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Abstract In this study, we investigate three-dimensional chocolate bar games, which are variants of

the game of Chomp. A three-dimensional chocolate bar is a three-dimensional array of cubes in which a

bitter cubic box is present in some part of the bar. Two players take turns and cut the bar horizontally

or vertically along the grooves. The player who manages to leave the opponent with a single bitter block

is the winner. We consider the P-positions of this game, where the P-positions are positions of the game

from which the previous player (the player who will play after the next player) can force a win, as long as

they play correctly at every stage. We present sufficient conditions for the case when the position (p, q, r)

is a P-position if and only if (p−1)⊕ (q−1)⊕ (r−1), where p, q, and r are the length, height, and width

of the chocolate bar, respectively.
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1. Introduction

Chocolate bar games are variants of the Chomp game presented in [1]. A two-dimensional
chocolate bar is a two-dimensional array of squares in which a bitter square printed in
black is present in some part of the bar. See the chocolate bars in Figure 1.

A three-dimensional chocolate bar is a three-dimensional array of cubes in which a
bitter cubic box printed in black is present in some parts of the bar. Figure 2 displays
examples of three-dimensional chocolate bars. Games involving these chocolate bars may
be defined as follows.

Definition 1.1. (i) Two-dimensional chocolate bar game: Each player in turn breaks
the bar in a straight line along the grooves and eats the broken piece. The player who
manages to leave the opponent with a single bitter block (black block) is the winner.
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(ii) Three-dimensional chocolate game: The rules are the same as in (i), except that
the chocolate is cut horizontally or vertically along the grooves. Examples of cutting
three-dimensional chocolate bars are shown in Figure 3.

Figure
1. Two-
dimensional
chocolate
bars.

Figure
2. Three-
dimensional
chocolate
bars.

Example 1.2. Three methods of cutting a three-dimensional chocolate bar.

Figure 3. (i) Vertical cut. (ii) Vertical cut. (iii) Horizontal cut.

For completeness, we briefly review some of the necessary concepts of combinatorial
game theory; refer to [2] for greater detail. Let Z≥0 and N be sets of non-negative integers
and natural numbers, respectively.

Definition 1.3. Let x and y be non-negative integers. Then, there is n ∈ Z≥0 and
xi, yi ∈ {0, 1} for i = 0, 1, · · · , n such that x =

∑n
i=0 xi2

i and y =
∑n

i=0 yi2
i. We define

nim-sum x⊕ y as:

x⊕ y =

n∑
i=0

wi2
i. (1.1)

where wi = xi + yi (mod 2).

As chocolate bar games are impartial games without draws, only two outcome classes
are possible.

Definition 1.4. (a) A position is called a P-position, if it is a winning position for the
previous player, as long as he/she plays correctly at every stage.
(b) A position is called an N -position, if it is a winning position for the next player, as
long as he/she plays correctly at every stage.
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Definition 1.5. (i) For any position p, there exists a set of positions that can be reached
by making precisely one move from p, which we will denote by move(p).
(ii) The minimum excluded value (mex) of a set S of non-negative integers is the least
non-negative integer that is not in S.
(iii) Each position p of an impartial game has an associated Grundy number, and we
denote this as G(p).
The Grundy number is recursively defined by G(p) = mex{G(h) : h ∈ move(p)}.
Theorem 1.6. For any position p of the game, G(p) = 0 if and only if p is a P-position.

This is a well-known theorem reported by [3] and [4].
The original two-dimensional chocolate bar introduced by Robin [5] is the chocolate

shown on the left-hand side in Figure 1. Because the horizontal and vertical grooves are
independent, an m×n rectangular chocolate bar is equivalent to the game of nim, which
includes heaps of m − 1 and n − 1 stones, respectively. Therefore, the chocolate 6 × 4
bar game shown on the left-hand side of Figure 1 is mathematically the same as nim,
which includes heaps of 5 and 3 stones, respectively. It is well known that the Grundy
number of nim with heaps of m−1 stones and n−1 stones is (m−1)⊕ (n−1); therefore,
the Grundy number of the m × n rectangular bar is (m − 1) ⊕ (n − 1). Robin [5] also
presented a cubic chocolate bar, as shown on the left-hand side of Figure 2. It can be
easily determined that this 5 × 5 × 5 three-dimensional chocolate bar is mathematically
the same as nim with heaps of 4, 4, and 4 stones, and the Grundy number of this cuboid
bar is 4⊕ 4⊕ 4. It is then natural to ask the following question.

