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Abstract In this article, we are introducing a new proximal based extragradient method and examining

its convergence analysis in order to solve equilibrium problems that incorporate strongly pseudomonotone

bifunction. The main superiority of this technique, in particular that the construction of an approxima-

tion solution, proof of its convergence and also proof of its appropriateness, does not needed previous

information of the modulus of strong pseudo-monotonicity and the Lipschitz-type bi-functional parame-

ters. In addition, the method uses a decreasing and non-summable stepsize sequence. Finally, numerical

experiment results are provided to illustrate the method on a test problem to equate the efficiency with

previously known algorithms.
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1. Introduction

We consider iterative methods for evaluating the approximate solution to the following
problem of equilibrium [1]:

Find ξ∗ ∈ C such that f(ξ∗, v) ≥ 0, ∀v ∈ C, (1.1)
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having C is a non-empty convex and closed subset of a certain Hilbert space H and
f : C × C → R is a bifunction with f(u, u) = 0, for all u ∈ C.

The certain definitions of a bifunction monotonicity (see [1, 2]). A bifunction f :
C × C → R is

(1) strongly monotone upon C if there is a γ > 0, so that

f(ũ, ṽ) + f(ṽ, ũ) ≤ −γ∥ũ− ṽ∥2, ∀ũ, ṽ ∈ C;

(2) monotone upon C if

f(ũ, ṽ) + f(ṽ, ũ) ≤ 0, ∀ũ, ṽ ∈ C;

(3) strongly pseudomonotone upon C if

f(ũ, ṽ) ≥ 0 =⇒ f(ṽ, ũ) ≤ −γ∥ũ− ṽ∥2, ∀ũ, ṽ ∈ C;

(4) pseudomonotone upon C if

f(ũ, ṽ) ≥ 0 =⇒ f(ṽ, ũ) ≤ 0, ∀ũ, ṽ ∈ C;

(5) satisfying the Lipschitz-type condition upon C if L1, L2 ≥ 0 so that

f(ũ, ṽ) + f(ṽ, w̃) ≥ f(ũ, w̃)− L1∥ũ− ṽ∥2 − L2∥ṽ − w̃∥2, ∀ũ, ṽ, w̃ ∈ C.

The above defined problem (1.1) arises from a number of practical applications, e.g.
Nash equilibrium problems, fixed point problems, complementarity problems, optimiza-
tion problems and variational inequalities problems ([1, 3]). Wide applications have
prompted many researchers to study the methods of solving the (1.1) problem. Some
well-known iterative methods used to solve the (1.1) problem include; proximal point
methods, extragradient methods, hybrid methods, projected subgradient methods.

The proximal point method is one of the most effective methods for approximating
the problem (1.1). This method is mostly utilised in approximating monotone equilib-
rium problems, that is, the bifunction of the problem of equilibrium must be monotone.
The method was first explored by Martinet [4] for solving variational inequality prob-
lems through monotone operator. Afterwards, Rockafellar [5] extended the method to
monotone operators. In 1999, Moudafi [6] also proposed a proximal point method for ap-
proximating the equilibrium problems for monotone bifunctions. As well, Konnov [7] also
suggested a particular version of the proximal point approach through weaker conditions.
Another prominent technique for approximating the solution of the problem (1.1) is the
auxiliary problem principle. This concept for optimization problems was introduced by
Cohen [8] and thus applied to the problems of variational inequalities. The technique
establishes a new problem which is identical and typically simpler to carry out than the
original problem. Mastroeni [9] further expanded the auxiliary problem concept to ad-
dress problems including strongly monotone bifunctions. Now, in the coming, we detail
some results which are set up up owing to the auxiliary problem principle. We see the
extragradient method proposed by Korpelevich [10] which is one of the most celebrated
two-step methods and its iterative step is as follows: u0 ∈ C

vn = PC(un − λF (un))
un+1 = PC(un − λF (vn))

(1.2)
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while L is the Lipschitz constant of the operator F : H → H and λ ∈
(
0, 1

