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1. Introduction

A domination game was introduced in [1] as a game of two players, called Dominator
and Staller, on a graph. The players alternatively pick a move by choosing a vertex in
the graph. A chosen vertex dominates all vertices in its closed neighborhood. A move
u is legal if it creates at least one new dominated vertex. In other words, its closed
neighborhood N [u], consisting of all vertices adjacent to u and the vertex u itself, is not
contained in the union of the closed neighborhood of vertices which have been chosen
before. That is, for a sequence of previously picked moves (before picking the n-th move)

u1, u2, u3, . . . , un−1, the player can pick a move un if and only if N [un] *
⋃n−1
i=1 N [ui].

The game ends when all vertices in the graph are dominated. Dominator tries to end
the game as soon as possible, while Staller tries to prolong the game. In the domination
game, if Dominator starts the game, this game is said to be Game 1. Otherwise, it is said
to be Game 2. If both players play optimally in a domination game on a graph G, the
number of moves when the game ends is called the game domination numbers, denoted
by γg(G) and γ′g(G) in Game 1 and Game 2, respectively.

Many aspects of domination games have been studied. Game domination numbers on
various graphs, such as trees [2], forests [3], paths and cycles [4], powers of cycles [5],
disjoint union of paths and cycles [6], have been computed. Possible values of domination
numbers of unions of graphs are studied in [7]. Bound on domination numbers have been
studied, see [8–13] for example.
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Some variations of the game have also been studied. The total domination game
has been introduced in [14], in which a move u will dominate its open neighborhood
N(u) instead of its closed neighborhood N [u]. So a move is legal if and only if its open
neighborhood is not contained in the union of open neighborhoods of all vertices chosen
before. Similarly, bound on total domination numbers have been studied in [15–18], and
total domination numbers themselves were computed for some families of graphs, such as
cycles and paths [19] and a family of cyclic bipartite graphs [20]. Recently, some other
variations based on the definition of legal moves have been proposed in [21].

In this work, we introduce a variation of a domination game called a (δ, σ)-biased
domination game or simply called a (δ, σ)-biased game where δ and σ are positive integers.
Dominator and Staller must pick δ and σ moves for each turn (except possibly the last
turn of the game), respectively. The (δ, σ)-biased game domination numbers are denoted
by γ(δ,σ)(G) for Game 1 and γ′(δ,σ)(G) for Game 2. For example, we consider a graph

G = C5 t C5. We will show that γ(2,1)(G) = 4.

First, we notice that G has 10 vertices. Since each move can dominate at most 3 vertices,
at least 4 moves are required to end the game. Hence, the biased game domination
number is at least 4. Next, we can show that Dominator can force the game to end in 4
moves, which concludes that γ(2,1)(G) = 4. In the first turn, Dominator starts the game
by picking 2 moves. If Dominator decides to pick 2 moves in the same component as
shown in the picture below, then Dominator can force Staller to dominate 3 new vertices
on the other component and Dominator finishes the game in 4 moves. So, γ(2,1)(G) = 4.

The choice of the first two moves by Dominator is important. If Dominator decides to
pick 2 moves in separate components as shown in the picture below, then Staller can pick
a move that dominates only one new vertex and force the game to end with more than
4 moves. Hence, Dominator will not choose this choice of the first two moves as it does
not give the optimal result.
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The main goal of this work is to compare, for given distinct δ 6= δ′ and σ 6= σ′, the
biased game domination numbers γ(δ,σ)(G) and γ(δ′,σ)(G), and similarly, γ′(δ,σ)(G) and

γ′(δ,σ′)(G) for Game 2 when certain special moves exist.

2. Preliminaries

In this section, we introduce some definitions and properties in domination games and
biased domination game. First, we have the observation that follows from the observation
in [1].

Lemma 2.1. Let G be a graph and δ, σ ∈ N. Consider a (δ, σ)-biased game.

