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Abstract The authors studied maximum Nim wherein each player can remove at most f(m) stones

from a pile of m stones, where f(m) =
⌈
m
d

⌉
or f(m) =

⌊
m+1
d

⌋
with a positive number d that is larger

than 1, and present function hd such that G(hd(x)) = G(x), where G(x) is the Grundy number of the

pile of x stones. The authors apply function hd to the study of chocolate bar games, wherein two players

take turns and cut a chocolate bar in a straight line and eat the pieces. These games can be considered

the sum of two maximum Nim with a restriction on the size of the chocolate bar that can be eaten by

the players. Therefore, using hd, the authors devise formulas to calculate the winning position of the

previous player for a rectangular chocolate bar game with a restriction on the size of the chocolate bar

piece to be eaten. In addition, the authors present conjectures about rectangular chocolate bar games

with some missing parts.
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1. Introduction

The authors present formulas for the Grundy numbers of Maximum Nim, and they
apply these formulas to calculate the winning position of the previous player in rectangular
chocolate bar games with restrictions on the size of the chocolate bar piece to be eaten.

The classic game of Nim is played with stone piles. A player can remove any number
of stones from any one pile during their turn; the player who takes the last stone is
considered the winner.

There are many variants of the classical game of Nim. In Maximum Nim, we place an
upper bound f(n) on the number of stones that can be removed in terms of the number n
of stones in the pile (see [1]). In this study, we investigate the case wherein f(m) =

⌉
m
d

⌉
,

and present function hd such that G(hd(x)) = G(x), where G(x) is the Grundy number of

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2023 by TJM. All rights reserved.



734 Thai J. Math. Vol. 21 (2023) /R. Miyadera et al.

the pile of x stones. A part of this research has already been presented by [2], [3], and
[4].

Chocolate bar games are variants of the CHOMP game [5]. The first two-dimensional
chocolate bar was presented by Robin [6]; it is a rectangular array of squares with a black
square representing a bitter block located at some part in the bar. Each player breaks
the bar in a straight line along the grooves into two pieces and eats the piece without the
bitter part, at his/her turn. The player that manages to leave the opponent with a single
bitter block (black block) is the winner. This is a variation of the classical Nim with two
heaps; the chocolate bar game shown in Figure 1 is mathematically the same as that of
the classical Nim with two piles shown in Figure 2. Many variants of chocolate bar games
have been published [7] and [8], with some using two-dimensional chocolate bars where
some squares are removed (Figure 3).

Figure 1. Original chocolate bar with a bitter part

Figure 2. Traditional Nim with two piles

Figure 3. Chocolate bar with a bitter part, where some squares are removed

In this article, the authors study a rectangular chocolate bar game with restrictions on
the size of the chocolate bar piece to be eaten. We manage to play without a bitter part
owing to the restriction on the size of the chocolate bar to be eaten (Figure 4).

Figure 4. Chocolate bar without any bitter part

Given this restriction on the size of the chocolate bar piece to be eaten, the chocolate
bar game considered in this study is the sum of two Maximum Nim. Therefore, the
research on Maximum Nim can be applied to this chocolate bar game.
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2. Maximum Nim

Let Z≥0 and N represent the sets of non-negative integers and natural numbers, re-
spectively.

We consider maximum Nim as follows.
Suppose there is a pile of n stones, and two players take turns to remove stones from

the pile. At each turn, the player is allowed to remove at least one and at most f(m)
stones if the number of stones is m. The player who removes the last stone or stones is
the winner. Here, f(m) represents a function whose values are non-negative integers for
m ∈ Z≥0 such that 0 ≤ f(m) − f(m − 1) ≤ 1 for any natural number m. We refer to f
as the rule function.

We briefly review some necessary concepts in combinatorial game theory (see [9] for
more details).

We deal with impartial games with no draws, and therefore, there are only two outcome
classes.
(a) A position is called a P-position if it is a winning position for the previous player (the
player who just moved), as long as he/she plays correctly at every stage.
(b) A position is called an N -position if it is a winning position for the next player, as
long as he/she plays correctly at every stage.

In combinatorial game theory, “nim-sum is an important concept that indicates addi-
tion without carry overs for numbers expressed in base 2. Nim-sum is identical to the
“exclusive or operation in computer science.

Let x, y ∈ Z≥0. We represent x =
∑n

i=0 xi2
i and y =

∑n
i=0 yi2

i with xi, yi ∈ {0, 1}.