L

)
. The Quoc

[11] and Flam [12] employ the auxiliary problem principle to build up the above two-step
extragradient method in the subsequent manner:

u0 ∈ C
vn = argmin

v∈C
{λf(un, v) +

1
2∥un − v∥2}

un+1 = argmin
v∈C

{λf(vn, v) + 1
2∥un − v∥2}

(1.3)

where un is previously known value with 0 < λ < min{ 1
2L1

, 1
2L2

} and L1, L2 are Lipschitz
type constants. The weaknesses of the Korpelevich extragradient method are the com-
putation of the values of the operator F at two separate points to be carried out at the
next iteration. This fault is disposed of in the Popov′s extragradient algorithm [13, 14]
written as

u0, v0 ∈ C
vn = argmin

v∈C
{λf(vn, v) + 1

2∥un − v∥2}

un+1 = argmin
v∈C

{λf(vn, v) + 1
2∥un+1 − v∥2}

(1.4)

where un, vn are known values and L is the Lipschitz constant of the operator F : H → H,
λ ∈

(
0, 1

2L2+4L1

)
.

On the other hand, let us discuss methods of an inertial type. Based on both the heavy
ball methods of the two-order time dynamic system, Polyak [15] suggested an inertial in-
terpretation as a speed mechanism to solve minimization problem. The inertial technique
is a two-step algorithmic technique, and then the subsequent iteration is calculated by
having the operate of the prior two iterations, and can be linked to as an approach to
improve the iterative sequence, see [15–20]. Several inertial-like algorithms for particular
cases of the problem (1.1) [18, 21–24]. Next, we can pay attention to that the functional
implementation of algorithm (1.2) and algorithm (1.4) required some known information
before to run the algorithm, for example, we need to have a knowledge about stepsize λ
which is depended upon the values of Lipschitz constants which are not obvious to figure
out. Secondly, these methods are suitable in the understanding that it can be applied for
a bigger class of bifunction like pseudomonotone, but at the same time, we have weak
convergence.

The main contribution of this paper is to suggest a new method to figure out an
estimated solution of the problem (1.1) where the underlying mapping is strongly pseu-
domonotone bifunction. The algorithm combines Popov’s extragradient method with
inertial terms to determine a solution of an equilibrium problem. The propose algorithm
can be regarded as a modification of the algorithm (1.4) for the class of equilibrium prob-
lem (1.1) involving strongly pseudomonotone bifunction. Compared to existing methods
for figuring an approximate solution to the problem (1.1), the step-sizes used in our
new algorithm are independent of the stongly pseudomonotone and Lipschitz-type cost-
bifunction constants of the underlying mapping. This benefit comes from the use of a
step-size sequence which is slowly convergent to zero. Because of it as well as the strong
pseudomonotonicity of the bifunction, there is indeed a strong convergence of the meth-
ods is achieved. Though, it’s not essential to know these variables, i.e., these variables
are not the input variables of the method. This enables us to build estimated solution
and to demonstrate the convergence of the method without needing to know the details
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on such variables. This is particularly noteworthy when such variables are undetermined
or complicated to measure. In the meantime, we have used the variable positive step-size
sequence {λn} that is non-increased, non-summable and diminishing.

This article contains the following arrangements: Some descriptions and preliminary
results are recalled in Section 2. The convergence analysis of our proposed approach is
given in Section 3. Section 4 we present different numerical experiments to explain the
behaviour of the stepsize sequences and also compare the performance with previously
established methods.

2. Preliminaries

We consider the following important notions:

A function g : C → R is a convex function and subdifferential of g on u ∈ C is

∂g(u) = {w ∈ H : g(v)− g(u) ≥ ⟨w, v − u⟩, ∀v ∈ C}.

The normal cone of C at u ∈ C is defined by

NC(u) = {w ∈ H : ⟨w, v − u⟩ ≤ 0, ∀v ∈ C}.

Lemma 2.1. [25] Let C ⊂ H be non-empty, closed and convex with h : C → R be a
convex, subdifferentiable with lower semicontinuous function on C. Moreover, u ∈ C is
a minimizer of a function h if and only if 0 ∈ ∂g(u) + NC(u), where ∂g(u) and NC(u)
denotes the subdifferential of g at u and the normal cone of C at u respectively.