Question 1. What is the necessary and sufficient condition for a three-dimensional
chocolate bar to fulfil the following condition (a):
(a) The Grundy number of the chocolate bar with the length p, height q, and width z is
(p− 1)⊕ (q − 1)⊕ (r − 1).

Although the authors answered Question 1 for two-dimensional chocolate bars in [6]
and for the three-dimensional case in [7], the results of these research are omitted here.

When the Grundy number of a chocolate bar with p, q, and z as the length, height, and
width, is (p− 1)⊕ (q − 1)⊕ (r − 1), according to Theorem 1.6 a position is a P-position
if and only if (p− 1)⊕ (q − 1)⊕ (r − 1) = 0 in this chocolate bar.

Therefore, it is natural to ask the following question.

Question 2. Under what condition does a three-dimensional chocolate bar satisfy the
following condition (b):
(b) The chocolate bar with the length p, height q, and width r is a P-position if and only
if (p− 1)⊕ (q − 1)⊕ (r − 1) = 0?

Because we get Condition (b) from Condition (a) according to Theorem 1.6, Question
2 deals with the condition of the chocolate bar that is more general than the condition
in Question 1. In the remainder of this paper, we present a sufficient condition for which
Question 2 may be answered. Therefore, this study deals with the problem that is more
general than the problem proved in [7].

Determining the necessary and sufficient conditions for this question is a very difficult
unsolved problem considered by the authors. We suppose that the difficulty of presenting
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Figure 4. coordinate

the necessary and sufficient conditions arises from the fact that there are many kinds of
sufficient conditions. For more information, see Theorems 2.11 in Section 2 and Conjecture
1 in Section 3.

We now define a three-dimensional chocolate bar.

Definition 1.7. Suppose that f(u, v) ∈ Z≥0 for u, v ∈ Z≥0. f is said to monotonically
increase if f(u, v) ≤ f(x, z) for x, z, u, v ∈ Z≥0 with u ≤ x and v ≤ z.

Definition 1.8. Let f be the monotonically increasing function in Definition 1.7.
Let x, y, z ∈ Z≥0 such that y ≤ f(x, z). The three-dimensional chocolate bar comprises
a set of 1 × 1 × 1 boxes. For u,w ∈ Z≥0 such that u ≤ x and w ≤ z, the height of the
column at position (u,w) is min(f(u,w), y) + 1. There is a bitter box at position (0, 0).
We denote this chocolate bar as CB(f, x, y, z). Note that x + 1, y + 1, and z + 1 are the
length, height, and width of the bar, respectively.

Example 1.9. Here, we let f(x, z) = bx+z
3 c, where b c is the floor function, and we

present several examples of CB(f, x, y, z).

Figure 5. CB(f, 14, 3, 10) Figure 6. CB(f, 9, 3, 10)

Figure 7. CB(f, 13, 6, 7)
Figure 8. CB(f, 4, 3, 7)
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Next, we define movef ((x, y, z)) in Definition 1.10. movef ((x, y, z)) is a set that con-
tains all of the positions that can be reached from position (x, y, z) in one step (directly).

Definition 1.10. For x, y, z ∈ Z≥0, we define

movef ((x, y, z)) = {(u,min(f(u, z), y), z) : u < x} ∪ {(x, v, z) : v < y}
∪ {(x,min(y, f(x,w)), w) : w < z}, where u, v, w ∈ Z≥0.

Remark 1.11. Definition 1.10 shows how to reduce the coordinates of the chocolate bar
by cutting, and in Example 2.1, we provide concrete examples of reducing the coordinates.

2.When f(x, z) = bx+z
k
c for k = 4m+ 3

Let k = 4m+3 for some m ∈ Z≥0. Let x =
∑n

i=0 xi2
i, y =

∑n
i=0 yi2

i and z =
∑n

i=0 zi2
i

for some n ∈ Z≥0 and xi, yi, zi ∈ {0, 1}. Throughout this section, we assume that

f(x, z) = bx + z

k
c. (2.1)

Before we prove several lemmas, we first consider the procedures provided in Example 2.1.
Although this example is lengthy, the proofs of the lemmas are difficult to understand
without first considering this example.

Example 2.1. Let f(x, z) = bx+z
3 c.

