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Abstract In this paper, we introduce a two-player impartial game on graphs, called feedback game, which

is a variant of generalized geography. Feedback game can be regarded as undirected edge geography with

an additional rule that the first player who goes back to the starting vertex wins the game. We consider

feedback game on an Eulerian graph since the game ends only by going back to the starting vertex.

We first show that it is PSPACE-complete in general to determine the winner of the feedback game on

Eulerian graphs even if its maximum degree is at most 4. In the latter half of the paper, we discuss the

feedback game on two subclasses of Eulerian graphs, i.e., triangular grid graphs and toroidal grid graphs.
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1. Introduction

All graphs considered in this paper are finite, loopless, and undirected unless otherwise
mentioned. A graph G is Eulerian if each vertex of G has even degree. For other basic
terminology in graph theory, we refer to [6].

In combinatorial game theory, impartial games have been well studied for a long time,
where a game is impartial if the allowable moves depend only on the position and not on
which of the two players is currently moving. So far, many interesting impartial games
have been found; e.g., Nim [4], Kayles [8] and Poset game [16]. The most famous result
in this area is the Sprague-Grundy theorem [12, 17] stating that every impartial game
(under the normal play convention) is equivalent to a one-heap game of Nim. There are
also many interesting games played on graphs as for example; Vertex Nim [7], Ramsey
game [9] and Voronoi game [18]. For more details and other topics, we refer the reader
to survey several books and articles [1–3, 5].

One of the most popular impartial games on graphs is generalized geography. Gener-
alized geography is a two-player game played on a directed graph D whose vertices are
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words and xy ∈ A(D) if and only if the end character of a word x is the first one of y,
where A(D) is the set of arcs of D. For example, if x is “Japan” and y is “Netherlands”,
then xy ∈ A(D) but yx /∈ A(D). In this setting, the game begins from some starting
word and both players alternately extend a directed path using unused words. The first
player unable to extend the directed path loses. It is PSPACE-complete to determine the
winner of generalized geography [14]. Moreover, several variants of generalized geography
have been considered, e.g., planar generalized geography [14], edge geography [15] and
undirected geography [11]. It is also known that for each of above variants is PSPACE-
complete to determine which player wins the game except undirected vertex geography;
we can determine the winner in polynomial time.

In this paper, we consider a new impartial game on a graph, called feedback game,
which is a variant of undirected edge geography. (We sometimes call it a game for the
sake of simplicity.)

Definition 1 (Feedback game). There are two players; Alice and Bob, starting with
Alice. For a given connected graph G with a starting vertex s, a token is put on s.
They alternately move the token from a vertex u to a neighbor v of u and then delete an
edge uv. The first player who moves the token back to s or to an isolated vertex (after
removing the edge used by the last move) wins the game.

We can find that feedback game is the same as edge geography when the starting vertex
s has degree 2. But these two games are quite different when the degree of s is more than
2. For example, on a butterfly graph like as Fig. 1 and the start vertex is s, Alice clearly
wins feedback game. On the other hand, Alice never wins edge geography on the same
graph and start vertex. One can observe that the difference between these games lies
on the choice of the moves: players cannot take a move to neighbouring vertices of s on
feedback game. Due to this difference, we can not directly apply existing results on edge
geography to feedback game.

s

Figure 1. Alice wins feedback game, but loses edge geography.

In this paper, we investigate feedback game on Eulerian graphs. Note that if a given
connected graph G is Eulerian, then the game does not end until the token goes back to
the starting vertex s, and further observe that Bob always wins feedback game on any
connected bipartite Eulerian graph (cf. [11]): Let G be a connected bipartite Eulerian
graph, and so, all vertices of G are properly colored by two colors, black and white.
Without loss of generality, we may suppose that the starting vertex is colored by black.
Throughout the game on G, a token is always moved to a white (resp., black) vertex by
Alice (resp., Bob). Thus, Bob necessarily wins the game.

For a given connected Eulerian graph G, it is PSPACE-complete to determine which
player wins feedback game on G even if the maximum degree of G is at most 4 (The-
orem 3). Therefore, a main study on feedback game is to determine the winner of the
game on a connected Eulerian graph with more additional restrictions.
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The remaining of the paper is organized as follows. In the next section, we prove the
PSPACE-completeness of feedback game. In Section 3, we introduce an even kernel (resp.,
an even kernel graph), first introduced in [11], which is a useful subset (resp., subgraph)
guaranteeing the existence of a winning strategy of the second player. In Sections 4 and 5,
focusing on triangular grid graphs and toroidal grid graphs, we determine the winner of
feedback game on several subclasses of them.

2. Complexity of Feedback Game

Because feedback game can be seen as a variant of undirected edge geography, it is a
simple idea to construct a reduction from undirected edge geography to feedback game.

