
Thai Journal of Mathematics
Volume 7 (2009) Number 1 : 189–199

www.math.science.cmu.ac.th/thaijournal

Online ISSN 1686-0209

Linear time-varying systems in Hilbert
spaces: Exact controllability implies

complete stabilizability

P. Niamsup and V.N. Phat1

Abstract: This paper deals with the problem of controllability and stabilizabil-
ity of linear time-varying control systems in Hilbert spaces. We prove that any
globally null-controllable system is completely stabilizable and conversely, under
some additional conditions the complete stabilizability implies the global null-
controllability. The obtained result extends existing results in the literature to
infinite-dimensional and time-varying control systems.
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1 Introduction

Consider a linear time-varying control system of the form

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ 0, (1)
x(0) = x0,

where x(t) ∈ X is the state, u(t) ∈ U is the control; X and U are real Hilbert spaces
of the states and the control, respectively; A(t) : X → X,B(t) : U → X− are
given linear operator functions. The problem of controllability and stabilizability
for linear control systems has received a considerable amount of interest in the
past decades, see; e.g. [8, 10, 14, 16] and the references therein. This problem
regarding as an extension of the classical Kalman result [5] on controllability and
stability of linear control systems is to find an admissible control u(t) such that the
corresponding solution x(t) of the system has desired properties. Depending on
the properties involved one defines various qualitative problems. For example, the
null-controllability problem concerns the question of finding an admissible control
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u(t) which steers an arbitrary state x0 of system (1) into 0; stabilizability problem
is to find a control u(t) = K(t)x(t) such that the zero solution of the closed-loop
system

ẋ(t) = [A(t) + B(t)K(t)]x(t), t ≥ 0

is asymptotically stable in the Lyapunov sense. In this case one says that the
system is stabilizable by the control u(t) = K(t)x(t) and it is called a stabilizing
feedback control of the system. Various stabilizability concepts can be adapted
to investigate the stability property of control systems [3, 9, 13]. One of the ex-
tended stability properties is the concept of the complete stabilizability, originally
introduced by Wonham [13], which relates to a strong exponential stability of the
system. Namely, control system (1) is completely stabilizable if for every num-
ber δ > 0, there exists a feedback control u(t) = K(t)x(t) such that the solution
x(t, x0) of the closed-loop system satisfies the condition

∃N > 0 : ‖x(t, x0)‖ ≤ Ne−δt‖x0‖, ∀t ≥ 0.

This means that for every positive number δ > 0, the system zero-input response
of the closed-loop system decays faster than e−δt. In other words, for any given
in advance the decay rate δ > 0, the system can be δ−exponentially stabilizable.
Such definition may arise because of controlling of the speed of the real models. It
is well known that if a finite-dimensional time-invariant control system is globally
null-controllable in finite time then it is stabilizable, but the converse is not true
as shown by Kalman [5], Wonham [14]. However, if the system is completely
stabilizable, then it is globally null-controllable in finite time, see; e.g. Wonham
[13]. In the infinite-dimensional control theory, investigations of controllability and
stabilizability are more complicated and require more sophisticated techniques.
The difficulties increase to the same extent as passing from time-invariant to time-
varying systems. Some extensions have been developed by Slemrod [12], Zabczyk
[15] for time-invariant control systems in Hilbert spaces. For time-varying control
systems in finite-dimensional spaces, using Kalman’s decomposition method, Ikeda
et al. [4] proved that the system is completely stabilizable if it is uniformly globally
null-controllable and Phat and Ha [11] extends some results of [4] to time-varying
control systems.

In this paper, we develop the result of Phat and Ha [11] on the relationship be-
tween the exact controllability and complete stabilizability for linear time-varying
control systems in Hilbert spaces. We show that the system is completely stabi-
lizable if it is globally null-controllable in finite time, and conversely under some
additional growth condition on the evolution operator of the system, the system is
globally null-controllable in finite time if it is completely stabilizable. The result
of the paper can be considered as further extensions of Wonham [12], Ikeda et al.
[4], Phat and Ha [11] to infinite-dimensional systems, of Slemrod [11], Zabczyk
[14, 15] to the time-varying systems.
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2 Notation and mathematical preliminaries