(i) We begin with the chocolate bar shown in Figure 5. The coordinates of this chocolate
bar are expressed in base 2 in Table 1. If the first coordinate x = 14 is reduced to u = 9
by cutting the chocolate bar CB(f, 14, 3, 10) shown in Figure 5, by Definition 1.10 the
second coordinate will be min(f(u, z), y) = min(f(9, 10), 3) = min(b 193 c, 3) = min(6, 3) =
3. Therefore, we can reduce x = 14 to u = 9 without affecting the second coordinate 3,
which is the height of the chocolate bar, and we obtain the chocolate bar CB(f, 9, 3, 10)
shown in Figure 6 (i.e., (9, 3, 10) ∈ movef ((14, 3, 10))). The coordinates of this chocolate
bar CB(f, 9, 3, 10) are expressed in base 2 in Table 2.

x = 14 y = 3 z = 10
23 = 8 x3 = 1 y3 = 0 z3 = 1
22 = 4 x2 = 1 y2 = 0 z2 = 0
21 = 2 x1 = 1 y1 = 1 z1 = 1
20 = 1 x0 = 0 y0 = 1 z0 = 0

Table 1. CB(f, 14, 3, 10)

u = 9 y = 3 z = 10
23 = 8 u3 = 1 y3 = 0 z3 = 1
22 = 4 u2 = 0 y2 = 0 z2 = 0
21 = 2 u1 = 0 y1 = 1 z1 = 1
20 = 1 u0 = 1 y0 = 1 z0 = 0

Table 2. CB(9, 3, 10)

(ii) We begin with the chocolate bar in Figure 7. The coordinates of this chocolate bar are
expressed in base 2 in Table 3. If the first coordinate x = 13 is reduced to u = 4 by cutting
the chocolate bar CB(f, 13, 6, 7) in Figure 7 by Definition 1.10, the second coordinate
will be min(f(u, z), y) = min(f(4, 7), 6) = min(b 113 c, 6) = min(3, 6) = 3. Therefore, the
second coordinate, 6, which is the height of the chocolate bar, will be reduced to 3. Then,
we obtain the chocolate bar shown in Figure 8 (i.e., (4, 3, 7) ∈ movef ((13, 6, 7))). The
coordinates of this chocolate bar CB(f, 4, 3, 7) are expressed in base 2 in Table 4.
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x = 13 y = 6 z = 7
23 = 8 x3 = 1 y3 = 0 z3 = 0
22 = 4 x2 = 1 y2 = 1 z2 = 1
21 = 2 x1 = 0 y1 = 1 z1 = 1
20 = 1 x0 = 1 y0 = 0 z0 = 1

Table 3. CB(f, 13, 6, 7)

u = 4 v = 3 z = 7
23 = 8 u3 = 0 v3 = 0 z3 = 0
22 = 4 u2 = 1 v2 = 0 z2 = 1
21 = 2 u1 = 0 v1 = 1 z1 = 1
20 = 1 u0 = 0 v0 = 1 z0 = 1

Table 4. CB(f, 4, 3, 7)

(iii) The procedures presented in (i) and (ii) are good examples of moving to a position
whose nim-sum is 0 from a position whose nim-sum is not 0.

In (i), 14⊕ 3⊕ 10 = 7, and suppose that the player wants to move to a position whose
nim-sum is 0. First, let u3 = x3 = 1. Next, reduce x2 = 1 to u2 = 0. Note that

x =

3∑
i=0

xi2
i = 23 + 22 + 2 > 23 + 0× 22 + u1 × 2 + u0 =

3∑
i=0

ui2
i = u (2.2)

regardless of the values of u1, u0. Then, reduce x1 to u1 = 0 and increase x0 = 0 to
u0 = 1. Note that by considering (2.2), one can choose any value for u1, u0. Then, we
obtain the position (9, 3, 10) such that 9⊕ 3⊕ 10 = 0.

In (ii), 13 ⊕ 6 ⊕ 7 = 12, and suppose that it is desired to move to a position whose
nim-sum is 0. First, we have to reduce x3 = 1 to u3 = 0. Because (x2, y2, z2) = (1, 1, 1)
and 1⊕ 1⊕ 1 6= 0, we may let (u2, y2, z2) = (0, 1, 1) or (u2, v2, z2) = (1, 0, 1) by reducing
y to v. Note that once we reduce x, we cannot reduce z.

If

(u2, y2, z2) = (0, 1, 1), (2.3)

we have

f(u, z) (2.4)

= f(

3∑
i=0

ui2
i,

3∑
i=0

zi2
i)

= f(0× 23 + 0× 22 + u121 + u020, 7)

= b7 + u121 + u020

3
c ≤ b10

3
c = 3,

regardless of the values of u1, u0. We then have f(u, z) < 4 = y222 ≤ y. Therefore, by
Definition 1.10 (2.3) leads to a contradiction.