Definition 2 (Undirectred/Directed edge geography). There are two players; Alice and
Bob, starting with Alice. For a given connected undirected/directed graph G with a
starting vertex s, a token is put on s. They alternately move the token from a vertex u
to a neighbor/out-neighbor v of u and then delete an edge/arc uv. The first player who
moves the token to an isolated vertex (after removing the edge/arc used by the last move)
wins the game.

Directed edge geography is known to be PSPACE-complete [15] via a reduction from
TQBF, and undirected edge geography is also known as PSPACE-complete [11] via a
reduction from directed edge geography. Here TQBF (true quantified Boolean formula)
is, given a quantified formula, the determination of whether there exists an assignment
to the input variables such that the formula is true.

Feedback game is different from these edge geographies on the winning rule. Since a
player wins when a token reaches the starting vertex, it is difficult to reduce from an
instance of undirected edge geography to that of feedback game. To avoid this difficulty,
we use the same idea about reduction from TQBF to directed edge geography and add a
gadget before making the graph undirected.

Theorem 3. It is PSPACE-complete to determine whether there exists a winning strategy
for the first player in feedback game, even if the given graph is Eulerian.

Proof. We can see that this determination is in PSPACE, since we can check the win-
ner using a DFS-like algorithm that recurs O(|E|) times and uses O(n) spaces on each
recursion.

Now we reduce any instance of TQBF to an instance of determining the winner on
feedback game. The first step is the same as the famous reduction from TQBF to directed
edge geography [15] and we obtain a graph H as an instance. Note that, applying the
same reduction in [14], ∆(H) = 3, where ∆(H) denotes the maximum degree of H, and
that the obtained graph H has only one vertex s with in-degree 0. We also note the
out-degree of s is 2.

By the definition of the feedback game, the winner can also win in the view of the
“directed version” of the feedback game on H. (Note that a player can win when the
opponent cannot move anymore.) From now on, as shown in Figure 2, we use pseudo-arcs
to make a reduction to the “undirected version” of feedback game [11].

We make the undirected graph H ′ obtained as above be Eulerian. Let D={x1, x2, ..., x2p}
for p ≥ 1 be the set of vertices in V (H ′) of odd degree. First, we add a path abc and two
edges as and cs, that is, sabc forms a 4-cycle. Note that the first player does not use the
edge sa nor sc at the start of the game; that immediately leads to a suicide. Next, for
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p q p q

Figure 2. Replacing an arc pq with a pseudo-arc

each xi where 1 ≤ i ≤ 2p, we make a path Pi = xiyizi of length 2 with adding two vertices
yi and zi. Finally, we add edges z1a, z2a, z2i−1y2i−3 and z2iy2i−3, where 2 ≤ i ≤ p. Then,
in the resulting graph G, we can see the degree of a is 4, the degree of b, c, zi is 2, the
degree of yi is 2 or 4, and the degree of xi is greater 1 than itself in H ′. Therefore, clearly
the resulting graph G is Eulerian. Furthermore, it is not difficult to see that the winner
of feedback game on G is the same as that of H ′; note that the player who moves the
token from a vertex xi (which is an odd in H ′) to yi loses because that move makes one
way journey and commits suicide.

Note that, a graph we obtain from these reductions has no vertex degree greater than
3. When we discuss Eulerian graphs, by suitably modifying the addition of vertices and
edges, we can make the graph have vertices degree only 2 or 4. Thus, we obtain the
following corollary.

Corollary 4. It is PSPACE-complete to determine whether there exists a strategy that
the first player wins a feedback game, even if the given graph is a connected graph with
maximum degree at most 3 or a connected Eulerian graph with maximum degree at most 4.

3. Even Kernel Graph

We recall that Bob wins feedback game on every connected bipartite Eulerian graph.
Focusing on this fact, Fraenkel et al. [11] introduced a good concept, called an even kernel.

Definition 5 (Even kernel). Let G be a connected graph with a starting vertex s. An
even kernel of G with respect to s is a non-empty subset B ⊆ V (G) such that

(1) s ∈ B,
(2) no two elements of B are adjacent, and
(3) every vertex not in B is adjacent to an even number (possibly 0) of vertices in
B.

It is known in [10] that finding an even kernel of a given graph is NP-complete even if
the graph is bipartite or its maximum degree is at most 3. Based on an even kernel, we
define a good subgraph of graphs, called an even kernel graph. For a graph G and two
disjoint subsets A,B ⊆ V (G), EG(A,B) denotes the set of edges between A and B (i.e.,
one of ends of the edge in the set belongs to A and the other belongs to B).