The following notation will be used throughout this paper. R denotes the set of
all real numbers; R+ denotes the set of all non-negative real numbers; X denotes
an infinite-dimensional real Hilbert space with the inner product 〈., .〉; X∗ denotes
the dual space of X; L(X) (respectively, L(X,Y )) denotes the Banach space of all
linear bounded operators mapping X into X (respectively, X into Y ); L2([t, s], X)
denotes the set of all strongly measurable L2−integrable and X− valued functions
on [t, s]; D(A), A−1 and A∗ denote the domain, the inverse and the adjoint of the
operator A, respectively; clM denotes the closure of a set M ; I denotes the identity
operator; A is self-adjoint if A = A∗; ρ(A) and R(λ, A) denote the resolvent set
and the resolvent of A, respectively; An operator Q ∈ L(X) is called non-negative
definite (Q ≥ 0) if 〈Qx, x〉 ≥ 0, for all x ∈ X; LO([t,∞), X+) denotes the set of
all linear bounded self-adjoint non-negative definite operator-valued function on
[0,∞); The operator A : D(A) → X generates the C0−semigroup S(t) in X if

Ax = lim
t→0+

1
t
[S(t)− I]x, ∀x ∈ D(A),

where D(A) = {x ∈ X : such that limh→0+
1
h [S(h)x − x] exists}. Let {A(t)}, t ∈

R+ be a family of linear operator-valued functions.
A(t) is called bounded on R+ if

∃M > 0 : sup
t∈R+

‖A(t)‖ ≤ M ;

Consider linear time-varying control system (1), where X, U are infinite-dimensional
real Hilbert spaces; A(t) : X → X, t ∈ R+, is a linear unbounded operator
and B(t) ∈ L(U,X). In this paper we consider a class of admissible controls
u(t) ∈ L2([0, t), U) for all t ∈ R+. As in [1] we will assume the following condi-
tions that guarantee the existence and uniqueness of the solution of linear control
system (1).

(a) Operator functions A(.)x, B(.)u are continuous and bounded in t ∈ R+ for all
x ∈ X,u ∈ U ;
(b) clD(A(t)) = X, t ∈ R+ and A(.)x is a continuous function on R+ for every
x ∈ D(A(.)),
(b) For each t ∈ R+, A(t) generates a C0− semigroup on X and there is a evolution
operator U(t, s) : {(t, s) : t ≥ s ≥ 0} → L(X), such that U∗(t, s) is continuous in
t, s and for each x ∈ D(A(t)), U(t, s)x ∈ D(A(t)) the following conditions hold:

(i)
∂U(t, s)x

∂t
= A(t)U(t, s)x, U(s, s) = I,

lim
n→∞

Un(t, s)x = U(t, s)x,

where Un(t, s) is the evolution operator generated by the Yosida approximation
[7]

An(t) = n2[nI −A(t)]−1 − nI
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of A(t).
(ii) U(t, s) = U(t, r)U(r, s), for all t ≥ r ≥ s ≥ 0.

In this case, we say that A(t) generates a strongly continuous evolution oper-
ator U(t, s), and then for every initial state x0 ∈ X, for every admissible control
u(t), linear control system (1) has a mild solution given by

x(t) = U(t, 0)x0 +
∫ t

0

U(t, s)B(s)u(s)ds.

Remark 2.1. The evolution operator is a natural extension to the C0 semigroup
of time-invariant linear systems. For instance, if A(t) = A is independent of t then
U(t, s)S(t)S−1(τ) and the two parameter family of semigroup operators reduces to
the one parameter family S(t), which is the standard C0 semigroup generated by
A. It is well known that if the operator A(t) ∈ L(X), t ∈ R+ r, which is bounded on
R+, then the semigroup evolution operator U(t, s) satisfying the above conditions
always exists. However, if A(t), t ∈ R+ is unbounded, then the evolution operator
U(t, s) exists provided additional assumptions, see; e.g. [1, 7] for the details.

In the sequel, sometimes for the sake of brevity, we will omit the arguments of
operator-valued functions, if it does not cause any confusion.

Definition 2.1. Linear control system (1) is globally null-controllable (GNC) in
finite time if for every x0 ∈ X, there exist a number T > 0 and an admissible
control u(t) such that

U(T, 0)x0 +
∫ T

0

U(T, s)B(s)u(s)ds = 0.

We state the following well-known controllability criterion for infinite-dimensional
control system that will be used later.

Proposition 2.1. [1, 2] Linear control system (1) is GNC in finite time if and
only if

∃T > 0, c > 0 :
∫ T

0

‖B∗(s)U∗(T, s)x∗‖2ds ≥ c‖U∗(T, 0)x∗‖2, ∀x∗ ∈ X∗.

Definition 2.2. Linear control system (1) is completely stabilizable (CSz) if
for every number δ > 0, there exists a feedback control u(t) = K(t)x(t), where
K(t) ∈ L(X, U) is bounded on R+, such that the solution x(t, x0) of the closed-loop
system ẋ(t)[A(t) + B(t)K(t)]x(t), x(0) = x0, satisfies

∃N > 0 : ‖x(t, x0)‖ ≤ Ne−δt‖x0‖, ∀t ≥ 0.

