
ISSN 1686-0209

Thai Journal of Mathematics

Volume 21 Number 4 (2023)
Pages 671–686

http://thaijmath.in.cmu.ac.th

Discrete and Computational Geometry, Graphs, and Games

Celeste is PSPACE-hard

Lily Chung and Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA
e-mail : lkdc@mit.edu (L. Chung); edemaine@mit.edu (E. Demaine)

Abstract We investigate the complexity of the platform video game Celeste. We prove that navigating

Celeste is PSPACE-hard in five different ways, corresponding to different subsets of the game mechanics.

In particular, we prove the game PSPACE-hard even without player input.

MSC: 68Q17; 68Q25

Keywords: video games; hardness; PSPACE

Submission date: 02.01.2022 / Acceptance date: 13.12.2023

1. Introduction

Celeste1 is a 2D platform video game released in 2018 by Maddy Makes Games. It won
the Best Independent Game and Games for Impact awards at The Game Awards 2018
[1] and sold over a million copies [2]. In Celeste, the player controls a single character,
Madeline, who must navigate various hazards along her journey. We analyze the following
natural decision problem about Celeste:

Definition 1.1 (Celeste). Given a Celeste level, is it possible for Madeline to traverse
from a designated start location to a designated end location?

A previous paper [3] attempted to resolve this question by claiming that Celeste is
NP-complete, but failed to correctly prove containment in NP. Specifically, their proof
made the incorrect assumption that the sequence of inputs solving a Celeste instance
must be polynomially bounded in size. Their NP-hardness reduction applies the frame-
work from [4] to show hardness with barriers, gates, and buttons.2 They also showed
that adding additional mechanics to Celeste (buttons that close gates instead of opening
them) suffices for PSPACE-hardness, using the pressure-plate framework of [5]. By con-
trast, we show that Celeste’s built-in mechanics, excluding gates and buttons, suffice for
PSPACE-hardness.

Published by The Mathematical Association of Thailand.
Copyright c© 2023 by TJM. All rights reserved.

1https://exok.com/games/celeste/. Celeste and its sprites are the properties of Maddy Makes Games.

Sprites are used here under Fair Use for the educational purpose of illustrating mathematical theorems.
2Their clause gadget needs some modification to respect Celeste’s mechanic that a button opens the

Euclidean-nearest gate, but this is easy to do.

https://exok.com/games/celeste/


672 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

jump-
through

crumble
blocks

spinners spring seeker jellyfish pufferfish barrier
move
blocks

Kevin
blocks

Complexity Sec

X X X X PSPACE-hard §3.1

X X X PSPACE-hard §3.2

X X PSPACE-hard §3.3

X X PSPACE-hard §3.4

X X X PSPACE-hard §4

X X X X X X X X X ∈ PSPACE §2

Table 1. Summary of our results about the complexity of Celeste.

We give five proofs that Celeste is PSPACE-hard, each using different restricted com-
binations of existing game mechanics; see Table 1. Four of these proofs involve construct-
ing a polynomial-time reduction to Celeste from a motion-planning problem through
a planar network of doors [6]. We make use of both “open–close–traverse” doors, as in-
troduced in [4, 5, 7] and shown not to need crossovers in [6], and “self-closing doors”, as
introduced in [6]. In each case we construct a Celeste level corresponding to the motion-
planning problem that can be traversed if and only if the motion-planning problem is
solvable. In all but one case we additionally show containment in PSPACE, establishing
PSPACE-completeness.

We also consider the following problem, where we ignore the player and treat Celeste
as an automaton:

Definition 1.2 (Zero-Player Celeste). Given a Celeste level and Madeline’s starting
position, will Madeline ever reach a designated end position if the player makes no inputs?

One of our proofs (Section 4) shows that Zero-Player Celeste with a certain com-
bination of game mechanics (springs, jellyfish, and move blocks) is PSPACE-complete by
reducing from a zero-player motion-planning problem [8]. Adapting this result gives our
fifth proof that Celeste is PSPACE-hard.