We define the nim-sum x⊕ y by x⊕ y =
n∑

i=0

wi2
i, where wi = xi + yi (mod 2).

The Grundy number is one of the most important tools in research on combinatorial
game theory, and we need “move for the definition of the Grundy number.
(i) For any position p of a game G, there is a set of positions that can be reached by
making precisely one move in G, which is denoted by move(p).
(ii) The minimum excluded value (mex) of set S of non-negative integers is the least
non-negative integer, not in S.
(iii) Let p be the position of an impartial game. The associated Grundy number is
denoted by G(p) and is recursively defined by G(p) = mex{G(h) : h ∈ move(p)}.

For the maximum Nim of x stones with rule function f(x),
move(x) = {x − u : 1 ≤ u ≤ f(x) and u ∈ N}. The Grundy number is important for
two reasons. The first is its relation to the P-position presented in Theorem 2.1, and the
second is its application to the sum of games.

Theorem 2.1. Let G represent the Grundy number of the combinatorial game G. Then,
for any position p of G, we have G(p) = 0 if and only if p represents a P-position.

For the proof, please see [9].
The sum of two games is an important concept in combinatorial game theory.
If G1 and G2 are combinatorial games, their sum, denoted by G1 + G2, represents a

game in which each player alternately chooses one among G1 and G2, and plays a move
in the selected game; the player who cannot play loses the game. This scenario occurs
only when G1 and G2 have reached a terminal position.

There is a simple relation for the Grundy number of the sum of two games.
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Let G1 and G2 represent the Grundy numbers of G1 and G2. Then, the Grundy
number of a position {g,h} in the game G1 + G2 is G1(g)⊕ G1(h).

Given this background, the authors present new results from this point forward.

Lemma 2.2. Let G represent the Grundy number of the maximum Nim with the rule
function f(x). Then, we have the following properties:
(i) For any x ∈ Z≥0 G(x) ≤ f(x).
(ii) If f(x) = f(x− 1), G(x) = G(x− f(x)− 1).
(iii) If f(x) > f(x− 1), then the following hold:
(iii.1) G(x) = f(x).
(iii.2) Let m = G(x). Then, x represent the smallest integer such that G(x) = m.

Proof. Properties (ii) and (iii.1) are proved in Lemma 2.1 of [1]. We prove property
(i) using mathematical induction. We assume that G(x) ≤ f(x) for x = 0, 1, · · · , n. If
f(n + 1) = f(n), then by (ii), G(n + 1) = G(n + 1 − f(n + 1) − 1) = G(n − f(n + 1))
≤ f(n− f(n + 1)) ≤ f(n) = f(n + 1).

If f(n + 1) > f(n), then by (iii.1) G(n + 1) = f(n + 1). Therefore, we have (i).
Next, we prove (iii.2). Suppose that m = G(x) = f(x). If there exists x′ such that

x′ < x and m = G(x′), then by (i), we have m = G(x′) ≤ f(x′) ≤ f(x− 1) < f(x) = m,
which leads to a contradiction. Therefore, we have (iii.2).

For any real number x, the ceiling and floor of x denoted by dxe and bxc represent the
least integer greater than or equal to x and the greatest integer less than or equal to x,
respectively.

Remark 2.3. When f(x) = f(x−1), we have G(x) = G(x−f(x)−1) by Lemma 2.2; this
equation presents a relation between the Grundy number G(x) of the pile of x stones and
the Grundy number G(x− f(x)− 1) of the pile of x− f(x)− 1 stones. This relationship
provides a position with a smaller number of stones that have the same Grundy number.
In subsections 2.1, 2.2, 2.3 and 2.4, we devise a function h such that G(h(x)) = G(x); this
function provides a position with a larger number of stones that have the same Grundy
number.

2.1. Case I: f(m) =
⌈
m
d

⌉
for d such that 2 < d

Hereafter, we assume that d represents a positive real number such that d > 2. We
study maximum Nim with the rule function f(m) =

⌈
m
d

⌉
; G(n) represents the Grundy

number of this maximum Nim with n stones.
The maximum Nim with d > 2 has a relatively simple mathematical structure com-

pared to the case 0 < d ≤ 2 treated in Subsection 2.2. Especially for the structure of
Grundy numbers, the value of d makes a big difference.

For p ∈ Z≥0 and a positive real number q, there exist s ∈ Z≥0 and a real number t
such that 0 ≤ t < q, and p = s× q + t. We denote t as mod(p, q).