(1) In Game 1 (Game 2), if Dominator has a strategy to make the game end within
k moves when Staller plays optimally, then γ(δ,σ)(G) ≤ k (γ′(δ,σ)(G) ≤ k).

(2) In Game 1 (Game 2), if Staller has a strategy to make the game end in at least
k moves when Dominator plays optimally, then γ(δ,σ)(G) ≥ k (γ′(δ,σ)(G) ≥ k).

Proof. The result follows from the definition of biased game domination numbers.

By Lemma 2.1, if one player plays his optimal strategy while the other plays a certain
(possibly not optimal) strategy, we get an inequality between the number of moves in
such game and the biased game domination number. Next, we will often use this lemma
for proving theorem in this work.

Definition 2.2 (Partially dominated graphs [8]). Let G be a graph and S be a subset
of V (G). A partially dominated graph G|S is a graph G in which all vertices in S have
already been dominated.

Theorem 2.3 (Continuation Principle [8]). Let G be a graph and A,B ⊆ V (G). If
A ⊆ B, then γg(G|A) ≥ γg(G|B) and γ′g(G|A) ≥ γ′g(G|B).

We can extend Theorem 2.3 to biased domination games, using similar proof which is
based on imagination strategy [1].

Theorem 2.4 (Continuation Principle of the Biased Domination Game). Let G be a
graph and A,B ⊆ V (G). If A ⊆ B, then γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B) and γ′(δ,σ)(G|A) ≥
γ′(δ,σ)(G|B).

Proof. Assume that A ⊆ B ⊆ V (G). We will show that γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B) and
γ′(δ,σ)(G|A) ≥ γ′(δ,σ)(G|B).

To show γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B), we let the real game be a biased domination
game on G|A where Dominator plays optimally, and let the imagined game be a biased
domination game on G|B imagined and optimally played by Staller. The number of moves
in the real game and the imagined game when the games ended are denoted by R and I,
respectively. Then γ(δ,σ)(G|A) ≥ R and I ≥ γ(δ,σ)(G|B). Thus it is enough to show that
R ≥ I.

In each turn, when Dominator plays moves in the real game, Staller copies such moves
to the imagined game. Staller then responds optimally in the imagined game and copies
the moves back to the real game. Note that every Staller’s move in the imagined game is
always legal in the real game, but a Dominator’s move in the real game is not necessary
legal in the imagined game as A ⊆ B.
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If all Dominator’s moves in the real game are legal in the imagined game, then both
games may end at the same time or there is some undominated vertices left in the real
game. So R ≥ I.

If there exists a move of Dominator in the real game that cannot be copied to the
imagined game. This means that all vertices in the closed neighborhood of such move are
already dominated in the imagined game. Staller then imagined that Dominator picks a
random legal move in the imagined game and continues the game. The game continues
until the imagined game ends or there is another move of Dominator in the real game
which is not legal in the imagined game. In the later case, Staller then imagines another
random legal move for Dominator in the imagined game.

We notice that at every turn in the game, the dominated vertices in the real game are
also dominated in the imagined game. This means the real game cannot end before the
imagined game. Hence R ≥ I. Thus, γ(δ,σ)(G|A) ≥ γ(δ,σ)(G|B).

The proof above always works whether it is Dominator or Staller who plays the first
move. Thus the same proof can be directly applied to Game 2.

In [1], the authors considered a domination game such that Dominator (resp. Staller)
is allowed, but not obligated, to skip exactly one move in the game. That is, there is at
most one turn such that Dominator (resp. Staller) may decide to pass. After the game
ends, the number of moves in the game where both players played optimally, is denoted
by γdpg (G) (resp. γspg (G)). We call this game the Dominator-pass game (resp. Staller-pass
game).

We define a version of Dominator-pass games and Staller-pass games for biased domi-
nation games as follows.