We should then let

(u2, v2, z2) = (1, 0, 1), (2.5)

by simultaneously reducing x and y.
Next, we let (u1, v1, z1) = (0, 1, 1) or (u1, v1, z1) = (1, 0, 1).
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If (u1, v1, z1) = (1, 0, 1), by (2.5)

f(u, z) (2.6)

= f(

3∑
i=0

ui2
i,

3∑
i=0

zi2
i)

= f(0× 23 + 22 + 21 + u020, 7)

= b13 + u020

3
c ≥ b13

3
c

= 4 > 1 ≥
3∑

i=0

vi2
i = 0× 23 + 0× 22 + 0× 2 + v0 = v,

and we obtain

f(u, z) > v. (2.7)

When we reduce x to u and y to v, by definition 1.10 we have

v = min(f(u, z), y),

and this contradicts (2.7).
Therefore, let (u1, v1, z1) = (0, 1, 1). Using similar reasoning, we let (u0, v0, z0) =

(0, 1, 1).
We then obtain the position (4, 3, 7) such that 4⊕3⊕7 = 0 and v = 3 = b 4+7

3 c = f(u, z).

We define

St =

n∑
i=n−t

(xi + zi − kyi)2
i, (2.8)

for t = 0, 1, · · · , n.

Lemma 2.2. We have the following relationships between f(x, z) and Sn.
(a)

y = f(x, z)

if and only if 0 ≤ Sn < k.
(b)

y > f(x, z)

if and only if Sn < 0.
(c)

y < f(x, z)

if and only if Sn ≥ k.

Proof. First, note that Sn =
∑n

i=0(xi + zi − kyi)2
i = x + z − ky.

(a)

y = f(x, z) = bx + z

k
c
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if and only if y ≤ x+z
k < y + 1 if and only if 0 ≤ Sn = x + z − ky < k.

(b)

y > f(x, z) = bx + z

k
c

if and only if x+z
k < y, which occurs if and only if Sn = x + z − ky < 0.

We then obtain (c) via (a) and (b).

Lemma 2.3. Let t ∈ Z≥0. Suppose that for i = n, n− 1, · · · , n− t

xi ⊕ yi ⊕ zi = 0. (2.9)

There then exists an even number a such that

St = a2n−t. (2.10)

Proof. Because k is odd, by (2.9) xi + zi − kyi is even for i = n, n − 1, · · · , n − t, and
therefore we have (2.10).

Lemma 2.4. Let t ∈ Z≥0. Suppose that for i = n, n− 1, · · · , n− t

xi ⊕ yi ⊕ zi = 0 (2.11)

and

St < 0. (2.12)

Then, for any natural number j such that t < j ≤ n,

Sj < 0.

Proof. By Lemma 2.3, (2.11), and (2.12),

St = a2n−t (2.13)

for some even number a such that a ≤ −2. Then, by (2.13), for any natural number j
such that j > t the following holds:

Sj =St +

n−t−1∑
i=n−j

(xi + zi − kyi)2
i

≤St + 2×
n−t−1∑
i=0

2i

≤(−2)2n−t + 2× (2n−t − 1) = −2 < 0.

Lemma 2.5. Let t ∈ Z≥0. Suppose that for i = n, n− 1, · · · , n− t

xi ⊕ yi ⊕ zi = 0 (2.14)

and

y ≤ f(x, z). (2.15)

Then,

St ≥ 0. (2.16)
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Proof. If

St < 0, (2.17)

by (2.14) and Lemma 2.4, we have

Sn < 0.

Then by (b) of Lemma 2.2, we have

y > f(x, z),

and this contradicts (2.15). Therefore, (2.17) is not true, and we have (2.16).

Lemma 2.6. Let t ∈ Z≥0. If

St ≥ k2n−t, (2.18)

then, for any natural number j such that t < j ≤ n,

Sj ≥ k2n−j . (2.19)

Proof. Sj will be smallest when (xi, yi, zi) = (0, 1, 0) for i = n− t− 1, n− t− 2, · · · , n− j.
Therefore, it is sufficient to prove (2.19) for this case. By (2.18), for any natural number
j such that j > t,

Sj = St +

n−t−1∑
i=n−j

(xi + zi − kyi)2
i

≥ St − k(2n−t−1 + 2n−t−2 + · · ·+ 2n−j)

≥ k2n−t − k(2n−t − 2n−j) = k2n−j .

Lemma 2.7. Let t ∈ Z≥0. Suppose that

0 ≤ St ≤ 2m× 2n−t.