The solution to the stabilizability problem involves a Riccati operator equation
(ROE) of the form

Ṗ (t) + A∗(t)P (t) + P (t)A(t)− P (t)B(t)B∗(t)P (t) + Q(t) = 0, (2)
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where Q(t) ≥ 0 is a given self-adjoint operator function. Since A(t), t ∈ R+ is an
unbounded operator, it is not clear a priori what a solution of ROE means. We
will defined, as in [1], the solution of ROE (4) as follows.

Definition 2.3. The (mild) solution of ROE (2) is a linear operator function
P (t) ∈ L(X) satisfying the following two conditions:
(i) The scalar function 〈P (·)x, y〉 is differentiable on [0,∞) for every x, y ∈ D(A(.)).
(ii) For all x, y ∈ D(A(t)), t ∈ R+ :

d

dt
〈P (t)x, y〉+ 〈P (t)x, A(t)y〉+ 〈P (t)A(t)x, y〉−

−〈P (t)B(t)B∗(t)P (t)x, y〉+ 〈Q(t)x, y〉 = 0.

In the sequel, we state the following sufficient condition which guarantees the
existence of a bounded solution P (t) of ROE (2).

Definition 2.4. Let Q(t) ∈ LO([0,∞), X+). The control system (1) is called
Q(t)−stabilizable if for every initial state x0, there is a control u(t) ∈ L2([0,∞), U)
such that the cost function

J(u) =
∫ ∞

0

[‖u(t)‖2 + 〈Q(t)x(t, x0), x(t, x0)〉]dt, (3)

exists and is finite.

Proposition 2.2. [1] If linear control system (1) is Q(t)−stabilizable, then the
ROE (2) has the solution P (t) ∈ LO([0,∞), X+) bounded on R+.

3 Main result

Consider the linear time-varying control system (1) in Hilbert spaces. As we have
already mentioned in Introduction, for time-invariant control systems in finite-
dimensional spaces Wonham [12] proved the equivalence of the complete stabi-
lizability and global null-controllability and for the case of infinite-dimensional
systems, assuming a compactness property on the semigroup Slemrod [10] showed
that the time-invariant control system in Hilbert spaces is completely stabilizable
iff it is globally null-controllable in finite time. In this section we us the following
growth condition on the evolution operator U(t, s) :

H. ∃M > 0, α > 0 : ‖U(t, s)‖ ≤ Meα|t−s|, ∀t, s ≥ 0.

It’s known from [7] that the growth condition H hods for the time-invariant
system when A ∈ L(X) is a linear continuous constant operator as well as for the
time-varying system when A(t) is a matrix function uniformly bounded in t ∈ R+.
The main result of the paper is the following.
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Theorem 3.1. Linear time-varying control system (1) is completely stabilizable
(CSz) if and only if it is globally null-controllable (GNC) in finite time. Conversely,
assume the condition H, the system is GNC in finite time if it is CSz

Proof. The proof of this theorem follows similar arguments used in [11] by employ-
ing some more techniques in infinite-dimensional analysis. We start by showing
that GNC implies CSz. Assume that the linear time-varying control system (1)
is GNC in finite time. Let δ > 0 be any given number. We take a change of the
state variable y(t)eδtx(t), then the linear control system (1) is transformed to the
system

ẏ(t) = Ã(t)y(t) + B̃(t)u(t), y(0) = y0x0, (4)

where Ã(t) = A(t) + δI, B̃(t) = eδtB(t). We choose an operator function Q ∈
LO([0,∞), X+) bounded on R+ such that

Q(t) ≥ 2Ã(t) + B(t)B∗(t), t ≥ 0. (5)

We first show that the linear control system [Ã(t), B(t)] :

ż(t) = Ã(t)z(t) + B(t)u(t), z(0) = z0, t ∈ R+,

is globally null-controllable in finite time. Indeed, by the GNC of the former
system [A(t), B(t)], for every z0 ∈ X there are a time T > 0 and admissible
control u(t) ∈ L2([0, T ], U) such that

U(T, 0)z0 +
∫ T

0

U(T, s)B(s)u(s)ds = 0. (6)

Multiplying both sides of (6) with eδT and observing that UÃ(t, s) = eδ(t−s)U(t, s)
we find

UÃ(T, 0)z0 +
∫ T

0

UÃ(T, s)B(s)ũ(s)ds = 0,

where ũ(s) = eδsu(s). This implies that the system [Ã(t), B(t)] is GNC in finite
time. Let uz(t) be an admissible control according to the solution z(t) of system
[Ã(t), B(t)] transferring z0 ∈ X into 0 in time T. For every initial state z0 ∈ X
there is an admissible control uz(t) ∈ L2([0, T ], U) such that the solution z(t) of
the system according to the control uz(t) satisfies z(0) = z0, z(T ) = 0. Define the
admissible control ũz(t) ∈ L2([0,∞), U), t ≥ 0 by

ũz(t) =

{
uz(t), if t ∈ [0, T ]
0, if t > T.