Definition 2.5. In a (δ, σ)-game on a graph G, if Staller is allowed to pass some moves
in each turn (except the first move of each turn) in total of at most n moves per game,
then we define such game as an n-Staller-pass-(δ, σ)-game or sp(n)-(δ, σ)-game. The
number of moves in an sp(n)-(δ, σ)-game when both players play optimally are denoted
by γsp(n),(δ,σ)(G) in game 1 and γ′sp(n),(δ,σ)(G) in game 2. Similar notation, dp(n), is used

for n-Dominator-pass games.

We note that a turn in a (δ, σ)-game is comprised of δ moves for Dominator and σ
moves for Staller. For pass games, since the order of moves in a turn by the same player
does not matter, we can assume that the player plays a certain number of consecutive
moves and then skip the rest. In order to prevent an empty turn, we forbid skipping the
first move of any turn as shown in Definition 2.5.

The continuation principle (Theorem 2.4) also holds for pass games with the same
proof.

We define two special types of moves in a biased domination game, which will play
important roles in our main results.

Definition 2.6. We say that a move is minimal if it dominates exactly one new vertex.

Definition 2.7. We say that a move u is maximal if it dominates at least one new vertex
w such that if u′ is another move dominating w then all new vertices dominated by u′

(instead of choosing u) can also be dominated by u. So if A is the set of all vertices
chosen by previous moves, as the set of all dominated vertices by previous moves is N [A]
(the union of closed neighborhoods of all elements in A), we have the following relation
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on closed neighborhoods of u, u′ and A. For all u′ dominating w,

N [u′] \N [A] ⊆ N [u] \N [A]. (2.1)

In other words, u is always one of the best among all moves dominating w.

3. Main Results

In this section, we consider a biased game on a graph in which a minimal move or a
maximal move are always available except possibly at the first move of the game.

3.1. A Biased Game and Minimal Moves

Theorem 3.1. For any graph G, if Staller can always make a minimal move, then

γsp(1),(δ,σ)(G) = γ(δ,σ)(G).

Proof. Using the imagination strategy in [1], we consider a situation where Staller is play-
ing Game 1 of an sp(1)-(δ, σ)-biased domination game (Real Game: RG) with an optimal
strategy while Dominator imagines and plays Game 1 of a (δ, σ)-biased domination game
(Imagined Game: IG) optimally. Let the real game and the imagined game end in R
and I moves, respectively. By Lemma 2.1, R ≥ γsp(1),(δ,σ)(G) and I ≤ γ(δ,σ)(G). So it is
enough to prove that R ≤ I.

In the real game, Staller has to play σ moves at each turn, except possibly at one turn
where either σ − 1 moves (a pass of the last move) or σ moves is allowed. Whenever
Staller plays σ moves at a turn, Dominator copies each move of Staller to the imagined
game, responds optimally in the imagined game, and copies the moves back to the real
game. If Staller does not skip a move until the game ends, the sequences of moves are
formed as the following sequence, where dji and sji denote the j-th move in the i-th turn
of Dominator and Staller, respectively.

RG: d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , d

1
2 . . . , d

δ
2, s

1
2, . . . , s

σ
2 , . . .

IG: d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , d

1
2 . . . , d

δ
2, s

1
2, . . . , s

σ
2 , . . .

This means that both games are played with the same sequence of moves. Thus R = I.
If Staller decides to play only σ − 1 moves at turn k, Dominator copies each move of

Staller up to such move to the imagined game. Then Dominator imagined that Staller
makes the σ-th move s∗k that dominates exactly one new vertex vk. This is a minimal
move, which is always available by the assumption. Now the sequences of moves are
formed as follows.

RG: d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , . . . , s

1
k, . . . , s

σ−1
k ,×

IG: d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , . . . , s

1
k, . . . , s

σ−1
k , s∗k

Dominator then responses optimally in the imagined game and copies the moves back to
the real game.

The game continues with Staller playing exactly σ moves at each turn. Note that all
moves by Dominator in the imagined game are always legal in the real game. On the
other hand, a move by Staller in the real game may not be legal in the imagined game.