Then, we have the following cases (a) and (b).
(a) If (xn−t−1, yn−t−1, zn−t−1) = (1, 1, 0) or (0, 1, 1), then

St+1 < 0.

(b) If (xn−t−1, yn−t−1, zn−t−1) = (1, 0, 1) or (0, 0, 0), then

0 ≤ St+1 < k × 2n−t−1.

Proof. (a) If (xn−t−1, yn−t−1, zn−t−1) = (1, 1, 0) or (0, 1, 1),

St+1 =St + 2n−t−1 − k × 2n−t−1

≤2m× 2n−t + 2n−t−1 − (4m + 3)2n−t−1

=− 2× 2n−t−1 < 0.

(b) If (xn−t−1, yn−t−1, zn−t−1) = (0, 0, 0),

0 ≤ St+1

= St ≤ 4m× 2n−t−1

< k × 2n−t−1.



726 Thai J. Math. Vol. 21 (2023) /R. Miyadera et al.

If

(xn−t−1, yn−t−1, zn−t−1) = (1, 0, 1), (2.20)

0 ≤ St+1

= St + 2× 2n−t−1

≤ (4m + 2)2n−t−1

< k × 2n−t−1.

Lemma 2.8. Let t ∈ Z≥0. Suppose that

(2m + 2)× 2n−t ≤ St < k × 2n−t (2.21)

and

xi ⊕ yi ⊕ zi = 0 (2.22)

for i = n, n− 1, · · · , n− t. Then, we have the following cases (a) and (b).
(a) If (xn−t−1, yn−t−1, zn−t−1) = (1, 1, 0) or (0, 1, 1), then,

0 ≤ St+1 < k × 2n−t−1.

(b) If (xn−t−1, yn−t−1, zn−t−1) = (1, 0, 1) or (0, 0, 0), then,

St+1 ≥ k × 2n−t−1.

Proof. (a) If (xn−t−1, yn−t−1, zn−t−1) = (1, 1, 0) or (0, 1, 1), then

St+1 = St + 2n−t−1 − k2n−t−1

= St − (4m + 2)2n−t−1.

By (2.21)

(2m + 2)× 2n−t − (4m + 2)2n−t−1

≤ St+1 = St − (4m + 2)2n−t−1

< (4m + 3)2n−t − (4m + 2)2n−t−1.

Therefore,

2× 2n−t−1 ≤ St+1 < (4m + 4)2n−t−1. (2.23)

By (2.22) and Lemma 2.3, St+1 = a2n−t−1 for some even integer a, and therefore by
(2.23) we have

0 < St+1 ≤ (4m + 2)2n−t−1 < k × 2n−t−1.

(b) If (xn−t−1, yn−t−1, zn−t−1) = (1, 0, 1) or (0, 0, 0), then by (2.21)

k × 2n−t−1 < (4m + 4)2n−t−1 ≤ St ≤ St+1.
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Lemma 2.9. We assume that

x⊕ y ⊕ z 6= 0 (2.24)

and

y ≤ f(x, z). (2.25)

Then, at least one of the following statements is true:
(1) u⊕ y ⊕ z = 0 for some u ∈ Z≥0 such that u < x and y ≤ f(u, z);
(2) u⊕ v ⊕ z = 0 for some u, v ∈ Z≥0 such that u < x, v < y and v = f(u, z);
(3) x⊕ v ⊕ z = 0 for some v ∈ Z≥0 such that v < y;
(4) x⊕ y ⊕ w = 0 for some w ∈ Z≥0 such that w < z and y ≤ f(x,w);
(5) x⊕ v ⊕ w = 0 for some v, w ∈ Z≥0 such that v < y,w < z and v = f(x,w).

Proof. Let x =
n∑

i=0

xi2
i and y =

n∑
i=0

yi2
i, and z =

n∑
i=0

zi2
i.

If n = 0, we have x, z ≤ 1, and y ≤ f(x, z) = bx+z
k c = 0. Then, by (2.24), we have

(x, y, z) = (1, 0, 0) or (0, 0, 1). In this case we obtain (1) for (u, y, z) = (0, 0, 0) or (4) for
(x, y, w) = (0, 0, 0) by reducing x = 1 to u = 0 or reducing z = 1 to w = 0.