Definition 2.4. We define a function hd(n) for a non-negative integer n as

(a) hd(n) = n +
⌊

n
d−1

⌋
+ 2, if mod(n, d− 1) ≤ d− 2.

(b) hd(n) = n +
⌊

n
d−1

⌋
+ 3 if mod(n, d− 1) > d− 2.
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Theorem 2.5. For hd defined in Definition 2.4, the following holds:

(i) hd(n) =
⌈
hd(n)

d

⌉
+ n + 1 for n ∈ Z≥0.

(ii) G(hd(n)) = G(n) for n ∈ Z≥0.
(iii) For any m ∈ Z≥0, there exists n0 ∈ Z≥0 such that {n : G(n) = m} = {hp

d(n0) : p ∈
Z≥0}, where hp

d is the p-th functional power of hd.

Proof. Let

n = (d− 1)k + s (2.1)

for k ∈ Z≥0 and s = mod(n, d− 1), respectively. Then, we have⌊
n

d− 1

⌋
= k. (2.2)

First, we prove (i) and (ii).
[I]. Suppose that

s = mod(n, d− 1) ≤ d− 2. (2.3)

Then, by Definition 2.4 and (2.2), we have

hd(n) = n + k + 2, (2.4)

and hence, by (2.1), we have

hd(n)

d
=

n + k + 2

d
=

(d− 1)k + s + k + 2

d
= k +

s + 2

d
(2.5)

and

hd(n)− 1

d
= k +

s + 1

d
. (2.6)

By (2.3),

0 <
s + 1

d
<

s + 2

d
≤ d

d
= 1,

and hence, by (2.5) and (2.6),⌈
hd(n)− 1

d

⌉
=

⌈
hd(n)

d

⌉
= k + 1. (2.7)

By (2.7) and (2.4),

hd(n)−
⌈
hd(n)

d

⌉
= n + k + 2− (k + 1) = n + 1, (2.8)

and hence, we have (i) of this theorem.
By (2.7),

f(hd(n)− 1) = f(hd(n)),

and hence, by (ii) of Lemma 2.2,

G(hd(n)) = G(hd(n)− f(hd(n))− 1) = G(hd(n)−
⌈
hd(n)

d

⌉
− 1), (2.9)
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and by (2.8),

G(hd(n)−
⌈
hd(n)

d

⌉
− 1) = G(n + 1− 1) = G(n). (2.10)

Then, by (2.9) and (2.10), we have (ii) of this theorem.
[II]. Suppose that

s = mod(n, d− 1) > d− 2. (2.11)

Then, by Definition 2.4 and (2.2),

hd(n) = n + k + 3, (2.12)

and hence, by s < d− 1, 2 < d, and (2.1),

hd(n)

d
=

n + k + 3

d

=
(d− 1)k + s + k + 3

d

= k +
s + 3

d

< k +
d + 2

d

= k + 1 +
2

d
< k + 2. (2.13)

By (2.11) and (2.13),

hd(n)− 1

d
= k +

s + 2

d
> k + 1. (2.14)

By (2.13) and (2.14),

⌈
hd(n)− 1

d

⌉
=

⌈
hd(n)

d

⌉
= k + 2, (2.15)

and hence,

f(hd(n)) = f(hd(n)− 1). (2.16)

By (2.15) and (2.12),

hd(n)−
⌈
hd(n)

d

⌉
= n + k + 3− (k + 2) = n + 1. (2.17)

Therefore, we have (i).
From (2.16), (2.17), and (ii) of Lemma 2.2,

G(hd(n)) = G(hd(n)−
⌈
hd(n)

d

⌉
− 1) = G(n).

Then, we have (ii) of this theorem.
(iii) For any m, there is the smallest n ∈ Z≥0 such that G(n) = m. We denote this
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number by n0. By (ii), {hp
d(n0) : p ∈ Z≥0} ⊂ {n : G(n) = m}, where h0

d(n0) = n0 and

hp+1
d (n0) = hd(hp

d(n0)). Let n′ ∈ Z≥0, such that

hp
d(n0) < n′ < hp+1

d (n0) (2.18)

for some p ∈ Z≥0.
From (i),

hp+1
d (n0) = hd(hp

d(n0)) =

⌈
hd(hp

d(n0))

d

⌉
+ hp

d(n0) + 1,

and hence, from (2.18) and the definition of move,

n′ ∈{hp+1
d (n0)− 1, hp+1

d (n0)− 2, · · · , hp
d(n0) + 1}

={hp+1
d (n0)− 1, hp+1

d (n0)− 2, · · · , hp+1
d (n0)−

⌈
hp+1
d (n0)

d

⌉
}

=move(hp+1
d (n0)).