If there is an illegal move at turn m > k in the imagined game, says sθm for some
1 ≤ θ ≤ σ. First, we consider when the move is s1m. We have the following sequences of
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moves.

RG: d11, . . . , d
δ
1, s

1
1, . . . , s

σ
1 , . . . , s

1
k, . . . ,×, . . . , dδm, s1m

IG: d11, . . . , d
δ
1, s

1
1, . . . , s

σ
1 , . . . , s

1
k, . . . , s

∗
k, . . . , d

δ
m

Since s1m is not legal in the imagined game, we have

∅ 6= N [s1m] \N [C] ⊆ N [s∗k] \N [C] = {vk}

where C is the set of all vertices played before s1m in the real game, i.e.,

C =


m−1⋃
j=1

(
δ⋃
i=1

{dij} ∪
σ⋃
i=1

{sij}

)
∪

δ⋃
i=1

{dim}

 \ {sσk}.
Hence N [s1m] \N [C] = {vk}. That is s1m dominates only one new vertex vk. This means
both games now have the same set of dominated vertices.

When Staller picks the rest of the moves in the turn, Dominator skips s1m and copies
these moves to the imagined game, and also imagines that Staller picks another minimal
move s∗m (newly dominating a vertex vm) as the last move. Thus the sequences of moves
in the both games are as follows.

RG: d11, . . . , d
δ
1, s

1
1, . . . , s

σ
1 , . . . , s

1
k, . . . ,×, . . . , dδm, s1m, s2m, s3m, . . . , sσ−1m , sσm

IG: d11, . . . , d
δ
1, s

1
1, . . . , s

σ
1 , . . . , s

1
k, . . . , s

∗
k, . . . , d

δ
m, s

2
m, s

3
m, s

4
m, . . . , s

σ
m, s

∗
m

Note that s2m, s
3
m, s

4
m, . . . , s

σ
m are all legal in the imagined game since

N [s1m] \N [C] = N [s∗k] \N [C] = {vk}.

The same computation is applied when it is the move sθm for θ > 1 which is not legal
in the imagined game. The vertex vk is the only new vertex dominated by sθm, and the
set of all dominated vertices in both games are now the same. Dominator then imagines
a minimal move s∗m. So we get the following sequences of moves.

RG: d11, . . . , d
δ
1, s

1
1, . . . , s

σ
1 , . . . , s

1
k, . . . ,×, . . . , dδm, . . . , sθ−1m , sθm, s

θ+1
m , . . . , sσ−1m , sσm

IG: d11, . . . , d
δ
1, s

1
1, . . . , s

σ
1 , . . . , s

1
k, . . . , s

∗
k, . . . , d

δ
m, . . . , s

θ−1
m , sθ+1

m , sθ+2
m , . . . , sσm, s

∗
m

We can always repeat the same procedure if there is a move in the real game that is
not legal in the imagined game. At the end, both games end at the same move or the
imagined game ends before the real game. In the first case, we have R = I − 1. In the
second case, since vm is the only vertex left undominated by not playing s∗m, it is this
unique vertex left undominated in the real game when the imagined game has ended. So
R = I.

From both cases, we have R ≤ I. Since γsp(1),(δ,σ)(G) ≤ R and I ≤ γ(δ,σ)(G), we have
γsp(1),(δ,σ)(G) ≤ γ(δ,σ)(G).

We can consider γ(δ,σ)(G) as the number of moves that Dominator plays optimally
and Staller decides not to skip any move on an sp(1)-(δ, σ)-biased domination game. By
Lemma 2.1, γ(δ,σ)(G) ≤ γsp(1),(δ,σ)(G). Therefore γsp(1),(δ,σ)(G) = γ(δ,σ)(G).