Therefore, we have

J(ũz) =
∫ ∞

0

[‖ũz(t)‖2 + 〈Q(t)z(t), z(t)〉]dt

=
∫ T

0

[‖uz(t)‖2 + 〈Q(t)z(t), z(t)〉]dt < +∞,
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which means that the linear control system [Ã(t), B(t)] is Q(t)−stabilizable. Ap-
plying Proposition 2.2 to the cost function (3), we can find an operator function
P ∈ LO([0,∞), X+), which is a solution of the following ROE

Ṗ (t) + Ã∗(t)P (t) + P (t)Ã(t)− P (t)B(t)B∗(t)P (t) + Q(t) = 0,

or equivalently

Ṗ (t) + Ã∗(t)P (t) + P (t)Ã(t)− e−2δtP (t)B̃(t)B̃∗(t)P (t) + Q(t) = 0, (7)

We now consider a Lyapunov-like function

V (t, y) = 〈P (t)y, y〉+ ‖y‖2,

and construct a feedback control of the form

u(t) = −e−2δt

2
B̃∗(t)[P (t)− I]y(t). (8)

Taking the derivative of V (.) in t along the solution of y(t) of the system (4) and
using the chosen feedback control and the ROE (7), we have

V̇ (t, y(t)) = 〈Ṗ (t)y(t), y(t)〉+ 2〈P (t)ẏ(t), y(t)〉+ 2〈ẏ(t), y(t)〉,
= 〈(−Ã∗P − PÃ + e−2δtPB̃B̃∗P −Q)y, y〉

+2〈P (Ãy + B̃u), y〉+ 2〈Ãy + B̃u, y〉,
= e−2δt〈PB̃B̃∗Py, y〉+ 2〈PB̃u, y〉+ 2〈Ãy, y〉+ 2〈B̃u, y〉 − 〈Qy, y〉
= −〈[Q(t)− 2Ã(t)− e−2δtB̃(t)B̃∗(t)]y(t), y(t)〉
= −〈[Q(t)− 2Ã(t)−B(t)B∗(t)]y(t), y(t)〉.

By choosing Q(t) from (5), we find [Q(t) − 2Ã(t) − B(t)B∗(t)] ≥ 0, and hence
V̇ (y(t)) ≤ 0, ∀t ≥ 0. This inequality shows the boundedness of the solution y(t)
of the system (4). Indeed, by integrating both sides of the above inequality from
0 to t, we obtain that

V (t, y(t))− V (0, y0) ≤ 0,

and hence
〈P (t)y(t), y(t)〉 − ‖y(t)‖2 ≤ 〈P (0)y0, y0〉+ ‖y0‖2.

Since P (t) ≥ 0, for all t ∈ R+,

‖y(t)‖ ≤ 〈P (0)y0, y0〉+ ‖y0‖2, ∀t ≥ 0,

we find
∃N > 0 : ‖y(t)‖ ≤ N‖y0‖, ∀t ≥ 0.

Therefore, by returning to the solution x(t) of system (1), we finally obtain that

‖x(t)‖ ≤ N‖x0‖e−δt, ∀t ≥ 0.
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This means that the control system (1) is completely stabilizable by the feedback
control (8) transformed in the state x(t) as

u(t) = −e−2δt

2
B̃∗(t)[P (t)− I]y(t) = K(t)x(t),

where K(t) = − 1
2B∗(t)[P (t) − I], which is bounded on R+. Thus GNC implies

CSz.

Next we show that CSz implies GNC. Assume that linear control system (1)
is strongly stabilizable. By the property of the evolution operator we have

∃M > 0, α > 0 : ‖U∗(t, s)‖ ≤ Meα|t−s|, ∀t, s ≥ 0. (9)

Due to the strong stabilizability of (1), for a chosen number δ > α > 0, there is an
operator function K ∈ L(X,U), which is bounded on R+ such that the solution
x(t, x0) = UK(t, 0)x0, where UK(t, s)x0 is the evolution operator generated by the
operator [A(t) + B(t)K(t)], satisfies

∃N > 0 : ‖x(t, x0)‖ = ‖UK(t, 0)x0‖ ≤ Ne−δt‖x0‖, ∀t ≥ 0. (10)

On the other hand, for every x0 ∈ X and feedback control u(t) = K(t)x(t), the
solution x(t, x0) of system (1) is defined as

x(t, x0) = U(t, 0)x0 +
∫ t

0

U(t, s)B(s)u(s)ds.