Therefore, from the definition of the Grundy number, G(n′) 6= G(hp+1
d (n0)) = m, and

therefore, we have {hp
d(n0) : p ∈ Z≥0} = {n : G(n) = m}.

2.2. Case II: f(m) =
⌈
m
d

⌉
for d such that 1 < d ≤ 2

Hereafter, we assume that d represents a positive real number such that 1 < d ≤ 2.
We study the maximum Nim with the rule function f(m) =

⌈
m
d

⌉
; G(n) represents the

Grundy number of this maximum Nim of n stones.
The maximum Nim with 0 < d ≤ 2 has a relatively complicated mathematical structure

compared to the case of d > 2. Although the case of d = 2 is straightforward, we include
this in the case 0 < d ≤ 2.

Lemma 2.6. For n ∈ Z≥0, there is a unique number p ∈ Z≥0 and a unique real number
m such that

−1 < m ≤ d− 2 (2.19)

and

n = (d− 1)p + m. (2.20)

Proof. Let p0 = min{p : n− (d− 1)p ≤ d− 2}. Then we have

n− (d− 1)p0 ≤ d− 2 (2.21)

and

n− (d− 1)(p0 − 1) > d− 2. (2.22)

Let m = n− (d− 1)p0. Then by (2.21) we have

m ≤ d− 2 (2.23)

and

n = (d− 1)p0 + m. (2.24)

By (2.22) we have

m + (d− 1) > d− 2,
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and hence

m > −1. (2.25)

By (2.23), (2.24) and (2.25), we have p, d that satisfy (2.19) and (2.20).
Next, we prove the uniqueness of p and m in (2.20). Suppose that there are numbers

p1, p2 ∈ Z≥0 and real numbers m1,m2 such that p1 ≤ p2 and m2 ≤ m1, n = (d− 1)p1 +
m1 = (d− 1)p2 + m2, and −1 < m1,m2 ≤ d− 2. Then, we have 0 ≤ (d− 1)(p2 − p1) =
m1−m2 < d− 2− (−1) = d− 1, and hence, 0 ≤ p2− p1 < 1. Since p1, p2 ∈ Z≥0, we have
p1 = p2. Therefore, we also have m1 = m2.

Definition 2.7. We define a function hd(n) for n ∈ Z≥0 as
hd(n) = dp + m + 2, where p and m represent numbers in Lemma 2.6.

Theorem 2.8. For hd defined in Definition 2.7, the following holds:

(i) hd(n) =
⌈
hd(n)

d

⌉
+ n + 1.

(ii) G(hd(n)) = G(n) for n ∈ Z≥0.
(iii) For any k ∈ Z≥0, there exists n0 ∈ Z≥0 such that {n : G(n) = k} = {hp

d(n0) : p ∈
Z≥0}.

Proof. Since −1 < m ≤ d− 2, by Definition 2.7,

p <

⌈
dp + m + 1

d

⌉
=

⌈
hd(n)− 1

d

⌉
≤
⌈
hd(n)

d

⌉
=

⌈
dp + m + 2

d

⌉
≤
⌈
dp + d

d

⌉
=p + 1.

Therefore,⌈
hd(n)− 1

d

⌉
=

⌈
hd(n)

d

⌉
= p + 1

and

f(hd(n)− 1) = f(hd(n)), (2.26)

and hence, by Definition 2.7 and (2.20),

hd(n)−
⌈
hd(n)

d

⌉
= dp + m + 2− (p + 1) = (d− 1)p + m + 1 = n + 1. (2.27)

Therefore, we have (i).
From (2.26), (2.27), and (ii) of Lemma 2.2, we have

G(hd(n)) = G(hd(n)−
⌈
hd(n)

d

⌉
− 1) = G(n).
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Therefore, we have (ii).
From the method that is the same as that used in the proof of (iii) of Theorem 2.5, we
have (iii).

2.3. Case III: f(m) =
⌊
m+1
d

⌋
for d = st+1

t for natural number s, t.

We study the Maximum Nim with the rule function

f(m) =

⌊
m + 1

d

⌋
for d =

st + 1

t
, where s, t ∈ N. (2.28)

We use the floor function b c instead of the ceiling function d e. We use the floor function
here because it is required in Section 3.