Theorem 3.2. For any graph G and i ≥ 0, if Staller can always make a minimal move,
then

γsp(i+1),(δ,σ)(G) = γsp(i),(δ,σ)(G).
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Proof. Let the real game be the sp(i+ 1)-(δ, σ)-game with an optimal strategy of Staller
and the imagined game be the sp(i)-(δ, σ)-game imagined by Dominator and played with
his optimal strategy. Dominator copies all the moves of Staller from the real game to
the imagined game, up to the i-th time Staller skipped the move. At the (i+ 1)-th skip,
Dominator imagines a random minimal move as in the proof of Theorem 3.1. The same
analysis can then be directly applied.

From Theorem 3.1 and Theorem 3.2, we immediately get the following corollary.

Corollary 3.3. For any graph G and i ≥ 0, if Staller can always make a minimal move,
then

γsp(i),(δ,σ)(G) = γ(δ,σ)(G).

Using Corollary 3.3, we can now compare the biased game domination numbers with
different σ.

Theorem 3.4. For any graph G, if Staller can always make a minimal move, then

γ(δ,j)(G) ≤ γ(δ,σ)(G)

for all j ≤ σ.

Proof. Let j ≤ σ. We can consider a (δ, j)-biased game as a situation in a Staller-pass
(δ, σ)-game where Staller passes σ− j moves in every of his turn until the game ends. Let
k be a number a lot larger than the possible total number of all passed moves by Staller in
this game. Then γ(δ,j)(G) is a number of moves in the sp(k)-(δ, σ)-game where Dominator
plays optimally and Staller passes σ − j moves for each turn until the game ends. This
implies that γ(δ,j)(G) ≤ γsp(k),(δ,σ)(G). By Corollary 3.3, we have γ(δ,j)(G) ≤ γ(δ,σ)(G).

3.2. A Biased Game and Maximal Moves

Similar to the previous section, we want to compare biased game domination numbers
on biased games with different δ. We first consider Dominator-pass games.

Theorem 3.5. For any graph G, if Dominator can always make a maximal move (except
possibly at the first move of the game), then

γdp(1),(δ,σ)(G) = γ(δ,σ)(G).

Proof. Let the real game (RG) be a dp(1)-(δ, σ)-game with an optimal strategy of Domi-
nator and the (δ, σ)-game be a game imagined by Staller (IG) and played with an optimal
strategy of Staller. The number of moves in the real game and the imagined game when
the games end are denoted by R and I, respectively. Then γdp(1),(δ,σ)(G) ≥ R and
I ≥ γ(δ,σ)(G). We claim that R ≥ I.

If Dominator decides not to pass a move in the real game, then Staller copies all of
Dominator’s moves from the real game to the imagined game, responds optimally and
copies the moves back to the real game. Since the two games are identical, we have R = I.

If Dominator decides to pass a move at turn k in the real game, Staller imagines that
Dominator picks a maximal move d∗k in the imagined game. So it dominates a vertex
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wk such that all legal moves dominating wk in the real game are illegal in the imagined
game, see Equation (2.1). The sequences of moves are formed as follows.

RG: d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , . . . , d

1
k, . . . , d

δ−1
k ,×

IG: d11, d
2
1, . . . , d

δ
1, s

1
1, s

2
1, . . . , s

σ
1 , . . . , d

1
k, . . . , d

δ−1
k , d∗k

The game continues by Staller playing optimally in the imagined game then copying
the moves back to the real game. Note that all moves by Staller in the imagined game
are always legal in the real game. However, a move by Dominator in the real game may
not be legal in the imagined game.

If there is no illegal move until one of the games ends, we know that the vertex wk still
remains undominated in the real game. (All legal moves dominating wk in the real game
are illegal in the imagined game.) So the imagined game ends, while the real game has
at least one vertex wk remaining. Thus the real game needs at least one extra move to
finish the game. Including the move d∗k imagined by Staller, we have R ≥ I.

Whenever there is an illegal copying from the real game to the imagined game, Staller
imagines that Dominator picks a new maximal move instead of such illegal move. Assume
that in the last illegal copying, Staller imagined a maximal move which dominates w such
that all legal moves moves dominating w in the real game are illegal in the imagined
game.