We have tested our constructions in the Celeste game itself; the custom map file and
some dynamic illustrations can be found on an accompanying website.3

2. Definitions

We define an idealized version of Celeste which captures its relevant behavior. A
Celeste level4 of size M consists of a subset of Z2 called the tilemap, which defines where
the solid walls are in the level. It additionally contains a polynomially sized set of entities
of various types, each placed at a specific initial location. The locations of entities are
not necessarily aligned with the integer tile grid, but we require the tilemap and entities
to be confined to an M ×M rectangle. In Celeste, many quantities such as positions,

3https://github.com/cryslith/celeste-constructions
4Chapters in Celeste consist of many levels, each of whose state does not persist across level boundaries.
There is no bound on the size of a level; our reductions will each produce a single large level rather than

a collection of small ones.

https://github.com/cryslith/celeste-constructions


Celeste is PSPACE-hard 673

sizes, and velocities, are stored as either 32-bit integers or 32-bit floating point numbers.
We will ignore unusual behavior caused by overflow or loss of precision, and instead work
with the assumption that Celeste physics are translation-invariant.

The player interacts with Celeste by controlling the main character, Madeline; see
Figure 1. Madeline can move left and right on the ground or in the air, jump off of the
ground or walls, and climb walls for a limited time. She can also dash in any of the eight
cardinal and ordinal directions, which gives her a short-lasting boost of speed in that
direction. She can dash only once in the air, after which she has to land on the ground
before dashing again.5

Madeline can also perform a number of more advanced movements, such as super-
dashes, hyperdashes, ultras, wallbounces, and crouch-dashes. However, these do not
allow her to traverse our gadgets in unexpected ways, and are not necessary for their
intended operation. For instance, superdashes, hyperdashes, and ultras can impart more
horizontal velocity than usual when jumping from the ground, but breaking most of our
gadgets would require Madeline to gain vertical height rather than horizontal distance.
Wallbounces can give additional vertical height but require a suitably-placed wall, which
we avoid. Crouch-dashes can sometimes be used to bypass obstacles by squeezing between
them, but we place our obstacles close enough together to prevent this. It is possible that
an undiscovered bug or exploit in the game physics could break our gadgets, but in the
following we will assume this is not the case.

Figure 1. Madeline, at rest and while dashing

Ordinarily, while falling Madeline can achieve a maximum “glide ratio” of at most
0.563. That is, for every tile she falls vertically, she can drift only 0.563 tiles horizontally6.
Dashing horizontally can move her up to 9.6 tiles horizontally, while dashing diagonally
upwards can move her by at most 8 tiles horizontally and 2.1 tiles upward, after which her
glide ratio decays to its baseline. We exploit these limits to require Madeline to expend
dashes and utilize entities in order to traverse sections of our constructions.

We make use of the following entities in our constructions.

Jumpthroughs can be passed through from below, but not from above.
Madeline activates crumble blocks by contacting them from above or from the
sides (but not from the bottom), which makes them briefly disappear. These
blocks act as one-way “diodes” which Madeline can traverse only in one direction
(upwards and downwards respectively).

5Later in the game, Madeline gains the ability to dash twice before landing on the ground, but we ignore
this additional ability as it does not affect our PSPACE containment results. Our hardness constructions

could also be modified to be robust to a constant number of dashes.
6Detailed information on Celeste’s mechanics was obtained from many sources, including reverse-
engineering the game code.



674 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

Spinners instantly kill Madeline upon her colliding with them, respawning
her at her starting position and resetting the entire level to its initial state.7

This is never beneficial for the player. Spinners do not interact with entities
other than Madeline.

Springs in the pictured vertical orientation launch Madeline and jellyfish
sideways and slightly upwards. Horizontal springs launch Madeline and jellyfish
directly upwards while preserving some of their existing horizontal momentum.

