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Abstract In this paper, we considered impartial games on a simplicial complex. Each vertex of a given

simplicial complex acts as a position of an impartial game. Each player in turn chooses a face of the

simplicial complex and, for each position on each vertex of that face, the player can make an arbitrary

number of moves. Moreover, the player can make only a single move for each position on each vertex,

not on that face. We show how the P-positions of this game can be characterized using the P-position

length. This result can be considered an extension of the emperor sum theory. While the emperor sum

only allowed multiple moves for a single component, this study examines the case where multiple moves

can be made for multiple components, and clarifies areas that the emperor sum theory did not cover.
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1. Introduction

Combinatorial game theory studies two-player perfect information games with no
chance moves. An option of position g is a position after one move from g, and a strict
follower of g is a position after an arbitrary positive number of moves from g. Impartial
games are games in which both players have the same set of options at each position.
In this study, we consider that games are under the normal play convention; that is, the
player who makes the last move is the winner. We also assume that games are loop-free;
that is, a position occurs at most once in a round. Under these conventions, exactly one
of the players has a winning strategy at any given position. We define a position in which
the next (resp. previous) player’s winning strategy is an N -position (resp. P-position).
For more details on combinatorial game theory, see [1, 2].

The disjunctive sum of games is one of the most popular concepts in combinatorial
game theory. For any position g and h, the disjunctive sum of impartial games g + h is a
game the options of which are g′ + h and g + h′, where g′ and h′ include all the options
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of g and h, respectively. That is, in the disjunctive sum of games, a player chooses one
component and moves. The disjunctive sum of games is known to characterize the P-
position using the parameter G-value (or Sprague-Grundy value) of components, and is
often studied as a central topic in combinatorial game theory.

Theories such as graph theory are known to have a variety of applications. By contrast,
combinatorial game theory has been minimally used in applied mathematics to date. In
terms of applicability, a game-like mechanism would be similar to the security guarantees
in various topics such as automated driving and cyber-attacks. To guarantee the safety
of something, it must be shown that there are ways to respond to an attack or accident.
This is similar to the guarantee of the existence of a winning strategy that can win no
matter what move the other player initiates. In this manner, a disjunctive sum situation
is unlikely to occur. This is because in a situation where a system is built as a collection of
multiple units, it is necessary to assume that only one of them will be attacked. Therefore,
it is thought that the possibility of application can be expanded by deepening the research
managing situations where multiple components can be launched. Therefore, this research
will enrich our knowledge in such areas by considering new game combination forms. In
this study, we consider a situation where not only multiple components can be moved but
also numerous moves can be made for some of the components. In our previous work on
emperor sum, we were limited to a single component that can be moved multiple times,
but in this work, we further generalize and consider the case where such moves can be
made on multiple components.

1.1. Early Results

Nim is among the most well-known impartial games. In this game, there are several
stone heaps. A player chooses a heap and removes any positive number of stones from
the heap. Since the games are being considered under the normal conventions of play, in
nim, the player who removes the last stone wins. In [3], Bouton proved that the position
in nim is a P-position if, and only if, the bitwise XOR of the numbers of stones in the
heaps is zero.

Let V be a finite set of vertices. A simplicial complex ∆ on V is a subset of 2|V | such
that for any element v ∈ V, {v} ∈ ∆, and if F ∈ ∆ and G ⊆ F, then G ∈ ∆. An element
of ∆ is termed a face of ∆. Ehrenborg and Steingŕımsson studied nim on simplicial
complexes or simplicial nim [4]. Let ∆ be a simplicial complex of a finite set V . Each
vertex has several stones. In nim on ∆, the players, in turn, choose a non-empty face F
in ∆ and arbitrarily remove any positive number of stones from all vertices in F . The
original nim, moore’s nim [5], and circular nim [6] can be considered as special cases
of this game. Ehrenborg and Steingŕımsson did not characterize the P-positions of nim on
∆ without restrictions but discovered good constructions and characterized P-positions
for certain cases. For example, they proved that circuits, which are subsets of the vertex
set and not faces of the simplicial complex, but all proper subsets of them are faces, can
be used for characterizing P-positions. Horrocks [7] and Penn [8] also researched this
topic.

For nonnegative integers x1, x2, . . . , xn, a position (x1, x2, . . . , xn) of nim on ∆ is a
position such that there are xi stones on vi for each i.

Example 1.1. Let V = (v1, v2, v3) and ∆ = {{v1}, {v2}, {v3}, {v1, v2}}. We consider the
position A = (3, 4, 5) of nim on ∆. In this case, the position B = (1, 2, 5) is an option
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of A because {v1, v2} is a face of ∆ and the position C = (3, 3, 3) is not an option of A
because {v2, v3} is not a face of ∆.

The intention of this paper is to show new connection between Ehrenborg and Ste-
ingŕımsson’s study and a certain kind of sum of games.

Definition 1.2. Let ∆ be a simplicial complex on a finite set V = (v1, v2, . . . , vn) and
let G = (g1, g2, . . . , gn) be a collection of impartial game positions.