In subsections 2.1 and 2.2, we have hd such that

G(hd(n)) = G(n) for n ∈ Z≥0 (2.29)

in Theorems 2.5 and 2.8, where the rule function is f(m) =
⌈
m
d

⌉
. If we use (2.28) as a

rule function, hd that satisfies (2.29) becomes quite complicated, even if we use d = st+1
t

for the natural number s, t.

Lemma 2.9. The function f(x) has the following properties.
(i) For k ∈ N ,

f(kst + k − 2) < f(kst + k − 1) = f(kst + k) = · · ·
= f(kst + k + s− 1) = kt < kt + 1 = f(kst + k + s). (2.30)

(ii) For k ∈ Z≥0 and u ∈ N such that 1 ≤ u ≤ t− 1,

f(kst + us + k − 1) <f(kst + us + k) = f(kst + us + k + 1) = · · ·
=f(kst + (u + 1)s + k − 1) = kt + u. (2.31)

Proof. (i) Since d = st+1
t = s + 1

t , for k ∈ N ,

ktd = kst + k, (2.32)

(kt + 1)d = kst + k + s +
1

t
. (2.33)

and

(kt + 2)d = kst + k + 2s +
2

t
. (2.34)

Since

kst + k − 1 < kst + k < kst + k + 1 < · · · ≤ kst + k + s

< kst + k + s +
1

t
≤ kst + k + s + 1 < kst + k + 2s +

2

t
,

by (2.32), (2.33), and (2.34), we have⌊
kst+k−1

d

⌋
<
⌊
kst+k

d

⌋
= · · · =

⌊
kst+k+s

d

⌋
= kt < kt + 1 =

⌊
kst+k+s+1

d

⌋
,

and hence, by (2.28), we have (2.30).
(ii) For k ∈ Z≥0 and u ∈ N such that 1 ≤ u ≤ t− 1,

(kt + u)d = kst + us + k +
u

t
, (2.35)
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(kt + u + 1)d = kst + (u + 1)s + k +
u + 1

t
. (2.36)

and

(kt + u + 2)d = kst + (u + 1)s + s + k +
u + 2

t
. (2.37)

kst + us + k < kst + us + k + u
t < kst + us + k + 1 < · · · ≤ kst + (u + 1)s + k,

< kst + (u + 1)s + k + u+1
t < kst + (u + 1)s + s + k + u+2

t , and hence, by (2.35), (2.36),
and (2.37),⌊

kst + us + k

d

⌋
<

⌊
kst + us + k + 1

d

⌋
= · · · =

⌊
kst + (u + 1)s + k

d

⌋
= kt + u < kt + u + 1 =

⌊
kst + (u + 1)s + k + 1

d

⌋
,

and thus, we have (2.31).

Lemma 2.10. (i) For k ∈ Z≥0 and u ∈ N such that 1 ≤ u ≤ t,

G(kst + k + us) = kt + u. (2.38)

(ii) kst + k + us = min{n : G(n) = kt + u}.

Proof. (i) From (i) and (ii) of Lemma 2.9 and (iii.1) of Lemma 2.2, we have (2.39) and
(2.40): For k ∈ N

G(kst + k − 1) = kt (2.39)

and k ∈ Z≥0 and u ∈ N such that 1 ≤ u ≤ t− 1,

G(kst + k + us) = kt + u. (2.40)

If we use k + 1 instead of k in (2.39), for k ∈ Z≥0, we have

G(kst + k + st) = kt + t, (2.41)

and hence, by (2.40) and (2.41), we have (2.38). (i) is direct from (iii.2) of Lemma 2.2.

Lemma 2.11. For k, u ∈ N such that 1 ≤ u ≤ t− 1, we have

G(kst + k) = G(k(s− 1)t + k − 1),

· · · ,G(kst + k + s− 1) = G(k(s− 1)t + k + s− 2) (2.42)

G(kst + k + s + 1) = G(k(s− 1)t + k + s− 1)

· · · ,G(kst + k + 2s− 1) = G(k(s− 1)t + k + 2s− 3) (2.43)

...

G(kst + k + us + 1) = G(k(s− 1)t + k + us− u)

· · · ,G(kst + k + (u + 1)s− 1) = G(k(s− 1)t + k + (u + 1)s− u− 2) (2.44)

...