Lemma 2.2. [26] For any u, v ∈ H and β ∈ R, then the following expression is true:

∥βu+ (1− β)v∥2 = β∥u∥2 + (1− β)∥v∥2 − β(1− β)∥u− v∥2.

Lemma 2.3. [27] Let {pn}, {qn} ⊂ [0,∞) be two sequences and
∑∞

n=1 pn = ∞ with∑∞
n=1 pnqn < ∞, then lim infn→∞ qn = 0.

Lemma 2.4. [28] Let {pn} and {qn} be two sequences of non-negative real numbers with
pn+1 ≤ pn + qn for all n ∈ N. If

∑
qn < ∞, then limn→∞ pn exists.

Lemma 2.5. [29] Let pn, qn and rn be sequences in [0,+∞) such that

pn+1 ≤ pn + qn(pn − pn−1) + rn, ∀n ≥ 1, with

+∞∑
n=1

rn < +∞,

and also with q > 0 such that 0 ≤ qn ≤ q < 1 for all n ∈ N. Thus, the subsequent items
are true.

(i)
∑+∞

n=1[pn − pn−1]+ < ∞, with [t]+ := max{t, 0};
(ii) limn→+∞ pn = p∗ ∈ [0,∞).

Assumption 2.6. Let f : C × C → R is

(P1) f(u, u) = 0, for all u ∈ C and EP (f, C) is non-empty set;
(P2) f is strongly pseudomonotone on C;
(P3) f satisfies the Lipschitz-type condition on C;
(P4) f(u, ·) is convex and sub-differentiable on H for every fixed u ∈ H.



Modified Popov’s Extragradient-like Method ... 467

3. Main Results

The proposed algorithm is described as follows:

Algorithm 1 (Modified Extragradient Algorithm for Strongly Pseudomonotone EP)

Initialization: Pick u−1, u0, v0 ∈ C, {αn} ⊂ [0, 1
6 ) and a non-increasing sequence

{λn} ⊂ (0,+∞) satisfying the following hypotheses:

(K1) : lim
n→∞

λn = 0, (K2) :

∞∑
n=0

λn = +∞.

Iterative Steps: Given un−1, un, vn ∈ C for n ≥ 0. Calculate un+1 and vn+1 the
following manner:

Step 1. Evaluate

un+1 = argmin
y∈C

{λnf(vn, y) +
1

2
∥ξn − y∥2}.

where ξn = un + αn(un − un−1). If un+1 = vn = ξn, STOP. If not, take the next step.

Step 2. Evaluate

vn+1 = argmin
y∈C

{λn+1f(vn, y) +
1

2
∥un+1 − y∥2}.

Take n := n+ 1 and return to Step 1.

This section begins with the related lemmas which are needed to prove the main result.

Lemma 3.1. The Algorithm 1 has the following relevant inequality.

λnf(vn, y)− λnf(vn, un+1) ≥ ⟨ξn − un+1, y − un+1⟩,∀y ∈ C.

Proof. By un+1 with Lemma 2.1 implies that

0 ∈ ∂2

{
λnf(vn, y) +

1

2
∥ξn − y∥2

}
(un+1) +NC(un+1).

Thus, for η ∈ ∂2f(vn, un+1) there exists η ∈ NC(un+1) such that

λnη + un+1 − ξn + η = 0

which continues to follows that

⟨ξn − un+1, y − un+1⟩ = λn⟨η, y − un+1⟩+ ⟨η, y − un+1⟩, ∀y ∈ C.

Since η ∈ NC(un+1) then ⟨η, y − un+1⟩ ≤ 0, ∀ y ∈ C. It is implies that

⟨ξn − un+1, y − un+1⟩ ≤ λn⟨η, y − un+1⟩, ∀y ∈ C. (3.1)

From η ∈ ∂f(vn, un+1), we’ve got

f(vn, y)− f(vn, un+1) ≥ ⟨η, y − un+1⟩, ∀y ∈ H. (3.2)

From (3.1) and (3.2) we obtain

λnf(vn, y)− λnf(vn, un+1) ≥ ⟨ξn − un+1, y − un+1⟩, ∀y ∈ C.
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Lemma 3.2. The Algorithm 1 also has the following relevant inequality.