We know when the imagined game ends, the real game must have at least one undom-
inated vertex w. Thus the real game needs at least an extra move to finish the game.
Excluding the skip, we have R ≥ I.

Hence R ≥ I in every case. Since γdp(1),(δ,σ)(G) ≥ R and I ≥ γ(δ,σ)(G), we have
γdp(1),(δ,σ)(G) ≥ γ(δ,σ)(G).

We consider the biased game domination number γ(δ,σ)(G) as the number of moves
that Staller plays optimally and Dominator decides not to skip any move on an dp(1)-
(δ, σ)-biased domination game. By Lemma 2.1, γdp(1),(δ,σ)(G) ≤ γ(δ,σ)(G). Therefore
γdp(1),(δ,σ)(G) = γ(δ,σ)(G).

Theorem 3.6. For any graph G and i ≥ 0, if Dominator can always make a maximal
move (except possibly the first move of a game), then

γdp(i+1),(δ,σ)(G) = γdp(i),(δ,σ)(G).

Proof. Let the dp(i+1)-(δ, σ)-game be the real game with an optimal strategy of Domina-
tor and the dp(i)-(δ, σ)-game be the imagined game by Staller with an optimal strategy.
Staller copies all the moves of Dominator from the real game to the imagined game,
up to the i-th time Dominator skipped the move. The rest of the proof is similar to
Theorem 3.2.

Corollary 3.7. For any graph G and i ≥ 0, if Dominator can always make a maximal
move (except possibly the first move of a game), then

γdp(i),(δ,σ)(G) = γ(δ,σ)(G).

Theorem 3.8. For any graph G, if Dominator can always make a maximal move (except
the first move of a game), then

γ(j,σ)(G) ≥ γ(δ,σ)(G)

for all j ≤ δ.
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Proof. Let j ≤ δ. We can consider a (j, σ)-biased game as a situation in a Dominator-pass
game where Dominator passes δ− j moves at every turn until the game ends. Let k be a
number a lot larger than the possible total number of all passed moves by Dominator in
this game. Then γ(j,σ)(G) is the number of moves in the dp(k)-(δ, σ)-game where Staller
plays optimally and Dominator passes σ − j moves for each turn until the game ends.
This gives γ(j,σ)(G) ≥ γdp(k),(δ,σ)(G). By Corollary 3.7, we have γ(j,σ)(G) ≥ γ(δ,σ)(G).

All results in this section also hold for Game 2 with the same proofs. We see that for
Game 1, the condition that Dominator can always make a maximal move will be relaxed
at the first move of the game. Similarly, the condition that Staller can always make a
minimal move will be relaxed at the first move of Game 2. Examples of graphs which a
minimal move and a maximal move are always available are paths and cycles, see [5] and
[4] for example.

4. Conclusion and Discussion

In this paper, we have introduced a biased version of domination games. Under the
condition that a minimal move (resp. a maximal move) is always available, we can
compare the biased game domination number of two biased games with different number
of moves for Staller (resp. Dominator) in each turn.

The property that a graph always has a minimal move or a maximal move available
is still rather strong. So it is interesting to know what other collections of graphs have
this property, or what other conditions give the same results as in Theorem 3.4 and
Theorem 3.8.
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[17] M. Henning, S. Klavžar, D. Rall, Game total domination critical graphs, Discrete
Applied Mathematics 250 (2018) 28–37.

[18] C. Bujtás, On the game total domination number, Graphs and Combinatorics 34
(2018) 415–425.

[19] P. Dorbec, M. Henning, Game total domination for cycles and paths, Discrete Ap-
plied Mathematics 208 (2016) 7–18.

[20] Y. Jiang, M. Lu, Game total domination for cyclic bipartite graphs, Discrete Applied
Mathematics 265 (2019) 120–127.
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