Next, we assume that n ≥ 1 and that there exists a non-negative integer t such that

xi ⊕ yi ⊕ zi = 0 (2.26)

for i = n, n− 1, ..., n− t + 1 and

xn−t ⊕ yn−t ⊕ zn−t 6= 0. (2.27)

Let Th =
∑n

i=n−h(xi + zi− kyi)2
i for h = 0, 1, · · · , t− 1, thereafter, we may define Th for

h = t, t + 1, · · · , n.
By (2.26), (2.25), and Lemma 2.5, we have

Tt−1 ≥ 0. (2.28)

We then have three cases.
Case (1) Suppose that (xn−t, yn−t, zn−t) = (1, 0, 0). We reduce x to u and for i =
0, 1, · · · , t− 1 let

un−i = xn−i,

and we define un−i for i = t, t + 1, · · · , n using an inductive method with the following
steps [I] and [II].
Step [I] Let un−t = 0. Then,

u =

n∑
i=0

ui2
i <

n∑
i=0

xi2
i = x.

Because un−t = 0 and yn−t = zn−t = 0, by (2.28) we have

Tt = Tt−1 + (un−t + zn−t − kyn−t)2
n−t = Tt−1 ≥ 0.

We then consider two subcases (1.1) and (1.2) according to the value of Tt.
Subcase (1.1) We suppose that

0 ≤ Tt ≤ 2m× 2n−t. (2.29)
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We then have two subsubcases for two possible values of zn−t−1.
Subsubcase (1.1.1) Suppose that zn−t−1 = 0. We have two subsubsubcases for two pos-
sible values of yn−t−1.
Subsubsubcase (1.1.1.1) If yn−t−1 = 0, let

(un−t−1, yn−t−1, zn−t−1) = (0, 0, 0)

and

Tt+1 = Tt + (un−t−1 + zn−t−1 − kyn−t−1)2n−t−1.

Then, by Lemma 2.7 and (2.29)

0 ≤ Tt+1 < k2n−t−1. (2.30)

Then, we begin Step [II] with (2.30) while knowing that y has not been reduced.
Subsubsubcase (1.1.1.2) If yn−t−1 = 1, let vn−t−1 = 0 < yn−t−1. Then, we have

n∑
i=0

vi2
i <

n∑
i=0

yi2
i

for any values of vi for i = 0, 1, · · · , n− t− 1. In this subsubsubcase, we reduce y to v by
reducing x to u. For a concrete example of reducing y to v by reducing x to u, see (ii)
and (iii) in Example 2.1.

Let

(un−t−1, vn−t−1, zn−t−1) = (0, 0, 0)

and

Tt+1 = Tt + (un−t−1 + zn−t−1 − kvn−t−1)2n−t−1,

then by Lemma 2.7 and (2.29)

0 ≤ Tt+1 < k2n−t−1. (2.31)

Then, we begin Step [II] with (2.31) while knowing that we have reduced y to v.
Subsubcase (1.1.2) Suppose that zn−t−1 = 1. We have two subsubsubcases for two pos-
sible values of yn−t−1.
Subsubsubcase (1.1.2.1) If yn−t−1 = 0, let

(un−t−1, yn−t−1, zn−t−1) = (1, 0, 1)

and

Tt+1 = Tt + (un−t−1 + zn−t−1 − kyn−t−1)2n−t−1,

then, by Lemma 2.7 and (2.29)

0 ≤ Tt+1 < k2n−t−1. (2.32)

Then, we begin Step [II] with (2.32) while knowing that y has not been reduced.
Subsubsubcase (1.1.2.2) If yn−t−1 = 1, let vn−t−1 = 0 < yn−t−1. Then, we have

v =

n∑
i=0

vi2
i <

n∑
i=0

yi2
i = y

for any values of vi for i = 0, 1, · · · , n− t− 1. In this subsubsubcase, we reduce y to v by
reducing x to u. For a concrete example of reducing y to v by reducing x to u, see (ii)
and (iii) in Example 2.1.
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Then, let

(un−t−1, vn−t−1, zn−t−1) = (1, 0, 1)

and

Tt+1 = Tt + (un−t−1 + zn−t−1 − kvn−t−1)2n−t−1,

then, by Lemma 2.7 and (2.29)

0 ≤ Tt+1 < k2n−t−1. (2.33)

Then, we begin Step [II] with (2.33) while knowing that we have reduced y to v.
Subcase (1.2) We suppose that

(2m + 2)2n−t ≤ Tt < k2n−t. (2.34)

We have two subsubcases for two possible values of zn−t−1.
Subsubcase (1.2.1) Suppose that zn−t−1 = 0. We have two subsubsubcases for two pos-
sible values of yn−t−1.
Subsubsubcase (1.2.1.1) If yn−t−1 = 1, let

(un−t−1, yn−t−1, zn−t−1) = (1, 1, 0)

and

Tt+1 = Tt + (un−t−1 + zn−t−1 − kyn−t−1)2n−t−1,

then, by Lemma 2.8 and (2.34)

0 ≤ Tt+1 < k2n−t−1. (2.35)

Then, we begin Step [II] with (2.35) while knowing that y has not been reduced.
Subsubsubcase (1.2.1.2) If yn−t−1 = 0, let

(un−t−1, yn−t−1, zn−t−1) = (0, 0, 0).