λn+1f(vn, y)− λn+1f(vn, vn+1) ≥ ⟨un+1 − vn+1, y − vn+1⟩, ∀y ∈ C.

Proof. By vn+1 with Lemma 2.1, implies that

0 ∈ ∂2

{
λn+1f(vn, y) +

1

2
∥un+1 − y∥2

}
(vn+1) +NC(vn+1).

Thus, for η ∈ ∂2f(vn, vn+1) there exists η ∈ NC(vn+1) such that

λnη + vn+1 − un+1 + η = 0

which gives that

⟨un+1 − vn+1, y − vn+1⟩ = λn+1⟨η, y − vn+1⟩+ ⟨η, y − vn+1⟩, ∀y ∈ C.

Since η ∈ NC(vn+1) then ⟨η, y − vn+1⟩ ≤ 0, ∀y ∈ C. Thus, we have

⟨un+1 − vn+1, y − vn+1⟩ ≤ λn+1⟨η, y − vn+1⟩, ∀y ∈ C. (3.3)

By η ∈ ∂f(vn, vn+1), implies

f(vn, y)− f(vn, vn+1) ≥ ⟨η, y − vn+1⟩, ∀y ∈ H. (3.4)

From relation (3.3) and (3.4) we obtain

λn+1f(vn, y)− λn+1f(vn, vn+1) ≥ ⟨un+1 − vn+1, y − vn+1⟩, ∀y ∈ C.

Lemma 3.3. If un+1 = vn = ξn in Algorithm 1, then vn ∈ EP (f, C).

Proof. By Lemma 3.1, we have

λnf(vn, y)− λnf(vn, un+1) ≥ ⟨ξn − un+1, y − un+1⟩, ∀y ∈ C. (3.5)

By taking un+1 = vn = ξn, in the above expression gives that

λnf(vn, y) ≥ 0, ∀y ∈ C. (3.6)

Thus, expression (3.6) and λn ≥ λ > 0, gives f(vn, y) ≥ 0 for each y ∈ C. That’s evidence
vn ∈ EP (f, C).

Lemma 3.4. If un+1 = vn+1 = vn in Algorithm 1, then vn ∈ EP (f, C).

Proof. By Lemma 3.2, we have

λn+1f(vn, y)− λn+1f(vn, vn+1) ≥ ⟨un+1 − vn+1, y − vn+1⟩, ∀y ∈ C. (3.7)

By taking un+1 = vn+1 = vn in the above expression gives that

λnf(vn, y) ≥ 0, ∀y ∈ C. (3.8)

Thus, expression (3.8) and λn ≥ λ > 0, gives f(vn, y) ≥ 0 for all y ∈ C. This indicates
that vn ∈ EP (f, C).
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Lemma 3.5. Let f : H × H → R satisfying the condition (P1)-(P4). Thus, for each
ξ∗ ∈ EP (f, C) ̸= ∅, we obtain

∥un+1 − ξ∗∥2 ≤ ∥ξn − ξ∗∥2 − (1− 4L1λn)∥un − vn∥2 − (1− 2L2λn)∥un+1 − vn∥2

+ 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2

− ∥un+1 − ξn∥2 + ∥un+1 − un∥2.

Proof. Follows from Lemma 3.1 with y = ξ∗, we have

λnf(vn, ξ
∗)− λnf(vn, un+1) ≥ ⟨ξn − un+1, ξ

∗ − un+1⟩. (3.9)

Since f(ξ∗, vn) ≥ 0, and from (P1) implies that f(vn, ξ
∗) ≤ −γ∥vn − ξ∗∥2, gives that

⟨ξn − un+1, un+1 − ξ∗⟩ ≥ λnf(vn, un+1) + γλn∥vn − ξ∗∥2. (3.10)

It proceeds from the context of the Lipschitz-type of f that continues.

f(vn−1, vn) + f(vn, un+1) ≥ f(vn−1, un+1)− L1∥vn−1 − vn∥2 − L2∥un+1 − vn∥2.
(3.11)