Definition 6 (Even kernel graph). Let B be an even kernel of a connected Eulerian graph
G with a starting vertex s. An even kernel graph with respect to s is a bipartite subgraph
Hs with the bipartition V (Hs) = B ∪W and E(Hs) = EG(B,W ), where W ⊆ V (G) \B
is a arbitrary superset of the set NG(B) = {v ∈ V (G) \ B : v is adjacent to some vertex
in B}.
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s s
G Hs

Figure 3. An even kernel graph Hs of a connected Eulerian graph G

For example, see Figure 3. The right of the figure, the graph Hs, is an even kernel
graph of the graph G with a starting vertex s. The bold lines are edges of Hs and dotted
lines are ones in E(G) \E(Hs), and black vertices in B (where s ∈ B) and white ones in
W . Observe that for every vertex v ∈ B, all edges incident to v in G belong to E(Hs).

Remark. If G has an even kernel, then G always has an even kernel graph. In Figure 3,
Hs is a spanning subgraph of G, but an even kernel graph is not necessarily spanning in
general. Furthermore, the existence of even kernel graphs depends on the position of a
starting vertex s. It is easy to see that the graph G shown in Figure 3 has no even kernel
graph if its starting vertex is of degree 4. Moreover, an even kernel graph is not unique
for a given even kernel B since the partite set W may have a vertex of degree 0 in HS .

By the definition, we see the existence of an even kernel (graph) of a connected Eulerian
graph G guaranteeing that Bob wins feedback game on G.

Lemma 7 ([11]). Let G be a connected Eulerian graph with a starting vertex s. If G has
an even kernel with respect to s, then Bob can win feedback game on G.

We conclude this section with showing that the converse of Lemma 7 is not true even
if G is Eulerian, that is, a connected Eulerian graph G does not necessarily have an even
kernel graph even if Bob can win the game on G.

Proposition 8. There exist infinitely many connected Eulerian graphs without an even
kernel graph on which Bob wins feedback game (with respect to a prescribed starting ver-
tex).

Proof. We first give a construction of desired connected Eulerian graphs. Prepare two
even cycles C2k = u0u1u2 · · ·u2k−1 and C4k = v0v1v2 · · · v4k−1 for some k ≥ 2. Add edges
uiv2i and uiv2i+1 for any i ∈ {0, 1, . . . , 2k − 1}. Finally, we add a starting vertex s so
that s and vj are adjacent for any j ∈ {0, 1, . . . , 4k − 1}. The resulting graph is denoted
by Gk; for example, see Figure 4.

We next show that Bob can win the game on Gk. Without loss of generality, we may
suppose that Alice first moves the token to v0 and that Bob moves it from v0 to u0. If
Alice moves the token to v1, then Bob wins the game. Thus, we may assume that Alice
moves it to u1, and then Bob moves it to u2. After that, Alice (resp., Bob) moves the
token from u2i to u2i+1 (resp., from u2i+1 to u2i+2), where subscripts are modulo 2k.
Therefore, Bob finally moves the token to u0, that is, Alice has to move it to v1. Thus,
Bob wins the game on Gk.
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Figure 4. The graph G2

Finally, we claim that Gk has no even kernel graph with respect to s. Suppose to the
contrary that Gk has an even kernel graph Hs with bipartite sets B and W where s ∈ B.
By the definition of an even kernel graph, svi ∈ E(Hs) for all i ∈ {0, 1, . . . , 4k − 1}, that
is, vi ∈ W . Since Hs is bipartite, vivi+1 /∈ E(Hs) where subscripts are modulo 4k. Thus
all edges between two cycles C4k and C2k belong to E(Hs), and hence, uj ∈ B for any
j ∈ {0, 1, . . . , 2k− 1}. However, u0 and u1 must be adjacent in Hs, which contradicts the
bipartiteness of Hs.

4. Triangular Grid Graphs

At first, we give a recursive definition of triangular grid graphs.

Definition 9 (Triangular grid graph). A triangular grid graph Tn with n ≥ 0 is recursively
constructed as follows.

• T0 (= P 0) consists of an isolated vertex v00 and no edge.
• Tn with n ≥ 1 is obtained from Tn−1 by adding a path Pn = vn0 v

n
1 · · · vnn and

edges vn0 v
n−1
0 , vnnv

n−1
n−1 , vni v

n−1
i−1 and vni v

n−1
i for any i ∈ {1, . . . , n− 1}.

v00

v00

v00

v10 v11

v11v10

v20 v21 v22

T0 : T1 : T2 :

Figure 5. Triangular grid graphs T0, T1 and T2



Feedback Game on Eulerian Graphs 757

For example, see Figure 5. It is easy to see that every triangular grid graph is connected
and Eulerian and that its maximum degree is at most 6. Moreover, it has high symmetry
as we know. Thus the class of triangular grid graphs seems to be a reasonable subclass
of connected Eulerian graphs for considering feedback game.

For triangular grid graphs, we have the following setting v00 as a starting vertex (where
note that the vertex v00 can be regarded as vn0 and vnn by symmetry).

Theorem 10. If n 6= 2m − 3 with m ≥ 2, then Bob wins the game on the triangular grid
graph Tn with a starting vertex v00.