Seekers kill Madeline on contact. They can be pushed around by mov-
ing blocks, but otherwise remain still. If they ever come into line-of-sight of
Madeline, they chase her and exhibit more complicated behavior; we will avoid
defining this behavior by forcing Madeline to either avoid line-of-sight or contact
the seeker in our constructions.

Jellyfish can be held by Madeline to float through the air when falling,
increasing her horizontal speed and reducing her terminal velocity. This im-
proves her maximum glide ratio to 4.5. Madeline can also throw jellyfish a
short distance.

Madeline can interact with pufferfish by jumping on top of them, which
restores her dash and moves the pufferfish downwards a short distance. If she
instead approaches the pufferfish from below or to the side, the pufferfish will
explode, restoring her dash and bouncing her away. The pufferfish will then
respawn at its original position.

Barriers are intangible to Madeline, but act as solid walls for seekers. They
also permanently destroy any jellyfish that contact them.

Madeline activates a move block by touching it from above or from the
sides, which causes it to begin moving in the direction displayed as an arrow
on the block. The block will keep moving until obstructed by a solid wall, at
which point it disappears and respawns at its original position. A move block
with a spring attached will also be activated if Madeline or a jellyfish contacts
the spring.

Kevin blocks8 have complex behavior. Each Kevin block maintains a stack
of (position, direction) pairs, initially empty. Madeline activates the Kevin
block by dashing into it from any side. Upon activation, the Kevin block pushes
its current position onto its stack along with the direction Madeline dashed
into it from, provided that the direction currently on top of the stack (if any)
is perpendicular to this new direction. The effect of this condition is that
consecutive triples of positions on the stack always form right angles; they are
never collinear. In any case, the Kevin block then begins charging quickly in
the direction toward the side that Madeline hit, until the Kevin block hits a
wall. Whenever it is not charging, the Kevin block will retrace its path by

7A recently discovered bug allows the player to prevent spinner hitboxes from loading by pausing the game

periodically, which permits Madeline to bypass these obstacles. This potential cheat can be prevented
by duplicating the spinners within a level, essentially because each spinner is randomly assigned to one

of three groups when the level is created, and the player can only deactivate one group at a time. (More

precisely, each spinner is assigned a point on the unit circle, and the player can only deactivate a set of
spinners corresponding to an interval of length 2π/3.) Duplicating each spinner Θ(logn) times ensures

that, with high probability, no obstacle can be bypassed in this way, where n is the number of spinners

in the original level.
8Named after Kevin Regamey, Celeste’s sound designer.



Celeste is PSPACE-hard 675

slowly moving towards the position on top of its stack, removing that position
from the stack when it arrives there.

Lemma 2.1. Celeste with the listed entities other than Kevin blocks is contained in
PSPACE.

Proof. The states of Madeline and of every entity other than Kevin blocks can be de-
scribed by a polynomial amount of space, since entities are confined to a polynomial-sized
area. Thus an algorithm which guesses Madeline’s inputs on every frame and simulates
Celeste, until Madeline either reaches the goal location or a state is repeated, requires
only polynomial space to function, showing containment in NPSPACE = PSPACE [9].

3. Single-Player Hardness

In order to show PSPACE-hardness, we simulate certain “door gadgets”. We make use
of both “open–close–traverse” doors, as introduced in [4, 5, 7], and “self-closing doors”, as
introduced in [6]. Refer to Figure 2. An open–close–traverse door is a 2-state gadget
with three tunnels labeled “open”, “close”, and “traverse”. Traversing the open and close
tunnels respectively changes the gadget’s state to open or closed; the traverse tunnel can
be traversed only in the open state. A self-closing door is a 2-state gadget with two
tunnels labeled “open” and “self-close”; traversing the self-close tunnel is possible only in
the open state and changes the gadget’s state to closed, preventing it from being traversed
again until the open tunnel is traversed and the state is reset to open. A symmetric
self-closing door is similar, except that the open tunnel (more symmetrically called a
“self-open” tunnel) cannot be traversed while the door is in the open state. All tunnels
are directed : they can be traversed in only one direction. Optionally, the open–close–
traverse door or self-closing door (but not the symmetric self-closing door) can be made
open-optional meaning that the two end locations of the open tunnel are identified,
making the open tunnel into an open port , so the agent can always freely choose whether
to open the door or just skip the traversal.