Simplicial emperor sum of G on ∆, which is denoted by ∆(G), is a position such that
on each vertex vi, there is an impartial game position gi and a player, in turn, chooses
a face F in ∆ and makes arbitrary many moves for positions on all vertices in F . In
addition, for each position on a vertex, and not in F , the player makes at most one move.

Let N(a1, . . . , ar) be the position in r-heap nim whose heaps have a1, . . . , ar stones.

Example 1.3. Let V = (v1, v2, v3), ∆ = {{v1}, {v2}, {v3}, {v1, v2}}, and G = (g1, g2, g3) =
(N(3, 4, 5), N(3, 5), N(2, 4)). For G′ = (g′1, g

′
2, g
′
3) = (N(1, 2, 3), N(2, 2), N(2, 3)),∆(G′)

is an option of ∆(G) because g′1 is a strict follower of g1, g′2 is a strict follower of g2, g
′
3 is an

option of g3, and {v1, v2} is a face of ∆. For G′′ = (g′′1 , g
′′
2 , g
′′
3 ) = (N(3, 4, 5), N(2, 2), N(1, 1)),

∆(G′′) is not an option of ∆(G) because g′′2 is not an option of g2, g′′3 is not an option of
g3, and {v2, v3} is not a face of ∆.

To characterize the P-positions of simplicial emperor sum, we use the P-position length.

Definition 1.4. For any position g, the P-position length of g is

Pl(g) =

{
0, If g is a terminal position.
max({Pl(g′) : g′ is a P-position and strictly follows g}) + 1, Otherwise.

The P-position length is used to characterize the P-positions of the emperor sum of
the games.

Definition 1.5. Let g1, g2, . . . , gn be positions in impartial games. The emperor sum
of the positions E(g1, g2, . . . , gn) is a position with the options E(g′1, g

′
2, . . . , g

′
n) such that

for an integer i, g′i strictly follows gi, and for any integer j 6= i, g′j is an option of gj or
identical to gj . That is, for an emperor sum of games, a player selects one component
and arbitrarily makes numerous moves, but for every other component, the player may
move only once.

Example 1.6. Let E(g1, g2, g3) be the emperor sum of g1, g2, and g3. We consider the po-
sition G = E(N(3, 4, 5), N(3, 5), N(2, 4)). In this case, G′ = E(N(1, 2, 3), N(3, 3), N(2, 3))
is an option of G because N(1, 2, 3) is a strict follower of N(3, 4, 5), N(3, 3) is an option of
N(3, 5), and N(2, 3) is an option of N(2, 4). Meanwhile, G′′ = E(N(1, 2, 3), N(2, 2), N(2, 3))
is not an option of G because N(1, 2, 3) is not an option of N(3, 4, 5), and N(2, 2) is not
an option of N(3, 5).

Let ⊕ be the bitwise XOR operator. The following theorem is proved in [9].

Theorem 1.7. The position E(g1, g2, . . . , gn) is a P-position if and only if gi is a P-
position for any i and Pl(g1)⊕ Pl(g2)⊕ · · · ⊕ Pl(gn) = 0.

Note that the emperor sum is a special case of the simplicial emperor sum on ∆, such
that every face of ∆ has a single vertex.

The remainder of this paper is organized as follows. Section 2 discusses the relationship
between simplicial nim and impartial games on a simplicial complex. In Section 3, we
provide a new proof for Theorem 1.7. The final section presents the conclusions.
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2. Main Result

In this section, we discuss a method for establishing which player has a winning strategy
in the simplicial emperor sum. Let ∆ be a simplicial complex on a set V = (v1, v2, . . . , vn)
and let P be the set of P-positions of nim on ∆.

The following lemmas are trivial from the definition of simplicial nim.

Lemma 2.1. Let A = (a1, a2, . . . , an) ∈ P. For a position A′ = (a′1, a
′
2, . . . , a

′
n), if there

is a face F ∈ ∆ such that for any vi ∈ F, a′i < ai and for any vi 6∈ F, a′i = ai, then A′ is
an N -position.

Lemma 2.2. For any B = (b1, b2, . . . , bn) 6∈ P, there is a position B′ = (b′1, b
′
2, . . . , b

′
n) ∈

P such that a face F ∈ ∆ satisfies for any vi ∈ F, b′i < bi, and for any vi 6∈ F, b′i = bi.

Theorem 2.3. For a collection of positions of impartial games G = (g1, g2, . . . , gn),
∆(G) is a P-position, if and only if, (Pl(g1),Pl(g2), . . . ,Pl(gn)) ∈ P , and for any i, gi is
a P-position.

Proof. Let X and Y be collections of positions of impartial games such that X =
{(g1, g2, . . . , gn) : (Pl(g1),Pl(g2), . . . ,Pl(gn)) ∈ P , and for any i, gi is a P-position.} and
Y = {(g1, g2, . . . , gn) : (g1, g2, . . . , gn) 6∈ X}.