Proof. We prove the theorem by induction on the height of the triangular grid graph.
For the base case, we can easily find that all T2 (the left of Figure 7), T3 (the right of
Figure 3), T4, T6 (Figure 6) have at least one even kernel graph, i.e., Bob wins the game
on these triangular grid graphs by Lemma 7.

Figure 6. Even kernel graphs of T4 and T6

For an induction rule, we assume that all T2i−2, T2i−1, . . . , T2i+1−4, T2i+1−2 have at
least one even kernel graph. Here we construct even kernel graphs on triangular grid
graphs using those even kernel graphs. Using four even kernel graphs on Tα, we can
construct an even kernel graph on T2α+3; for example, see Figure 7.

From the assumption and this fact, each of T2i+1−1, T2i+1+1, . . . , T2i+2−5, T2i+2−1 has at
least one even kernel graph. For triangular grid graphs T2i+1−2, T2i+1 , . . . , T2i+2−4, T2i+2−2,

it is clear that they have an even kernel graph with bipartite sets B = {vjk : j ≡ k ≡ 0

(mod 2)} and W = {vjk : j ≡ 1 (mod 2) or k ≡ 1 (mod 2)} since their height is
even (as shown in Figure 6); note that in every even kernel graph constructed above,
all vertices of degree 2 are in the same partite set. Then, all triangular grid graphs
T2i+1−2, T2i+1−1, . . . , T2i+2−4, T2i+2−2 have at least one even kernel graph. By induction,
all triangular grid graph Tn has at least one even kernel graph when n 6= 2m − 3. This
together with Lemma 7 leads to that Bob wins the game on Tn when n 6= 2m − 3.
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Figure 7. An even kernel graph H of T2 and that of T7 based on H

Theorem 10 shows that Bob can win the game when the starting vertex is v00 . Indeed,
we show below that every even kernel graph of Tn must include v00 .

Lemma 11. There is no even kernel of Tn that does not include v00 when n > 1.

Proof. We prove the lemma by contradiction and induction on the distance between v00
and an arbitrary other vertex. Let B be an even kernel not including v00 , and let H be an
even kernel graph with bipartition B∪W such that every vertex in W has degree at least
2 in H. By assumption of B, neither v10 nor v11 is contained in V (H) by the definition of
vertices in W . Therefore, all vertices whose distance from v00 is 1 must not be in V (H).

Assume that no vertex whose distance from v00 is at most k is in V (H), we can see

that any vk+1
i (0 ≤ i ≤ k + 1) cannot be in B by definition; because any vkj (0 ≤ j ≤ k)

is not a member of W from the assumption. If vk+1
i is a member of W , by definition

and assumption of W , vk+1
i must have two or four edges in H. This condition and local

restrictions show that both vk+2
i and vk+2

i+1 are a member of B. This violates the definition

for B. Therefore, vk+1
i cannot be a member of W .

By induction on k, any vertex is not a member of V (H), a contradiction. Therefore,
all even kernels of Tn must include v00 .

For the case when n = 2m − 3 with m ≥ 2, we have checked that Alice wins the game
on Tn with a starting vertex v00 for small cases when n = 1 and n = 5.

Theorem 12. Alice wins feedback game on T1 and T5 with a starting vertex v00.

Proof. Since it is clear that Alice wins feedback game on T1, we shall prove that Alice
wins the game on T5 with starting vertex s = v00 .
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Without loss of generality, Alice first moves the token to v10 , and then Bob moves it to
either (i) v20 or (ii) v21 . In the case (i) (resp., (ii)), Alice next moves the token to v30 (resp.,
v22). For the case (i), as shown the left of Figure 8, we can construct a “good” bipartite
subgraph for Alice; note that Alice can move the token to a black vertex in the remaining
game as in the argument of the even kernel. Therefore, Alice can finally move the token
back to the starting vertex s.

s s

A

B

A

A

B A

(i) (ii)-(a)

A

B

Figure 8. Good bipartite subgraphs for the cases (i) and (ii)-(a)

We divide the case (ii) to two subcases; (a) Bob moves the token to v33 , or (b) he moves
the token to v32 . In the former case, as shown in the right of Figure 8, Alice wins the game
similarly to the case (i). In the latter case, Alice moves the token to v43 . If Bob moves the
token to v44 or v54 , then Alice can move it back to v43 along a 4-cycle v43v

4
4v

5
5v

5
4 . Moreover,

if Bob moves the token to v33 , then Alice can win the game by moving it to v22 (since Bob
must move it to v11 in his next move). Such a vertex u (to which a player loses the game
by moving the token) is called a dead vertex (see Figure 9; a dead vertex is marked by ‘d’
and colored by gray). Thus, Bob moves the token from v43 to either (1) v53 or (2) v42 .

