order to emulate the logic of the AND and OR vertices of the Ncl problem, one
key component of our construction method is that the orientation of the edge gadget can
block or unblock the internal passages of one or two other edge gadgets, as illustrated
in Figure 11. On the left of Figure 11, one end of the edge gadget C meets the internal
passages of two other edge gadgets A and B. If the box of the edge gadget C is placed
at this end, then the passages A and B are blocked, because there is not enough space
for the forklift to turn at the corners (recall the conditions for making a turn in Section
2). We call this a meet gadget. A simpler version of the meet gadget is illustrated on the
right of Figure 11, where the internal passage of only one edge gadget A can be affected
by the existence of a box on storage mark at one end of another edge gadget C. Like the
crossing gadgets, we introduce the symbolic representation of the meet gadgets in Figure
12, as we need several of them to form an AND or OR vertex gadget.

Figure 12. The symbolic representation of two kinds of meet gadgets

4.4. The OR Gadget

Figure 13 shows how three edge gadgets form an OR vertex gadget. Three ends of
the edge gadgets (one from each of the three edge gadgets A, B, and C) are grouped to
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form the OR vertex gadget. The only constraint of an OR vertex of the Ncl problem
is that the three edges incident with the OR vertex cannot be pointing away from the
vertex at the same time. In Figure 13, the internal area of each edge gadget splits into
two parallel passages that later merge to create a single passage leading to the storage
mark associated with each edge of the OR vertex gadget. The two parallel passages meet
the storage mark of the other two edge gadgets, respectively. So if two edges are pointing
away at this vertex, say edges A and B, this means the boxes of edge gadgets A and B
are both placed on the storage mark of this end, then the two parallel passages of edge
C are both blocked, and there is no way for edge C to point away.

In Figure 13, the OR vertex gadget is formed by the parts enclosed by the dashed
rectangle. It roughly includes half of each of the edge gadgets A, B and C. The other
ends of the edge gadgets are not shown in this figure, and they will form vertex gadgets
with other edge gadgets.

B

B

A

A

C

C

Figure 13. The OR gadget
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4.5. The AND Gadget

The construction of the AND gadget is illustrated in Figure 14, where three ends from
the three edge gadgets are combined differently from the OR gadget. Edge C emulates
an edge of weight 2, and edges A and B emulate edges of weight 1. The passage of edge C
leading to its storage mark at this end forms meet gadgets with the storage marks of both
edges B and C. So if either of the two edges A and B are pointing away (i.e. the storage
mark of either edge A or B is occupied by a box), the passage of edge C is blocked, and
edge C cannot point away. The passages of edge A and B leading to their respective
storage marks both meet the storage mark of the edge C. So if edge C points away (i.e.
the box of edge gadget C is on the storage mark of this end, blocking the passages of
both edge A and B), neither edge A or B can point away.

B

B

A

A
C

C

Figure 14. The AND gadget

4.6. Piecing Together

Given an instance of the Ncl problem, we construct an instance of the Forklift
problem in the following way, by combining the gadgets described in the previous subsec-
tions. For each edge e of the Ncl instance, there is a corresponding edge gadget in the
Forklift instance. The goal direction of e determines which of the two storage marks
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in the edge gadget is the goal, and the initial direction of e determines on which of the
two storage marks the box is initially placed.

For each vertex v of the Ncl instance, depending on whether it is an AND or an OR
vertex, we just join the ends of the corresponding edge gadgets together to form an AND
gadget or an OR gadget. Note that the two kinds of vertex gadget have a fixed size, so
the overall size of the Forklift instance is at most polynomial to the size of the Ncl
instance.

Finally, the forklift can be placed anywhere in the warehouse (if not on top of walls
or on top of boxes). As we have mentioned earlier, each edge gadget has two or more
doors with fragile floors, so the forklift can visit the internal area of any edge gadget of
the warehouse without any trouble and change the orientation of the edge gadget (i.e.
transport the box of the edge gadget from one storage mark to the other if the internal
passage has not been blocked by meet gadgets) as long as it’s not carrying a box while
traversing between gadgets. By our design of the vertex gadgets, it is easy to check
that the orientation of an edge gadget can be changed if and only if the direction of
the corresponding edge in the Ncl instance can be changed. Therefore the Forklift
instance is solvable if and only if the corresponding Ncl instance is solvable.

Since the Ncl problem is PSPACE-complete, we have shown that the Forklift prob-
lem is PSPACE-hard. To complete the proof, we will show that the Forklift problem is
in PSPACE. By Savitch’s Theorem, which states that NPSPACE=PSPACE, it suffices to
show that the Forklift problem is in NPSPACE. This can be seen by the following non-
deterministic polynomial-space algorithm for finding a solution for the Forklift problem.
The forklift can nondeterministically traverse the warehouse, at each step nondetermin-
istically choosing a valid move to make, and maintaining the current state but not the
previously visited states. The algorithm stops by either finding a solution or exceeding
the maximum number of steps needed to find a solution.

5. Conclusion

In this paper, we introduce a 3-dimensional discrete motion planning problem, the
Forklift problem. By using a configuration graph, we show that the problem can be
solved with a polynomial-time algorithm for the one-box case. In the general case, the
problem is PSPACE-complete. But our proof of the PSPACE-completeness makes use of
an extra element, the fragile floor. It would be interesting to determine the complexity
class of the forklift motion planning problem without fragile floors in future research.
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