By Lemma 2.8 and (2.34)

Tt+1 ≥ k2n−t−1. (2.36)

Then, we begin Step [II] with (2.36) while knowing that y has not been reduced.
Subsubcase (1.2.2) Suppose that zn−t−1 = 1. We have two subsubsubcases for two pos-
sible values of yn−t−1.

Subsubsubcase (1.2.2.1) If yn−t−1 = 1, let

(un−t−1, yn−t−1, zn−t−1) = (0, 1, 1).

and

Tt+1 = Tt + (un−t−1 + zn−t−1 − kyn−t−1)2n−t−1,

then, by Lemma 2.8 and (2.34)

0 ≤ Tt+1 < k2n−t−1. (2.37)

Then, we begin Step [II] with (2.37) and the fact that y has not been reduced.
Subsubsubcase (1.2.2.2) If yn−t−1 = 0, let

(un−t−1, yn−t−1, zn−t−1) = (1, 0, 1).
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By Lemma 2.8 and (2.34)

Tt+1 ≥ k2n−t−1. (2.38)

Then, we begin Step [II] with (2.38) while knowing that y has not been reduced.
Case (2) We suppose that (xn−t, yn−t, zn−t) = (0, 0, 1). Then, we can use the same

method used for Case (1).
Case (3) We suppose that yn−t = 1. Let vn−t = 0 < yn−t and vi = xi + zi (mod 2) for

i = n− t− 1, · · · , 0. Then, we have x⊕ v ⊕ z = 0 and v < y ≤ f(x, z), and we have (3)
of this lemma. In this case, we do not need Step [II]
Step [II]. We have two cases.
Case (1) This is a sequel to Case (1) of Step [I]. Here, the procedure consists of three
subcases.
Subcase (1.1) Suppose that Tt+1 ≥ k2n−t−1. In this case, y is not reduced to v in the last

procedure, i.e., Step [I]. By Lemma 2.6, we let ui = yi+zi ( mod 2) for i = n−t−2, · · · , 0
without affecting the values of yi for i = n− t−2, · · · , 0 and we obtain Tn ≥ k. According
to lemma 2.2, we obtain y < f(u, z). Therefore, we have (1) for this lemma.
Subcase (1.2) Suppose that 0 ≤ Tt+1 < k2n−t−1 and y was reduced to v in Step [I]. Then,

we choose the values of un−i, vn−i for i = t + 2, t + 3, · · · , n such that 0 ≤ Ti < k2n−i by
the following (a) or (b).
(a) For i ≥ t + 1, if 0 ≤ Ti < 2m× 2n−i, then we let (un−i−1, vn−i−1, zn−i−1) = (0, 0, 0)
or (1, 0, 1) when zn−i−1 = 0 or zn−i−1 = 1, respectively. Then, by Lemma 2.7, we have
0 ≤ Ti+1 < k2n−i−1.
(b) For i ≥ t + 1, if Ti ≥ (2m + 2)× 2n−i, then we let (un−i−1, vn−i−1, zn−i−1) = (1, 1, 0)
or (0, 1, 1) when zn−i−1 = 0 or zn−i−1 = 1, respectively. Then, by Lemma 2.8, we have
0 ≤ Ti+1 < k2n−i−1.

Therefore, for i = t + 2, · · · , we have 0 ≤ Ti < k2n−i, and finally we have 0 ≤ Tn <
k2n−n = k. We then have v = f(u, z) and u ⊕ v ⊕ z = 0; therefore, we have (2) of this
lemma.
Subcase (1.3) Suppose that 0 ≤ Tt+1 < k2n−t−1 and y was not reduced to v during the

last procedure. In this case, we use the same method as in step [I]. If the inductive step
finishes in this subcase, we obtain y ≤ f(u, z).
Case (2) This is a sequel to Case (2) of Step [I]. Then, we can use the same method used

for Case (1) of Step [I].