The proof of the case (1): Alice moves the token to v52 . Observe that v42 and v51 are dead;
since if Bob moves the token to v42 , then by moving the token back to v43 Alice can force
Bob move it to the dead vertex v33 , and if Bob moves the token to v51 , then by the following
sequence (→A (resp., →B) means a move of the token by Alice (resp., Bob));

v51 →A v50 →B v40 →A v51 →B v41 →A v52 →B v42 ,

Alice can force Bob move it to v42 (after that, Bob must move it to the dead vertex v33
similarly to the above). Thus, Bob must move the token to v41 , and then Alice moves it
to v30 . Since v40 is also dead now, Bob moves the token to v31 . Therefore, Alice can force
Bob to move the token to a dead vertex, by moving it from v31 to v41 .

The proof of the case (2): Alice moves the token to v52 . Similarly to the previous case,
Bob must move the token to v41 since v51 and v53 are dead. After that, Alice can force Bob
to move the token to a dead vertex by using one of the following two patterns:

• v41 →A v42 →B v31 →A v21 →B v32 →A v42
• v41 →A v42 →B v32 →A v21 →B v31 →A v42
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s

A

B A

B

A

d

d

d

(2)

(1)

Figure 9. The case (ii)-(b)

Therefore, Alice wins feedback game on the triangular grid graph T5.

Furthermore, we confirm that there exists no even kernel graph of Tn if n = 2m − 3
with m ≥ 2, as follows.

Theorem 13. If n = 2m − 3 with m ≥ 2, then the triangular grid graph Tn has no even
kernel graph.

Proof. Suppose to the contrary that Tn has an even kernel graph Hn. From Lemma 11,
any even kernel of Tn contains v00 , vn0 and vnn . Then these three vertices are in B ⊂ V (Hn),
which is a subset containing a starting vertex.

By symmetry, let i be the smallest number such that v2i0 /∈ B, i.e., if v2j2j /∈ B with

j < i, then we relabel vk0 , v
k
1 , . . . , v

k
k as vkk , v

k
k−1, . . . , v

k
0 for any k ∈ {1, 2, . . . , n}. Then

for every j = 1, . . . , 2i− 1, vj0 ∈ W (resp. vj0 ∈ B) if j is odd (resp. even). Moreover, by
definition and local restrictions, vkj ∈ B for j, k < 2i when j, k is even, otherwise vkj ∈W .
(Since the degree of a vertex in W may be zero, every vertex of Tn can be a member in
V (Hn).)

Here we define a closed-packed triangle to discuss the situation of layers below i.

Definition 14 (Close-packed). Let4abc (a, b, c ∈ V (Tn)) denotes a triangular grid graph
Tp for some p ∈ {0, 1, . . . , n} which is contained in Tn as a subgraph. The triangular grid
subgraph 4abc is close-packed (or 4abc is a close-packed triangle) if vkj ∈ B ∩ V (4abc)

for j, k ∈ {0, 1, . . . , n} when j, k are even, otherwise vkj ∈W ∩ V (4abc).

See Figure 10. Since v2i−10 , v2i−11 and v2i0 are in W and v2i−20 ∈ B, we have v2i1 ∈ B,

and this leads to v2i+1
1 ∈ W and v2i+1

0 ∈ B. Observe that v2i2i /∈ B, since otherwise,
v2i2 is also in B by the observation in the second paragraph, which contradicts v2i1 ∈ B.
Moreover, with the similar observation, v2i2i−1, v

2i+1
2i+1 ∈ B and v2i+1

2i ∈W .

Two black vertices v2i1 and v2i2i−1 and white vertices v2i−1j , where 0 ≤ j ≤ 2i − 1,

force that all v2ij ∈ B if j is odd and all v2ij ∈ W if j is even. By local restrictions,

4v2i1 v2i2i−1v
4i−2
2i−1 is close-packed (see Figure 11); note that v2i+2

2 , v2i+2
2i /∈ B, since if v2i+2

2 ∈
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P 2i−2

P 2i−1

P 2i

P 2i+1

v2i−2
0 v2i−2

2i−2

v2i0
v2i1 v2i2i

Figure 10. The situation around v2i0 and v2i2i ; the numbers listed in the

left denote the superscript numbers of vjk lying on the same column and
black (resp. white) vertices denote those in B (resp. W ).

B (resp., v2i+2
2i ∈ B), then v2i+1

1 (resp., v2i+1
2i ) in W must be of degree 3 in Hn, a

contradiction. Furthermore, 4v2i1 v2i2i−1v
4i−2
2i−1 forces v2i+jj , where 0 ≤ j ≤ 2i−1 and v2i+j2i ,

where 0 ≤ j ≤ 2i − 1 are in W . Note that whether v4i2i is in B or W is not revealed yet
under the above discussions.

P 2i−1

P 2i
v2i0 v2i2i

v4i2i

v4i−2
2i−1

v4i−3
2i−2 v4i−3

2i−1

v4i−1
2i

v4i−1
2i−1

v4i−3
2i−1

v2i1 v2i2i−1

Figure 11. The close-packed triangle 4v2i1 v2i2i−1v
4i−2
2i−1 (surrounded by

three lines forming a triangle); for the sake of simplicity, we omit edges
and the gray vertex means that it is not decided yet whether the vertex
is in B or W .