Therefore,

U(t, 0)x0 = UK(t, 0)x0 −
∫ t

0

U(t, s)B(s)K(s)UK(s, 0)x0ds, t ∈ R+.

Since the above relation holds for every x0 ∈ X, the following estimate holds for
every x∗ ∈ X∗ :

‖U∗(t, 0)x∗‖ ≤ ‖U∗
K(t, 0)x∗‖+

∫ t

0

‖U∗
K(s, 0)K∗(s)B∗(s)U∗(t, s)x∗‖ds.

Taking the condition (10) into account, we have

‖U∗(t, 0)x∗‖ ≤ Ne−δt‖x∗‖+ Nk

∫ t

0

e−δs‖B∗(s)U∗(t, s)‖ds,

≤ Ne−δt‖x∗‖+ Nk(
∫ t

0

e−2δsds)1/2 ×

×(
∫ t

0

‖B∗(s)U∗(t, s)x∗‖2ds)1/2, (11)
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where k := sup{‖K(s)‖ : s ∈ [0,∞)}. Setting β(t) = (
∫ t

0
e−2δsds)1/2, we have

β(t) = (
1
2δ
− 1

2δ
e−2δt)1/2. (12)

To prove the assertion, we assume to the contrary that system (1) is not globally
null-controllable in any finite time t > 0. Then, by Proposition 2.1, for every t > 0
and for some chosen numbers c > 0, ε ∈ (0, 1), satisfying

c <
[ (1− ε)

√
2δ

Nk

]2

, (13)

there is x∗0 ∈ X∗ such that
∫ t

0

‖B∗(s)U∗(t, s)x∗0‖ds < c‖U∗(t, 0)x∗0‖2. (14)

The strict inequality (14) shows that x∗0 6= 0, we may assume, without loss of
generality, that the inequality (14) holds for all x0 : ‖x∗0‖ = 1; otherwise we can
take x∗1 = x∗0

‖x∗0‖ . Therefore, from (11), (14) it follows that

‖U∗(t, 0)x∗0‖ < Ne−δt +
√

cNkβ(t)‖U∗(t, 0)x∗0‖. (15)

On the other hand, we observe that

1 = ‖x∗0‖ = ‖U∗(0, t)U∗(t, 0)x∗0‖ ≤ ‖U∗(0, t)‖‖U∗(t, 0)x∗0‖,

which, due to (9) and ‖U∗(t, 0)x∗0‖ 6= 0, gives

1
‖U∗(t, 0)x∗0‖

≤ ‖U∗(0, t)‖ ≤ Meαt, ∀t > 0. (16)

Therefore, by using (15) and (16), we obtain that

1 <
Ne−δt

‖U∗(t, 0)x∗0‖
+
√

cNkβ(t) < NMe−(δ−α)t +
√

cNkβ(t), t > 0,

hence
1−√cNkβ(t) < NMe−(δ−α)t, ∀t > 0.

The above relation does not depend on x∗0, we can let t go to infinity and noticing
from (12) that β(t) → (1/

√
2δ), the right hand-side goes to 0 because of δ > α,

we have
1−√cN

1√
2δ

k ≤ 0.

Then, from (13) it follows the condition

ε < 1−√cN
1√
2δ

k ≤ 0,
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which leads to a contradiction. The system is therefore globally null-controllable
in finite time and the proof is complete.

Remark 3.1. Note that if A(t) = A and generates the C0−strong continuous
semigroup S(t), then we have the following result for linear time-invariant systems.

Corollary 3.1. [11, 14] A linear time-invariant control system in Hilbert spaces
is CSz if and only if it is GNC in finite time.

For linear time-varying systems in finite-dimensional spaces, we also have the
following consequence.

Corollary 3.2. [4] Assume that X = Rn, U = Rm and A(t), B(t) are matrix
function bounded on R+. Linear time-varying control system (1) is CSz if and
only if it is GNC in finite time.

4 Conclusions

We have established the equivalence of complete stabilizability and exact control-
lability for linear rime-varying control systems in Hilbert spaces. The obtained
result extends existing results in the literature to infinite-dimensional and time-
varying control systems.
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