A key set of results from [6] (Theorems 4.1 and 4.7) is that the “planar motion planning
problem” is PSPACE-hard for any one of these types of doors9. More precisely, for any
gadget, a planar network of gadgets consists of a finite number of instances of that
gadget, each with a specified initial state, and an undirected graph connecting together
the ends of tunnels (called “locations”), such that the gadgets and graph can be drawn
in the plane without crossings. The planar (1-player) motion planning problem
asks, given a planar network of gadgets, a start location, and a destination location,
whether there is a traversal sequence from start to destination. Because it is easy to build
“hallways” (paths that Madeline can traverse in any direction) and “branching hallways”
(connections where Madeline can freely choose to follow any incident hallway), the graph
part of a planar network is easy to represent. Therefore, constructing a gadget that
simulates any one door is enough to show PSPACE-hardness of traversing Celeste levels.

The following four constructions all use jumpthroughs, crumble blocks, and spinners, so
we omit their mention in the section titles, and instead just list the unique mechanics that
each construction uses. The jumpthroughs and crumble blocks are convenient shorthand
for one-way diodes, which can instead be replaced by the gadget in Figure 3, so they are
not listed in the theorems or Table 1.

9Except for a specific planar arrangement of the tunnels of an open–close–traverse door; we will avoid
that arrangement.



676 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

open

closed

closed
open

traverse
close

open

tunnels

(a) Open–close–traverse door

open

closed

closed
open

self- 
close

open

tunnels

(b) Self-closing door

open

closed

closed
open

self- 
close

self- 
open

tunnels

(c) Symmetric self-closing door

Figure 2. The three types of door gadgets we use, from [6]. Each dia-
gram consists of a legend of labeled tunnels on the left, and the traversals
possible in each of the two states of the gadget (“open” and “closed”) on
the right. Each traversal that changes the state of the gadget is labeled
with the state that it changes to.

Figure 3. A one-way diode gadget, which can be traversed only from
top to bottom. Madeline cannot ascend from bottom to top even with a
dash.

3.1. Seekers, Barriers, and Move Blocks

Theorem 3.1. Celeste with spinners, seekers, barriers, and move blocks is PSPACE-
complete.

Proof. We reduce from planar motion planning with open–close–traverse doors. Figure 4
shows the simulation of the door.

The seeker is constrained by a ring of barriers. Whenever the seeker is in the top-
right corner of the ring, Madeline can traverse the middle tunnel by falling down and
dashing rightwards to avoid the spinners. However, when the seeker is in the bottom-left
corner, she cannot traverse the middle tunnel without hitting it. The door is opened by
traversing the left tunnel, which activates two move blocks, pushing the seeker to the



Celeste is PSPACE-hard 677

open out traverse in close in

open in traverse out close out

Figure 4. An open–close–traverse door constructed with a seeker, bar-
riers, and move blocks. Currently in the “closed” state.

top-right corner. (In particular, after activating the first move block, Madeline can follow
close behind and get past it when the move block hits the solid wall, disappears, and
respawns at its original location.) Similarly, traversing the right tunnel activates two
other move blocks which return the seeker to the bottom-left corner. Jumpthroughs and
crumble blocks ensure that the gadget does not reach an invalid state. For example, once
Madeline has triggered one of the move blocks, she cannot exit the gadget (e.g., via the
entrance she just used) except via the intended exit. Importantly, it is not possible for
Madeline to be in line-of-sight of the seeker without dying; this is necessary to avoid
triggering the seeker’s complex chasing behavior.