Both sides have been multiplied with λn > 0, such that

λnf(vn, un+1) ≥ λnf(vn−1, un+1)− λnf(vn−1, vn)

− L1λn∥vn−1 − vn∥2 − L2λn∥un+1 − vn∥2.
(3.12)

Next, by expression (3.10) and (3.12) we reach the following:

⟨ξn − un+1, un+1 − ξ∗⟩ ≥ λn{f(vn−1, un+1)− f(vn−1, vn)}
− L1λn∥vn−1 − vn∥2 − L2λn∥un+1 − vn∥2

+ γλn∥vn − ξ∗∥2.
(3.13)

By Lemma 3.2 through y = un+1, we have

λn

{
f(vn−1, un+1)− f(vn−1, vn)

}
≥ ⟨un − vn, un+1 − vn⟩. (3.14)

From (3.13) and (3.14), we obtain

⟨ξn − un+1, un+1 − ξ∗⟩ ≥ ⟨un − vn, un+1 − vn⟩
− L1λn∥vn−1 − vn∥2 − L2λn∥un+1 − vn∥2

+ γλn∥vn − ξ∗∥2.
(3.15)

The facts are available:

2⟨ξn − un+1, un+1 − ξ∗⟩ = ∥ξn − ξ∗∥2 − ∥un+1 − ξn∥2 − ∥un+1 − ξ∗∥2,

2⟨un − vn, un+1 − vn⟩ = ∥un − vn∥2 + ∥un+1 − vn∥2 − ∥un − un+1∥2,

The expression (3.15) with above facts implies that

∥un+1 − ξ∗∥2 ≤ ∥ξn − ξ∗∥2 − ∥un+1 − ξn∥2 − ∥un − vn∥2 − ∥un+1 − vn∥2

+ ∥un − un+1∥2 + 2L1λn∥vn−1 − vn∥2 + 2L2λn∥un+1 − vn∥2

− 2γλn∥vn − ξ∗∥2.
(3.16)
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Now by using triangular inequality, we have

∥vn−1−vn∥2 ≤
(
∥vn−1−un∥+∥un−vn∥

)2 ≤ 2∥vn−1−un∥2+2∥un−vn∥2. (3.17)

By combining the expression (3.16) and (3.17) implies that

∥un+1 − ξ∗∥2 ≤ ∥ξn − ξ∗∥2 − ∥un+1 − ξn∥2 − ∥un − vn∥2 − ∥un+1 − vn∥2

+ ∥un − un+1∥2 + 2L1λn

[
2∥vn−1 − un∥2 + 2∥un − vn∥2

]
+ 2L2λn∥un+1 − vn∥2 − 2γλn∥vn − ξ∗∥2.

(3.18)

Finally, we get the following

∥un+1 − ξ∗∥2 ≤ ∥ξn − ξ∗∥2 − (1− 4L1λn)∥un − vn∥2 − (1− 2L2λn)∥un+1 − vn∥2

+ 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2 − ∥un+1 − ξn∥2

+ ∥un+1 − un∥2.
(3.19)

Theorem 3.6. Let f : H × H → R satisfying (P1)-(P4). Let {un} be a sequences in H
developed by Algorithm 1, where αn is non-decreasing with 0 ≤ αn ≤ α < 1

6 . Then, {un},
{vn} and {ξn} strongly converges to an element ξ∗ in EP (f, C).

Proof. In Lemma 3.5 adding the value 4L1λn∥un+1 − vn∥2 on both sides, we obtain

∥un+1 − ξ∗∥2 + 4L1λn∥un+1 − vn∥2

≤ ∥ξn − ξ∗∥2 − (1− 4L1λn)∥un − vn∥2 − (1− 2L2λn)∥un+1 − vn∥2

+ 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2 − ∥un+1 − ξn∥2

+ ∥un+1 − un∥2 + 4L1λn∥un+1 − vn∥2 (3.20)

= ∥ξn − ξ∗∥2 − (1− 4L1λn)∥un − vn∥2 − (1− 2L2λn − 4L1λn)∥un+1 − vn∥2

+ 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2 − ∥un+1 − ξn∥2 + ∥un+1 − un∥2
(3.21)