G(kst + k + (t− 1)s + 1) = G(k(s− 1)t + k + (t− 1)s− t + 1)

· · · ,G(kst + k + ts− 1) = G(k(s− 1)t + k + ts− t− 1). (2.45)
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Proof. By (i) of Lemma 2.9 and (ii) of Lemma 2.2, G(kst+k) = G(kst+k−f(kst+k)−1) =
G(kst + k − kt − 1) = G(k(s − 1)t + k − 1). Similarly, we have G(kst + k + s − 1) =
G(kst+k+s−1−f(kst+k+s−1)−1) = G(kst+k+s−1−kt−1) = G(k(s−1)t+k+s−2),
and thus, we have (2.42). Similarly by using (ii) of Lemma 2.9 and (ii) of Lemma 2.2,
we obtain (2.44). For u = 1, · · · , t− 1, we obtain (2.43 ) and (2.45) from (2.44).

Lemma 2.12. Let k ∈ N .
For x = k(s− 1)t + k − 1, k(s− 1)t + k, · · · , k(s− 1)t + k + s− 2,

G(x) = G(x + kt + 1).

For x = k(s− 1)t + k + s− 1, k(s− 1)t + k, · · · , k(s− 1)t + k + 2s− 3,

G(x) = G(x + kt + 2).

...
For x = k(s−1)t+k+(t−1)s−t+1, k(s−1)t+k+(t−1)s−t+2, · · · , k(s−1)t+k+ts−t−1,

G(x) = G(x + kt + t).

Proof. Lemma 2.12 is direct from Lemma 2.11.

By Lemma 2.12, the function that satisfies G(hd(n)) = G(n) for n ∈ Z≥0 depends on
the value n, and therefore, it is considerably complicated even if we use d = st+1

t for

natural number s, t. Therefore, in Subsection 2.4, we study the case when d = t+1
t with

natural number t to make the situation more simple.

2.4. Case IV: f(m) = bm+1
d c for d = t+1

t with natural number t.

Let f(m) = bm+1
d c for d = t+1

t with the natural number t. Our aim is to find a simple
function that satisfies G(hd(n)) = G(n) for n ∈ Z≥0.

Lemma 2.13. For the Grundy number of the maximum Nim with the rule function
f(m) = bm+1

d c for d = t+1
t with the natural number t, we have the following equations

(2.46) and (2.47).
(i)

G(k(t + 1)) = G(k − 1). (2.46)

for any k ∈ N .
(ii)

G(k(t + 1) + u) = kt + u (2.47)

for any k ∈ Z≥0 and u ∈ N , such that u ≤ t.
(iii) k(t + 1) + u = min{n : G(n) = kt + u}.
Proof. When s = 1, (i), (ii) and (iii) are directly from (2.42), and (i) and (ii) of Lemma
2.10.

Lemma 2.14. Let k ∈ Z≥0 and u ∈ N such that u ≤ t; let h(x) = (t + 1)(x + 1). Then,
we obtain

{hp(k(t + 1) + u) : p ∈ Z≥0} = {x : G(x) = kt + u}
and

{hp(0) : p ∈ Z≥0} = {x : G(x) = 0}.
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Proof. Let x0 = k(t + 1) + u. By (i) and (ii) of Lemma 2.13, x0 represents the smallest
number such that G(x0) = kt + u. If n = k − 1, then k(t + 1) = (t + 1)(n + 1) = h(n).
Therefore, by (2.46), we have for any n ∈ N ,

G(n) = G(h(n)), (2.48)

and hence,

{hp(x0) : p ∈ Z≥0} ⊂ {x : G(x) = kt + u}.

Suppose that x ∈ Z≥0 and hp(x0) < x < hp+1(x0) for some p ∈ Z≥0. Since f(hp+1(x0)) =

bh
p+1(x0)+1

d c = bh(h
p(x0))+1

d c = b (t+1)(hp(x0)+1)+1
d c = b t(t+1)(hp(x0)+1)+t

t+1 c = t(hp(x0) + 1),
by the definition of move

move(hp+1(x0))

= {hp+1(x0)− 1, · · · , hp+1(x0)− f(hp+1(x0))}
= {hp+1(x0)− 1, · · · , (t + 1)(hp(x0) + 1)− t(hp(x0) + 1)}
= {hp+1(x0)− 1, · · · , hp(x0) + 1}.

(2.49)

Therefore, x ∈ move(hp+1(x0)), and by the definition of the Grundy number G(x) 6=
G(hp+1(x0) = kt + u. Therefore, we have {hp(x0) : p ∈ Z≥0} = {x : G(x) = kt + u}.

When x0 = 0, we have G(x0) = 0 by the definition of Grundy numbers. When k = 1,
by (i) of Lemma 2.13 we have

G(h(0)) = G(t + 1) = G(k(t + 1)) = G(k − 1) = G(0).