Now similar discussion leads us the following facts.

(1) White vertices v2i+jj , where 0 ≤ j ≤ 2i − 1, and black one v2i+1
0 generate a

close-packed triangle 4v2i+1
0 v4i−10 v4i−12i−2 .
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(2) White vertices v2i+j2i , where 0 ≤ j ≤ 2i − 1, and black one v2i+1
2i+1 generate a

close-packed triangle 4v2i+1
2i+1v

4i−1
2i+1v

4i−1
4i−1 .

P 2i−1

P 2i
v2i0 v2i2i

v4i2i

v4i−2
2i−1

v4i−3
2i−2 v4i−3

2i−1

v4i−1
2i+1v4i−1

2i−2

v4i−3
2i−1

P 4i−3

P 4i−2

P 4i−1

P 4i

P 2i+1

v4i−1
0

v4i−1
4i−1

v2i+1
0 v2i+1

2i+1

v2i1 v2i2i−1

Figure 12. The three close-packed triangles 4v2i1 v2i2i−1v
4i−2
2i−1 ,

4v2i+1
0 v4i−10 v4i−12i−2 and 4v2i+1

2i+1v
4i−1
2i+1v

4i−1
4i−1

The situation is depicted in Figure 12. These successive generation can stop if n =
4i− 1. If n = 4i− 1, Hn is constructed by four close-packed triangles. If n < 4i− 1, the
above generation are not satisfied. Therefore, there does not exist such i under that n. If
n > 4i− 1, the above generation must continue as follows:

Two close-packed triangles 4v2i+1
0 v4i−10 v4i−12i−2 and 4v2i+1

2i+1v
4i−1
2i+1v

4i−1
4i−1 force that v4ij ∈

W , where 0 ≤ j ≤ 4i and j 6= 2i. We next focus on the fact that v4i−12i−1 , v
4i−1
2i , v4i2i−1

and v4i2i+1 must be in W . This fact implies v4i2i must be of degree 0 in Hn (i.e., it

is in W ) since local constrains force v4i+1
2i−1, v

4i+1
2i+2 , v

4i+2
2i+1 ∈ B. These new black ver-

tices generate new three close-packed triangles 4v4i+1
1 v4i+1

2i−1v
6i−1
2i−1 ,4v4i+2

2i+1v
6i
2i+1v

6i
4i−1 and

4v4i+1
2i+2v

4i+1
4i v6i−14i , and these new close-packed triangles force two extra close-packed tri-

angles 4v4i+2
0 v6i0 v6i2i−2,4v4i+2

4i+2v
6i
4i+2v

6i
6i . In this case, these successive generation can stop

if n = 6i, and also this discussion can continue recursively if n > 6i.
Let r be the number of recursion on the above discussion, i.e., Hn contains r2 close-

packed triangles. (Note that 4v00v
2i−2
0 v2i−22i−2 is also a close-packed triangle.) By the

hypothesis, there can exist such i on Tn if n = r(2i+ 1)− 3, where i, r ≥ 1, which implies
that only if n can be represented as n = r(2i + 1)− 3, where i, r ≥ 1, then Hn can exist.
Therefore, by the assumption that n = 2m− 3, there must not exist an even kernel graph
for Tn when m > 1 since 2m−j cannot be represented as 2i + 1 for any i ≥ 1 and j ≤ m,
a contradiction.
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Thus, we propose the following conjecture which implies that for every triangular grid
graph Tn with a starting vertex v00 , Bob wins the game on Tn if and only if Tn contains
an even kernel graph with respect to v00 .

Conjecture 15. If n = 2m − 3 with m ≥ 2, then Alice wins feedback game on the
triangular grid graph Tn with a starting vertex v00.

In the end of this section, we describe feedback game on Tn in which the starting vertex
is not v00 . In general, changing the starting vertex of Tn changes the winner of the game.
For example, Bob wins the game on T2 with starting vertex v00 , but it is easy to check
that if the starting vertex v10 , then Alice wins. It is clear that if Tn has an even kernel
graph with partite sets B and W , where B contains the starting vertex, then Bob wins
the game on Tn with every starting vertex s ∈ B. However, it is not clear whether Alice
wins the game on Tn with every starting vertex s ∈W .

5. Toroidal Grid Graphs

In this section, we investigate feedback game on toroidal grid graphs. Undirected edge
geography on a grid graph (which is the Cartesian product of two paths) is completely
solved [11], and directed edge geography on a directed toroidal grid graph is also investi-
gated in [13].