= ∥ξn − ξ∗∥2 − 1

2
(1− 2L2λn − 4L1λn)

[
2∥un+1 − vn∥2 + 2∥un − vn∥2

]
+ 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2 − ∥un+1 − ξn∥2 + ∥un+1 − un∥2

(3.22)

≤ ∥ξn − ξ∗∥2 − 1

2
(1− 2L2λn − 4L1λn)∥un+1 − un∥2

+ 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2 − ∥un+1 − ξn∥2 + ∥un+1 − un∥2.
(3.23)

By the definition of ξn in Algorithm 1, we have

∥ξn − ξ∗∥2 = ∥un + αn(un − un−1)− ξ∗∥2

= ∥(1 + αn)(un − ξ∗)− αn(un−1 − ξ∗)∥2

= (1 + αn)∥un − ξ∗∥2 − αn∥un−1 − ξ∗∥2 + αn(1 + αn)∥un − un−1∥2.
(3.24)
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From the value of un+1, we achieve

∥un+1 − ξn∥2 = ∥un+1 − un − αn(un − un−1)∥2

= ∥un+1 − un∥2 + α2
n∥un − un−1∥2 − 2αn⟨un+1 − un, un − un−1⟩

(3.25)

≥ ∥un+1 − un∥2 + α2
n∥un − un−1∥2 − 2αn∥un+1 − un∥∥un − un−1∥

≥ ∥un+1 − un∥2 + α2
n∥un − un−1∥2 − αn∥un+1 − un∥2

− αn∥un − un−1∥2

= (1− αn)∥un+1 − un∥2 + (α2
n − αn)∥un − un−1∥2. (3.26)

Thus, the expression (3.23) with (3.24) and (3.26) implies that

∥un+1 − ξ∗∥2 + 4L1λn+1∥un+1 − vn∥2

≤ (1 + αn)∥un − ξ∗∥2 − αn∥un−1 − ξ∗∥2 + αn(1 + αn)∥un − un−1∥2

− 1

2
(1− 2L2λn − 4L1λn)∥un+1 − un∥2 + 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2

− (1− αn)∥un+1 − un∥2 − (α2
n − αn)∥un − un−1∥2 + ∥un+1 − un∥2 (3.27)

≤ (1 + αn)∥un − ξ∗∥2 − αn∥un−1 − ξ∗∥2 + 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2

− (
1

2
− L2λn − 2L1λn − αn)∥un+1 − un∥2 + 2αn∥un − un−1∥2 (3.28)

≤ (1 + αn+1)∥un − ξ∗∥2 − αn∥un−1 − ξ∗∥2 + 4L1λn∥un − vn−1∥2 − 2γλn∥vn − ξ∗∥2

− ρn∥un+1 − un∥2 + ζn∥un − un−1∥2, (3.29)

where

ρn =
(1
2
− L2λn − 2L1λn − αn

)
and ζn = 2αn. Next, we substitute

Ωn = ∥un − ξ∗∥2 − αn∥un−1 − ξ∗∥2 + 4L1λn∥un − vn−1∥2.

From the above substitution the Expression (3.29) becomes

Ωn+1 ≤ Ωn − 2γλn∥vn − ξ∗∥2 − ρn∥un+1 − un∥2 + ζn∥un − un−1∥2

≤ Ωn − ρn∥un+1 − un∥2 + ζn∥un − un−1∥2.
(3.30)

Furthermore, we assume that

Πn = Ωn + ζn∥un − un−1∥2.

It follows from above expression and (3.30) such that

Πn+1 −Πn = −(ρn − ζn+1)∥un+1 − un∥2, (3.31)

continue to follows the above expression and compute

ρn − ζn+1 =
1

2
− L2λn − 2L1λn − αn − 2αn+1

≥ 1

2
− L2λn − 2L1λn − 3α

=
1

2
− λn(L2 + 2L1)− 3α.

(3.32)



472 Thai J. Math. Vol. 22 (2024) /P. Yordsorn and H. Rehman

Since λn → 0, there is N0 ∈ N, gives that

0 < λn <
1
2 − 3α

L2 + 2L1
, ∀n ≥ N0.