Then, by (2.48) we have {hp(0) : p ∈ Z≥0} ⊂ {x : G(x) = 0}. By a method similar to the
one used in the previous part of this proof, we prove {hp(0) : p ∈ Z≥0} = {x : G(x) = 0}.

So far, we studied the case that f(m) =
⌊
m+1
d

⌋
for fractions d = st+1

t and d = t+1
t

with natural numbers s, t. The authors could not find any meaningful formulas of Grundy
numbers for other types of fractions.

3. Chocolate Bar Game and Maximum Nim

Let d = t+1
t for a natural number t, and let f(m) = bm+1

d c. We study a chocolate bar
game with a restriction on the size of the chocolate bar piece to be eaten, and we devise
formulas for the winning position of the previous player. We use the results in Subsection
2.4.

We define chocolate bar games with the restriction using Figure 5.

Definition 3.1. (i) A chocolate bar is a rectangular array of squares.
(ii) We obtain the coordinate system shown in Figure 5, and we describe the position
of this chocolate bar as {x, y}. Then, the size of the chocolate bar is calculated by
(x+ 1)(y + 1), where (x+ 1) and (y + 1) represent the width and length of the chocolate.
(iii) Two players take turns and break the chocolate bar along any one of the horizontal
or vertical lines into two pieces and eat one of the pieces. Each player can eat less than
or equal to b sdc when the size of the chocolate bar is s.
(iv) The player who is left with a 1×1 piece of chocolate, and hence cannot make another
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move, loses the game. Therefore the 1× 1 piece of chocolate with the coordinates {0, 0}
in Figure 6 is the terminal position of the game.

We need the following lemma to study this chocolate bar game.

0 1 2 3 4 y· · · ·

0

1

2

3

4

·

·

·

·�

Figure
5. Rectangular
chocolate
bar with
coordinates

Figure
6. The
terminal
position
{0, 0}

Lemma 3.2. For p, q ∈ N ,

bp
d
c × q ≤ bpq

d
c < (bp

d
c+ 1)q.

Proof. Let p = ud + r with u ∈ Z≥0 and r ∈ R such that 0 ≤ r < d. Since

uq ≤ p

d
× q,

we have

bp
d
c × q = uq ≤ bpq

d
c.

Since
pq

d
=

ud + r

d
× q <

ud + d

d
× q = (u + 1)q = (bp

d
c+ 1)q,

we have

bpq
d
c < (bp

d
c+ 1)q.

Next, we study move({x, y}) for this chocolate bar game, and move represents the set
of positions that can be reached by making one move from the position {x, y}.
Lemma 3.3. For the {x, y}-chocolate bar in the game of Definition 3.1,
move({x, y}) = {{x− t, y} : t ≤ f(x)} ∪{{x, y − t} : t ≤ f(y)}.
Proof. By (iii) of Definition 3.1, the chocolate can be consumed by breaking the chocolate
bar along any one of the horizontal or vertical lines into two pieces and by eating one of
the pieces. Therefore, players have only two options: reduce the x-coordinate and reduce
the y-coordinate. Each player can eat less than or equal to b sdc when the size of the
chocolate bar is s. The size of the chocolate bar with position {x, y} is (x + 1)(y + 1);
hence, the player can eat less than or equal to

b (x + 1)(y + 1)

d
c. (3.1)
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By Lemma 3.2,

bx + 1

d
c(y + 1) ≤ b (x + 1)(y + 1)

d
c < (bx + 1

d
c+ 1)(y + 1).

Hence, by (3.1), the size of the biggest chocolate a player can eat by reducing the
x−coordinate is bx+1

d c(y + 1). Therefore, a player obtains the chocolate bar of {x− t, y}
with t ≤ f(x) = bx+1

d c when he or she reduces the x-coordinate. Similarly, the player

obtains the chocolate bar of {x, y− t} with t ≤ f(y) = by+1
d c when he or she reduces the

y-coordinate.

Example 3.4. When f(m) = bm+1
2 c, the condition for the part to be eaten is equal to

or less than half of the original size. Then, this problem is the same as the “Rectangle
Game” presented at the International Olympiad in Informatics [10] and treated at [11].
Therefore, the chocolate bar game in Definition 3.1 is a generalization of the problem
presented at the International Olympiad in Informatics.