Definition 16 (Toroidal grid graph). A toroidal grid graph Q(m,n) is the Cartesian
product of two cycles Cm = u0u1 · · ·um−1 and Cn = v0v1 · · · vn−1 with m ≥ 2 and n ≥ 2,
that is,

• V (Q(m,n)) = {(ui, vj) : i ∈ {0, 1, . . . ,m− 1}, j ∈ {0, 1, . . . , n− 1}}.
• (ui, vj)(ui′ , vj′) ∈ E(Q(m,n)) if and only if

– i = i′ and vjvj′ ∈ E(Cn) or
– j = j′ and uiui′ ∈ E(Cm).

In other words, Q(m,n) is a 4-regular quadrangulation embedded on the torus, which
is a graph on a surface with each face quadrangular. For example, see Figure 13; by
identifying the top and bottom (resp., right and left) sides along the direction of arrows,
we have the toroidal grid graph Q(3, 4). Note that Q(m,n) is vertex-transitive, that is,
there exists an automorphism of the graph mapping a vertex into any other vertex. Thus,
feedback game on Q(m,n) does not depend on the choice of a starting vertex, and hence,
toroidal grid graphs seem to be a reasonable subclass of connected Eulerian graphs with
maximum degree at most 4 for considering feedback game.

For several combinations of m and n, we have determined the winner of the game as
follows. In particular, if the greatest common divisor of m and n, denoted by gcd(m,n),
is bigger than one, then Bob can win the game on Q(m,n), and otherwise it seems to be
that Alice can win the game.

Theorem 17. If gcd(m,n) = c > 1, then Bob can win feedback game on Q(m,n).

Proof. By the assumption, let m = ck and n = ck′ for some positive integers k and k′.
The toroidal grid graph Q(c, c) with a starting vertex s = (u0, v0) has an even kernel graph
Hc with partite sets B and W such that (ui, vi) ∈ B, (ui, vi+1), (ui+1, vi) ∈W and edges
(ui, vi)(ui, vi+1), (ui, vi)(ui+1, vi), (ui, vi+1)(ui+1, vi+1) and (ui+1, vi)(ui+1, vi+1) are in
E(Hc) for any i ∈ {0, 1, . . . , c− 1}, where subscripts are modulo c (see Figure 14).
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(u1, v0)

(u2, v0)

(u2, v1)

(u0, v0)

Figure 13. The toroidal grid graph Q(3, 4)

s

Figure 14. An even kernel graph of Q(3, 3)

Note that Q(m,n) can be covered by Q(c, c)’s, and hence, we can obtain an even
kernel graph of Q(m,n) by combining that of Q(c, c), as shown in Figure 15. (Figure 15
represents Q(6, 9) covered by six Q(3, 3)’s with an even kernel graph shown in Figure 14.)
Therefore, the theorem holds by Lemma 7.

Theorem 18. If gcd(2, n) = 1, then Alice can win feedback game on Q(2, n).

Proof. Without loss of generality, we set (u0, v0) be a starting vertex. Since gcd(2, n) = 1,
n is odd. Alice first moves the token to (u0, v1). After that, Alice plays the game according
to Bob’s move as follows:

(i) If Bob moves the token to (u1, vi) through an edge (u0, vi)(u1, vi), Alice moves
it to (u0, vi) using (u1, vi)(u0, vi).

(ii) If Bob moves the token to (u0, vi+1), then Alice moves it to (u0, vi+2), where
subscripts modulo n.

Observe that the strategy (i) can be always applied and that after the strategy (i) is
applied, Bob must move the token from (u0, vi) to (u0, vi+1). Note that the token lies on
(u0, vj) for some odd j < n − 1 after Alice uses the strategy (ii). Therefore, since n is
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s

Figure 15. The toroidal grid graph Q(6, 9) covered by Q(3, 3)’s with
even kernel graphs

odd, Alice finally moves the token from (u0, vn−1) to (u0, v0), that is, she wins the game.

Theorem 19. If gcd(3, n) = 1, then Alice can win feedback game on Q(3, n).

Proof. Without loss of generality, we may assume a starting vertex s is (u0, v0). Moreover,
by Theorem 18, we may assume that n ≥ 4.

Alice first moves the token to (u1, v0). If Bob moves it to (u2, v0), then Alice wins the
game. Thus, Bob moves the token to (u1, v1) by symmetry and then Alice moves it to
(u2, v1). Next, Bob has to move the token to (u2, v2) (otherwise Alice can move it back to
s) and then Alice moves it to (u0, v2). After that, Alice plays the game according to Bob’s
move until the token is moved to (ui, vn−2) for some i ∈ {0, 1, 2} by herself, as follows
(where the subscripts of ui and vj in the following are modulo 3 and n, respectively):

(i) If Bob moves the token on (ui, vj) to (ui, vj−1), then Alice moves it to (ui, vj−2).
(ii) If Bob moves the token on (ui, vj) to (ui+1, vj), then Alice moves it to (ui+1, vj−1).
(iii) If Bob moves the token on (ui, vj) to (ui, vj+1) then Alice moves it to (ui+1, vj+1).