3.2. Jellyfish and Barriers

Theorem 3.2. Celeste with spinners, jellyfish, and barriers is PSPACE-complete.

Proof. We reduce from planar motion planning with open-optional self-closing doors.
Figure 5 shows the simulation of the door.

The right-side self-closing tunnel can be traversed from top to bottom only if Madeline
has a jellyfish, which she can use to drift around the spinners. However, she cannot
traverse it without a jellyfish because her ordinary glide ratio is not enough to get around
the corners; the best she can do is use her single dash to get around one of them.

After Madeline traverses the right-side tunnel, the jellyfish is stuck at the bottom with
her. The only way to return it to the top of the gadget is to first throw it through
the spinners into the left chamber. The door is reopened by entering the left chamber,



678 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

open in/out

self-close in

self-close out

Figure 5. An open-optional self-closing door using a jellyfish and bar-
riers, in the “open” state.

retrieving the jellyfish from the bottom, and throwing it back across the spinners at the
top. The jellyfish can never exit the gadget because of the barriers blocking the entrances.
(Recall that barriers permanently destroy jellyfish, so they also cannot be used to reset
the jellyfish’s position and re-open the gadget.)

3.3. Pufferfish

Theorem 3.3. Celeste with spinners and pufferfish is PSPACE-complete.

Proof. We reduce from planar motion planning with symmetric self-closing doors. Fig-
ure 6 shows the simulation of the door.

Initially the bottom tunnel is untraversable, and Madeline can traverse the top tunnel
only by dropping in, dashing right, jumping on the pufferfish, and dashing upwards to
exit. This moves the pufferfish downwards through the spinners into the central area.

Now the top tunnel cannot be traversed (because Madeline has only a single dash),
but Madeline can traverse the bottom tunnel by dashing upwards into the pufferfish’s
explosion radius. The pufferfish’s explosion launches her to the right wall, which she
can climb to the exit. The pufferfish then respawns in its original position, resetting the
gadget.



Celeste is PSPACE-hard 679

self-close in self-close out

self-open out

self-open in

Figure 6. A symmetric self-closing door using a pufferfish. Initially the
top tunnel is open and the bottom tunnel closed.

A minor issue with this construction is that because the pufferfish always begins the
level at its spawn point, the gadget cannot be initialized with the bottom tunnel open
and the top tunnel closed. This is solved by reflecting the gadget about the y axis to
obtain a door gadget that initially has the opposite tunnel open.

3.4. Kevin Blocks

In order to show that Celeste is PSPACE-hard with Kevin blocks, we will construct
an open-optional self-closing door gadget. One difficulty is that our construction always
begins in the closed state, but we will show that this nonetheless suffices for PSPACE-
hardness.

Lemma 3.4. Planar motion planning with initially closed open-optional self-closing doors
is PSPACE-complete.

Proof. We reduce from motion planning with open-optional self-closing doors that may
begin in either state.

First, we use a combination of open-optional self-closing doors to create an open-
optional self-closing door with two opening ports,10 as shown in Figure 7. This construc-
tion needs one-way diodes, which are easy to implement with a directed open-optional
self-closing door by identifying the open port with the entrance to the self-close tunnel.
We replace every initially open door in the given instance with one of these doors, giving
each one an extra opening port. Finally, we build a new traversal path for the agent that
starts from a new start location, visits the extra opening port of each initially open door
in sequence, and then proceeds to the original start location of the given instance. We
place a one-way diode at the end of the path, so the agent can visit all the extra ports at
the beginning but never again. Opening doors to gadgets can only help later traversal,

10The same construction is used for a different purpose in Theorem 3.3 of [6].



680 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

so we can assume that the agent visits all the extra ports, and thus opens all doors that
were supposed to be initially open.

open 1 in/out open 2 in/out

self-close in self-close out

Figure 7. Duplicating the opening port of a directed open-optional self-
closing door: both of the two upper ports open the bottom self-close
tunnel, without it being possible to leak between the two ports. Each
box denotes an open-optional self-closing door, where the green loop is
the open port and the dotted arrow denotes the self-close tunnel in an
initially closed state. The arrows at the top of the diagram (exterior to
gadgets) are one-way diodes.