Example 3.5. Let d = 1.5. Then, f(4) = b 5
1.5c = 3 and f(6) = b 7

1.5c = 4. move({4, 6}) =
= {{4− t, 6} : t ≤ f(4) = 3} ∪{{4, 6− t} : t ≤ f(6) = 4}
= {{3, 6}, {2, 6}, {1, 6}, {4, 5}, {4, 4}, {4, 3}, and{4, 2}}; if you start with the chocolate bar
in Figure 7, you get one of the chocolate bars in Figures 8, 9, 10, 11, 12, 13, and 14.

0 1 2 3 4 5 6

0

1

2

3

4

Figure 7. {4, 6}

0 1 2 3 4 5 6

0

1

2

3

Figure 8. {3, 6}

0 1 2 3 4 5 6

0

1

2

Figure 9. {2, 6}

0 1 2 3 4 5 6

0

1

Figure 10. {1, 6}
0 1 2 3 4 5

0

1

2

3

4

Figure 11. {4, 5}

0 1 2 3 4

0

1

2

3

4

Figure 12. {4, 4}

0 1 2 3

0

1

2

3

4

Figure 13. {4, 3}

0 1 2

0

1

2

3

4

Figure 14. {4, 2}

Theorem 3.6. Let h(x) = (t + 1)(x + 1). Then, the set of P-positions of the game in
Definition 3.1 is

{{hp(k(t + 1) + u), hq(k(t + 1) + u)} : p, q, k ∈ Z≥0 and u ∈ N with u ≤ t}
∪ {{hp(0), hq(0)} : p, q ∈ Z≥0}.
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Proof. From Lemma 3.3, the chocolate bar game in Definition 3.1 is a sum of two max-
imum Nim values with the rule function f(m) = bm+1

d c. Let G be the Grundy number
of the Maximum Nim. Then, the Grundy number of the position {x, y} of this chocolate
bar game is G(x) ⊕ G(y). By Theorem 2.1, {x, y} represents a P-position if and only if
G(x) = G(y). Therefore, by Lemma 2.14, the set of P-positions is

{{x, y} : G(x) = G(y) = kt + u, k ∈ Z≥0 and u ∈ N with u ≤ t}
∪ {{x, y} : G(x) = G(y) = 0}

={{hp(k(t + 1) + u), hq(k(t + 1) + u)} : p, q, k ∈ Z≥0 and u ∈ N with u ≤ t}
∪ {{hp(0), hq(0)} : p, q ∈ Z≥0}.

Remark 3.7. In this section, we use only the result in Subsection 2.4. Hence, using the
results of subsections 2.1, 2.2, and 2.3 for chocolate bar games is left as an open problem.

4. Chocolate Bars with Missing Pieces

We study the chocolate bar under the same rule as in Definition 3.1, except that the
chocolate bar used in this game has one missing square, and d represents any real number
such that d > 1. See Figure 15. When some parts of the chocolate bar are missing, the
chocolate bar game becomes complicated but interesting.

Figure 15. Chocolate bar with one missing square

Definition 4.1. (i) A chocolate bar is a rectangular array of squares with one missing
square.
(ii) Two players take turns and break the chocolate bar along any one of the horizontal
or vertical lines into two pieces and eat one of the pieces. When the size of the chocolate
bar is s, each player can eat less than or equal to b sdc.
(iii) We use the coordinate {x, y, z}, where z = 1 if there is one missing square and z = 0
if there is no missing square.

For the coordinates of chocolates in this subsection, see figures 16, 17, 18, 19, and 20.

Example 4.2. Let d = 2. Then, if you start with the chocolate in Figure 16, the size of
the chocolate is s = 5. Next, you can eat less than or equal to b 52c = 2. You can then
obtain chocolates in Figures 17, 18, and 19, but not the chocolate in Figure 20 because
you need to eat a piece of chocolate whose size is 3.
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Figure 16. {1, 2, 1} Figure 17. {1, 1, 1} Figure 18. {1, 1, 0}

Figure 19. {0, 2, 0} Figure 20. {0, 1, 0}

The following conjecture is based on the calculation by the computer algebra system
Mathematica.

Conjecture 1. Let Gd(x, y, z) be the Grundy number of chocolates in this subsection,
where x, y represent the coordinates of the chocolates and z = 1 if there is one missing
square; z = 0 if there is no missing square.
Then, Gd(x, y, 1) = Gd(x, y, 0) for any x, y ∈ Z≥0 when d = 2, and Gd(x, y, 1) 6= Gd(x, y, 0)
for some x, y ∈ Z≥0 when d 6= 2.
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