Lemma 2.10. We assume that x⊕ y ⊕ z = 0 and

y ≤ f(x, z). (2.39)

Then, the following hold:
(1) u⊕ y ⊕ z 6= 0 for any u ∈ Z≥0 such that u < x and y ≤ f(u, z);
(2) u⊕ v ⊕ z 6= 0 for any u, v ∈ Z≥0 such that u < x, v < y, and v = f(u, z);
(3) x⊕ v ⊕ z 6= 0 for any v ∈ Z≥0 such that v < y;
(4) x⊕ y ⊕ w 6= 0 for any w ∈ Z≥0 such that w < z and y ≤ f(x,w);
(5) x⊕ v ⊕ w 6= 0 for any v, w ∈ Z≥0 such that v < y,w < z, and v = f(x,w).

Proof. If x⊕ y⊕ z = 0, a positive value of the nim-sum is obtained by changing the value
of one of x, y, z. Therefore, we have (1), (3), and (4).
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Next, we prove (2). The only way to have u⊕ v⊕ z = 0 for some u, v ∈ Z≥0 such that
u < x, v < y and

v = f(u, z) (2.40)

is to reduce (xn−t, yn−t, zn−t) = (1, 1, 0) to (un−t, vn−t, zn−t) = (0, 0, 0) for t ∈ Z≥0, such
that 0 ≤ t ≤ n, ui = xi for i = n, n−1, · · · , n−t+1 and vi = yi for i = n, n−1, · · · , n−t+1.

We consider two cases.
Case (1) Suppose that 0 ≤ St−1 ≤ 2m × 2n−t+1. Then, for (xn−t, yn−t, zn−t) = (1, 1, 0)

by Lemma 2.7, we have St+1 < 0. Then, by Lemmas 2.4 and 2.2, we have y > f(x, z).
This contradicts (2.39).
Case (2) Suppose that St−1 ≥ (2m + 2) × 2n−t+1. For (un−t, vn−t, zn−t) = (0, 0, 0) by

Lemma 2.8, St ≥ k× 2n−t; therefore, by Lemma 2.6, Sn ≥ k. Using Lemma 2.2, we then
have v < f(u, z). This contradicts (2.40).

Similarly, we can prove (5).

Theorem 2.11. Let f(x, z) = bx+z
k c for k = 4m+3. Then, the chocolate bar CB(f, x, y, z)

is a P-position if and only if

x⊕ y ⊕ z = 0. (2.41)

Proof. Let Ak = {(x, y, z) : x ⊕ y ⊕ z = 0} and Bk = {(x, y, z) : x ⊕ y ⊕ z 6= 0}. If we
begin the game with a position (x, y, z) ∈ Ak, then using Theorem 2.10, any option leads
to a position (p, q, r) ∈ Bk. From this position (p, q, r) by Theorem 2.9, our opponent
can choose an appropriate option that leads to a position in Ak. Note that any option
reduces some of the numbers in the coordinates. In this way, our opponent can always
reach a position in Ak, and finally, they win by reaching (0, 0, 0) ∈ Ak. Therefore, Ak is
the set of P-positions.

If we begin the game with a position (x, y, z) ∈ Bk, then by Theorem 2.9, we can
choose an appropriate option that leads to a position (p, q, r) in Ak. From (p, q, r), any
option chosen by our opponent leads to a position in Bk. In this way, we win the game
by reaching (0, 0, 0). Therefore, Bk is the set of N -positions.

3. Other Cases

The result shown in Section 2 depends on the assumption that k = 4m + 3, but it
seems that a similar result can be proven for an even number k with a restriction on the
size of x, z.

The authors discovered the following conjecture via calculations using the computer
algebra system Mathematica, but they have not managed to prove it.

Conjecture 1. Let f(x, z) = bx+z
k c for k = 2a+2m+ 2a+1 and x, z ≤ (22a+2− 2a+1)m+

22a+1−1, where a,m ∈ Z≥0. Then, the chocolate bar CB(f, x, y, z) is a P-position if and
only if

x⊕ y ⊕ z = 0.

Remark 3.1. If we compare Theorem 2.11 and Conjecture 1, it seems very difficult to
obtain the necessary and sufficient condition for Question 2.

The authors also have the following conjecture that also may be derived via calculations
using the computer algebra system Mathematica.
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Conjecture 2. Let f(x, z) = bx+z
k c for k = 4m+1. Then, the chocolate bar CB(f, x, y, z)

is a P-position if and only if

(x + 1)⊕ y ⊕ (z + 1) = 0.
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