This construction does not preserve planarity. Luckily, the simulation of a directed
crossover in Theorem 4.1 of [6] uses only initially closed doors. Thus we can make our
construction planar by replacing any crossing wires with these simulated crossovers, while
preserving that all doors are initially closed.

Now we can show the following result about Kevin blocks.

Theorem 3.5. Celeste with spinners and Kevin blocks is PSPACE-hard.

Proof. We reduce from planar motion planning with initially closed open-optional self-
closing doors, which is PSPACE-complete according to Lemma 3.4. Figure 8 shows the
simulation of the door.

Initially the right tunnel is untraversable, since the Kevin block is placed too high up
for Madeline to dash into it. By entering from the left, Madeline can climb the wall and
move the Kevin block into the left chamber. By dashing into it repeatedly from different
directions, she can “wind up” the Kevin block, adding arbitrarily many positions to its
internal stack (e.g., by moving it clockwise around a rectangle). Once this is done, the
block will take arbitrarily long to unwind, depending on how long it was wound up for.
The right tunnel can be traversed only when the Kevin block finishes unwinding and
returns to its original position, when Madeline can ride on top of it. The constrained
space prevents the Kevin block from possibly moving through the right tunnel more
than once per winding session, because positions can be added to its stack only when
it makes right-angle turns. Therefore, every traversal of the right tunnel corresponds
to an immediately previous visit to the left chamber, which is the same condition as a
self-closing door.



Celeste is PSPACE-hard 681

open in/out

self-close out

self-close in

Figure 8. An open-optional self-closing door using a Kevin block. Ini-
tially in the “closed” state.

It follows that any traversal of a network of Kevin-based doors corresponds to a tra-
versal of the corresponding network of self-closing doors. The only obstacle to showing
the converse is in solving certain timing constraints: Whenever Madeline needs to go
through an open door, the corresponding Kevin block must still be unwinding; that is, it
must not have been wound for too short a time. Fortunately, these constraints are always
solvable by the following method. List the doors in reverse order by the time at which
the open tunnel is visited (each door will in general appear multiple times on the list). In
this order, assign an amount of time to wind each door sufficient to keep the door wound
until its self-close tunnel must be traversed. This quantity of time depends only on how
much time was assigned for winding previous doors in the list. Because the constraints
are always solvable, this shows that any traversal of the initially closed self-closing door
network can be transformed into a traversal of the network of Kevin-based doors.

4. Zero-Player Hardness

In this section we prove that predicting the outcome of a Celeste level is PSPACE-
complete, ignoring player inputs. We do so by reducing from a zero-player motion-
planning problem, in which an agent traverses a network of gadgets entirely determin-
istically. Specifically, in zero-player motion planning [8], the gadgets must be in-
put/output , meaning that their locations can be partitioned into entrances (inputs) and
exits (outputs) — no location is an entrance for a transition in some state and an exit for
another transition in some state — and the connection graph connecting gadget locations
must be branchless, meaning that it has at most one input location in each connected
component. Thus the motion of the agent is fully determined from its starting location
and the initial gadget states; the goal is to determine whether the agent ever reaches a
given destination location.



682 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

The input/output gadget we consider is the set-up switch/set-down switch ; refer
to Figure 9. This 2-state gadget has two input locations, labeled “set-up” and “set-down”,
and four output locations, labelled “(up, up)”, “(up, down)”, “(down, up)”, and “(down,
down)”. If an agent enters at input location set-i, then they are forced to exit at output
location (i, s) where s is the state of the gadget before traversal, and then the gadget’s
state is set to i.

up

down

down

set-up

traversals

up

set-down

(down, down)

(down, up)

(up, down)

(up, up)

Figure 9. The set-up switch/set-down switch gadget. Left: The six
locations (two input and two output) along with arrows for all possible
traversals between them. Right: The traversals possible from each of the
two states, with labels for traversals which modify the resulting state.