Observe that in the above beginning moves from the starting vertex to (u0, v2), Alice
applies only the strategy (iii) twice except her first move.

In the strategy (i), after Alice’s move, (ui, vj−2) is incident to the unique edge (ui−1, vj−2)
(ui, vj−2) unless (ui, vj−2) = (u0, v0), since two edges (ui, vj−3)(ui, vj−2) and (ui, vj−2)
(ui+1, vj−2) are used by the moves in (iii). Similarly, for the strategy (ii), (ui+1, vj−1) is
incident to the unique edge (ui, vj−1)(ui+1, vj−1). Thus, after Alice’s move by the strat-
egy (i) (resp., (ii)), Bob must move the token to (ui−1, vj−2) (resp., (ui, vj−1)). Hereafter,
Alice moves the token to (ui−1, vj−3) (resp., (ui, vj−2)) and then the same situation oc-
curs at the current vertex. Hence, by applying the above move repeatedly, the token is
finally carried to s from (u0, v1) by Alice.

Therefore, we may suppose that until Alice moves the token to (ui, vn−2) for some
i ∈ {0, 1, 2} by herself, she always applies the strategy (iii), that is, two indices i and
j of a current vertex (ui, vj) are alternately increased one by one by Alice and Bob,
respectively. Therefore, we may assume that Alice finally moves the token to (u0, vn−2)
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(resp., (u1, vn−2)) from (u2, vn−2) (resp., (u0, vn−2)) depending on n; otherwise, i.e., if
Alice finally moves the token (u2, vn−2) from (u1, vn−2), then n − 2 ≡ 1 (mod 3) and
hence n ≡ 0 (mod 3), which contradicts gcd(3, n) = 1.

Thus the token is now put on (u0, vn−2) or (u1, vn−2). In the former case, Bob moves
to (u0, vn−1) and then Alice wins the game by moving it back to s. In the latter case, Bob
moves to (u1, vn−1) and then Alice moves it to (u1, v0). After that, since Bob must move
the token to (u2, v0), Alice wins the game by moving it from (u2, v0) to s. Therefore, the
theorem holds.

Theorem 20. If gcd(m,n) = 1, then there exists no even kernel graph of Q(m,n).

Proof. Suppose to the contrary that Q(m,n) with gcd(m,n) = 1 has an even kernel graph.
Let Ev(m,n) ⊆ Q(m,n) be an even kernel graph of Q(m,n). From the definition, any
vertex in the white part of Ev(m,n), denoted by W (m,n), has two or four neighbours
(a vertex in W (m,n) can have no neighbour, but in this case we can remove it from
Ev(m,n)) and they are in the black part of Ev(m,n), denoted by B(m,n). A stopgap of
Ev(m,n) is a vertex in W (m,n) of degree 2 such that its neighbours lie on the same row
or column. When we ignore all stopgaps, Ev(m,n) has several components surrounded
by vertices in W (m,n). Note that any vertex in B(m,n) cannot be adjacent to vertices
not in W (m,n). We denote a component and stopgaps which are its neighbours (if exist)
as a cluster (see Figure 16). In Figure 16, black vertices are in B(m,n), gray vertices
with bold circle are in W (m,n), and gray vertices without edges are not in Ev(m,n).

Figure 16. An even kernel graph Ev(10, 10) of Q(10, 10) and its clusters
denoted by shaded regions

Every cluster looks a rectangle rotated 45 degrees. This means that a cluster has
four sides consisting of diagonally consecutive vertices in W (m,n). For clusters, we have
following claims.

Claim 1. Every clusters are rectangles unless Ev(m,n) = Q(m,n).
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Proof. Assume that a cluster C is not a rectangle. Then there must exist a vertex in
W (m,n) ⊂ C which is not a stopgap, and is adjacent to a vertex not in Ev(m,n) and
odd number of vertices in B(m,n) (since all vertices in B(m,n) are of degree 4). This
contradicts the definition of Ev(m,n).

From claim 1, if there exists Ev(m,n) ( Q(m,n) when gcd(m,n) = 1, because any
straight line rotated 45 degrees on Q(m,n) contains all of V (Q(m,n)), any stop gap in
arbitrary cluster in Ev(m,n) succeeds on every vertices in Q(m,n). This is contradiction
because all vertices are in stop gap, this means W (m,n) = V (Q(m,n)) and B(m,n) has
no vertex. Therefore, Ev(m,n) must be Q(m,n) when gcd(m,n) = 1 However, Q(m,n) is
not bipartite when gcd(m,n) = 1, which contradicts the definition of Ev(m,n). Therefore,
the theorem holds.

Under the results obtained above, we conclude the paper with proposing the following
conjecture which implies that Alice can win feedback game on Q(m,n) if and only if
gcd(m,n) = 1.

Conjecture 21. Alice can win feedback game on Q(m,n) if gcd(m,n) = 1.
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