To prove this theorem, it is sufficient to demonstrate the correctness of the following
two claims.

Claim 1. For any G ∈ X, every G′, such that ∆(G′) is an option of ∆(G) that satisfies
G′ ∈ Y.

Claim 2. For any H ∈ Y, there is a collection of positions of impartial games H ′ such
that H ′ ∈ X and ∆(H ′) is an option of ∆(H).

Proof of Claim 1. Let G′ = (g′1, g
′
2, . . . , g

′
n). Assuming that G ∈ X,G′ ∈ X, and ∆(G′) is

an option of ∆(G). From the assumption G ∈ X and G′ ∈ X, (Pl(g1),Pl(g2), . . . ,Pl(gn)) ∈
P and (Pl(g′1),Pl(g′2), . . . ,Pl(g′n)) ∈ P.

Let F be the face chosen in the move G → G′. Consider the case gi 6= g′i. From the
assumption, gi and g′i are P-positions of an impartial game. This means that g′i is after at
least two moves from gi and thus, vi ∈ F . Therefore, if Pl(g′i) < Pl(gi), then vi ∈ F and
otherwise, vi 6∈ F. Thus, from Lemma 2.1, in the nim on ∆, (Pl(g′1),Pl(g′2), . . . ,Pl(g′n)) is
an N -position, which is a contradiction.

Proof of Claim 2. Assume that H = (h1, h2, . . . , hn) ∈ Y. Consider that Hp = (Pl(h1),
Pl(h2), . . . ,Pl(hn)). Two cases are considered:

(i) Every hi ∈ H is a P-position: Because H 6∈ X,Hp is not a P-position in nim
on ∆. Therefore, from Lemma 2.2, a position H ′p = (h′p1, h

′
p2, . . . , h

′
pn) ∈ P , and a

face F exist such that for every vi ∈ F, h′pi < Pl(hi) and every vi 6∈ F, h′pi = Pl(hi).
From the definition of the P-position length, for any non-negative integer m <
Pl(hi), hi has a strict follower x, which is a P-position and Pl(x) = m. Thus, by
choosing F , one could transfer from ∆(H), to ∆(H ′), where H ′ = (h′1, h

′
2, . . . , h

′
n)

satisfies (Pl(h′1),Pl(h′2), . . . ,Pl(h′n)) = H ′p, and every h′i is a P-position.
(ii) Otherwise: Let h∗i = hi if hi is a P-position and otherwise, let h∗i be an option

of hi and be a P-position. Consider H∗ = (h∗1, h
∗
2, . . . , h

∗
n).

From case (i), there is a collection of positions H ′, such that ∆(H ′) is an option
of ∆(H∗) and H ′ ∈ X. We have a move ∆(H) → ∆(H ′), which is still a legal
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move in the simplicial emperor sum on ∆ because every component not on a
vertex in F is made at most one move.

From cases (i) and (ii), for any H = (h1, h2, . . . , hn) ∈ Y,∆(H) has option ∆(H ′) such
that H ′ ∈ X.

Note that X includes every terminal position (g1, g2, . . . , gn), where gi is the terminal
position for any i. Therefore, from Claims 1 and 2, X is the set of P-positions and Y is
the set of N -positions of the simplicial emperor sum on ∆.

3. New Aspect of Emperor Sum of Games

The emperor sum of games is a special case of the simplicial emperor sum. Therefore,
this sum can be considered within a broader framework. This fact makes the proof of
Theorem 1.7 very simple.

New proof of Theorem 1.7. Let ∆ =
⋃

i({{vi}}). The ruleset of nim on ∆ is the same as
that of the original nim. Therefore, a P-position P = (a1, a2, . . . , an) satisfies a1 ⊕ a2 ⊕
· · · ⊕ an = 0.

Further, the emperor sum of g1, g2, . . . , gn is the same as the simplicial emperor sum on
∆. Thus, from Theorem 2.3, a collection of positions of impartial games G = (g1, g2, . . . , gn)
is a P-position of the emperor sum of games, if and only if, Pl(g1)⊕Pl(g2)⊕· · ·⊕Pl(gn) = 0,
and gi is a P-position for any i.

4. Conclusion

In this study, we consider the simplicial emperor sum and characterize the P-positions
for the game. This result is an extension of the emperor sum and provides a more general
picture of the behavior of P-positions when choosing multiple components in one move is
allowed. The study of sums allowing multiple components to be chosen is less advanced
than that of disjunctive sums. Therefore, the contributions of this study will aid in future
research.

References

[1] M.H. Albert, R.J. Nowakowski, D. Wolfe, Lessons in Play: An Introduction to Com-
binatorial Game Theory, A K Peters, Ltd. / CRC Press, 2007.

[2] A.N. Siegel, Combinatorial Game Theory, American Mathematical Society, 2013.

[3] C.L. Bouton, Nim, a game with complete mathematical theory, Ann. of Math., Ser.
2 3 (2) (1901) 35–39.
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