Ani et al. [8] gave a partial classification of zero-player gadgets and the resulting com-
plexity of the zero-player motion planning problem. An important result (Corollary 2.8) is
that motion planning is PSPACE-complete for any unbounded output-disjoint determin-
istic 2-state input/output gadget with multiple nontrivial inputs. Examining the set-up
switch/set-down switch, we see that it is a 2-state input/output gadget, it is unbounded
(can change states arbitrarily many times), output-disjoint (no output can be reached
from multiple inputs), and deterministic (each input leads to a unique transition/output
in any given state). Neither of the inputs is a trivial tunnel (avoiding interacting with the
state at all), so the corollary shows that zero-player motion planning with this gadget is
PSPACE-complete.

We reduce this zero-player motion-planning problem to Zero-Player Celeste by
simulating a set-up switch/set-down switch. Unlike our other simulations, the motion-
planning “agent” in this case is not Madeline, but instead a jellyfish, so we do not need
to worry about player input interfering with the construction. Also because of this, we
do not need spinners, jumpthroughs, or crumble blocks in this construction.

Theorem 4.1. Zero-Player Celeste with jellyfish, springs, and move blocks is PSPACE-
complete.

Proof. We reduce from zero-player motion planning with the set-up switch/set-down
switch. Figure 10 shows the simulation of this gadget.

The state of the gadget is determined by which side of the central chamber a jellyfish
rests in. A new jellyfish entering either of the input locations hits the spring on the side of
the corresponding move block, activating it. The move block pushes the original jellyfish
out of the gadget through the corresponding output location. Meanwhile the new jellyfish
bounces off the spring on the outer wall and is propelled towards the middle of the gadget,



Celeste is PSPACE-hard 683

set-up set-down

(down, up) (up, up) (down, down) (up, down)

Figure 10. A set-up switch/set-down switch constructed with a jelly-
fish, springs, and move blocks. Currently in the “up” state.

where it falls through the hole into one of the central locations, setting the state of the
gadget.

It remains to show how to combine these gadgets together in a network. Figure 11 shows
how to route a jellyfish along predetermined paths to implement “hallway” connections
between gadgets, including how to merge the output locations of multiple gadgets into
a single input location of another gadget. In our construction, only one jellyfish at a
time is outside of a gadget, and that jellyfish represents the agent (though which jellyfish
represents the agent varies over time).

We also need a final gadget at the destination location, so that Madeline reaches her
destination without player inputs if and only if a jellyfish ends up at this gadget. Figure 12
gives one such gadget.

Corollary 4.2. Celeste with jellyfish, springs, and move blocks is PSPACE-complete.

Proof. Using an alternate final gadget, we can instead trap Madeline beneath a move
block until a jellyfish enters the gadget, as shown in Figure 13. (Recall that move blocks
cannot be triggered from below.)

5. Conclusion

We have shown that five variants of Celeste are PSPACE-hard to navigate by reducing
from motion-planning problems, as summarized in Table 1. We conclude with a discussion
of open questions.

Open Problem 1. What other subsets of Celeste mechanics suffice for PSPACE-hardness?

We can consider strict subsets of the mechanics already shown hard, or consider other
incomparable subsets, to fill in Table 1. Alternatively, we could consider other mechanics
than those analyzed here; see [10, 11] for longer lists than Section 2.

Of particular note is that Kevin blocks maintain a potentially unbounded stack of
locations, which could store more than a polynomial amount of information. However,
it is difficult to make use of this information because they are always unwinding towards
their initial states when not interacted with.



684 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

(a) Modular hallway piece. If the third spring is omitted, then jellyfish will fall straight
down after traversing the hallway piece, allowing hallways to turn downwards or connect
to gadgets.

(b) A hallway that turns around, made from four hallway pieces

(c) Hallways can merge together or cross over each other.

Figure 11. The various types of hallway connections needed to route
jellyfish between gadgets.



Celeste is PSPACE-hard 685

Figure 12. The final gadget. Without player inputs, Madeline reaches
her destination (by her car) if and only if a jellyfish enters this gadget.

Figure 13. An alternate final gadget. Madeline is able to reach her
destination (with player inputs) if and only if a jellyfish enters this gadget.

Open Problem 2. Is Celeste with Kevin blocks contained in PSPACE?

In our reduction to Celeste with Kevin blocks (Section 3.4), we constructed a self-
closing door gadget which starts out closed. We showed that motion planning over a
planar network of initially closed self-closing doors is PSPACE-complete.

Open Problem 3. How does restricting various gadgets to particular initial states affect
the complexity of the corresponding motion-planning problems?

Acknowledgments

This work was initiated during extended problem solving sessions with the participants
of the MIT class on Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892) taught
by Erik Demaine in Spring 2019. We thank the other participants for their insights and
contributions. In particular, we thank Dylan Hendrickson and Josh Brunner for helping
simplify the proof of Theorem 3.5, and we thank Michael Coulombe and Jayson Lynch
for reading and suggesting revisions to drafts of the paper.

Images of sprites and gadgets were composed and tested using the fan-made level
editor Ahorn11. We thank Cruor, Vexatos, and Ahorn’s other contributors for creating

11https://github.com/CelestialCartographers/Ahorn

https://github.com/CelestialCartographers/Ahorn


686 Thai J. Math. Vol. 21 (2023) /L. Chung and E.D. Demaine

this excellent tool. We additionally thank the Celeste speedrunning, modding, and Tool-
Assisted Speedrunning community for extensively researching Celeste’s mechanics.

Finally, we thank Maddy Thorson, Noel Berry, and the rest of the development team
for creating Celeste, a difficult and wonderful experience in many ways.

References

[1] Christopher Grant. The Game Awards 2018: Here are all of the winners. Polygon,
December 2018.

[2] Tom Marks. Inside EXOK Games: The brand new studio that’s already sold a
million copies. IGN, March 2020.

[3] Zeeshan Ahmed, Alapan Chaudhuri, Kunwar Grover, Ashwin Rao, Kushagra Garg,
and Pulak Malhotra. Classifying Celeste as NP complete. In Proceedings of the
9th International Conference on Foundations of Computer Science & Technology,
Chennai, India, November 2022. arXiv:2012.07678.

[4] Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo
games are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015.

[5] Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of
Computing Systems, 54(4):595–621, 2014.

[6] Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan Hen-
drickson, and Jayson Lynch. Walking through doors is hard, even without staircases:
Proving PSPACE-hardness via planar assemblies of door gadgets. In Proceedings of
the 10th International Conference on Fun with Algorithms (FUN 2020), pages 3:1–
3:23, La Maddalena, Italy, September 2020.

[7] Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science,
586:120–134, 2015.

[8] Joshua Ani, Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Trains,
games, and complexity: 0/1/2-player motion planning through input/output
gadgets. In Proceedings of the 16th International Conference and Workshops
on Algorithms and Computation (WALCOM 2022), Jember, Indonesia, 2022.
arXiv:2005.03192.

[9] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[10] Fandom: Celeste Wiki. Objects. https://celestegame.fandom.com/wiki/Objects.
[11] Celeste Wiki. Mechanics. https://celeste.ink/wiki/Mechanics.

https://celestegame.fandom.com/wiki/Objects
https://celeste.ink/wiki/Mechanics

	1 Introduction
	2 Definitions
	3 Single-Player Hardness
	3.1 Seekers, Barriers, and Move Blocks
	3.2 Jellyfish and Barriers
	3.3 Pufferfish
	3.4 Kevin Blocks

	4 Zero-Player Hardness
	5 Conclusion