From above fact we have

ρn − ζn+1 ≥ 0, for all n ≥ N0. (3.33)

Expression (3.31) and (3.33) implies that

Πn+1 −Πn = −δ∥un+1 − un∥2 ≤ 0, n ≥ N0, for some δ ≥ 0. (3.34)

The above implies that the sequence {Πn} is non-increasing for n ≥ N0. By the value of
Πn, we achieve

∥un − ξ∗∥2 ≤ Πn + αn∥un−1 − ξ∗∥2

≤ ΠN0 + α∥un−1 − ξ∗∥2

≤ · · · ≤ ΠN0
(αn−N0 + · · ·+ 1) + αn−N0∥uN0

− ξ∗∥2

≤ ΠN0

1− α
+ αn−N0∥uN0 − ξ∗∥2.

(3.35)

Similarly, the value of Πn+1 and by above expression, we have

−Πn+1 ≤ αn+1∥un − ξ∗∥2

≤ α∥un − ξ∗∥2

≤ α
ΠN0

1− α
+ αn−N0+1∥uN0

− ξ∗∥2

≤ α
ΠN0

1− α
+ ∥uN0

− ξ∗∥2. (3.36)

It follows from (3.34) and (3.36) that

δ

k∑
n=N0

∥un+1 − un∥2 ≤ ΠN0 −Πk+1

≤ ΠN0
+ α

ΠN0

1− α
+ ∥uN0

− ξ∗∥2

≤ ΠN0

1− α
+ ∥uN0

− ξ∗∥2. (3.37)

Sending k → ∞ in (3.37) implies that∑
∥un+1 − un∥2 < +∞ implies lim

n→∞
∥un+1 − un∥ = 0. (3.38)

From (3.25) and (3.38) we get

∥un+1 − ξn∥ → 0, as n → ∞. (3.39)

The expression (3.36) also implies that

−Ωn+1 ≤ α
ΠN0

1− α
+ ∥uN0

− ξ∗∥2 + ζn+1∥un+1 − un∥2. (3.40)
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Furthermore, the expression (3.22) and (3.24) for n ≥ N0, we have(
1− 2L2λn − 4L1λn

)[
∥un+1 − vn∥2 + ∥un − vn∥2

]
≤ Ωn − Ωn+1 + α(1 + α)∥un − un−1∥2 + ∥un+1 − un∥2.

(3.41)

Now, we fix a number a natural number k ≥ N0, and consider the above inequality for
all number N0, N0 + 1, . . . , k. Summarizing using (3.40), we obtain(

1− 2L2λn − 4L1λn

) k∑
n=N0

[
∥un+1 − vn∥2 + ∥un − vn∥2

]

≤ ΩN0 − Ωk+1 + α(1 + α)

k∑
n=N0

∥un − un−1∥2 +
k∑

n=N0

∥un+1 − un∥2

≤ ΩN0
+ α

ΠN0

1− α
+ ∥uN0

− ξ∗∥2 + ζk+1∥uk+1 − uk∥2

+ α(1 + α)

k∑
n=N0

∥un − un−1∥2 +
k∑

n=N0

∥un+1 − un∥2

(3.42)

sending k → ∞, gives that∑
n

∥un+1 − vn∥2 < +∞, and
∑
n

∥un − vn∥2 < +∞, (3.43)

and

lim
n→∞

∥un+1 − vn∥ = lim
n→∞

∥un − vn∥ = 0. (3.44)

By using above definitions we can easily infer the following.

lim
n→∞

∥un − vn∥ = lim
n→∞

∥un − ξn∥ = lim
n→∞

∥vn−1 − vn∥ = 0. (3.45)

Furthermore, the expression (3.27) with (3.38), (3.43) and Lemma 2.5, implies that

lim
n→∞

∥un − ξ∗∥ = l. (3.46)

The expression (3.45) gives that

lim
n→∞

∥ξn − ξ∗∥ = lim
n→∞

∥vn − ξ∗∥ = l. (3.47)

Now, we are showing that sequence {un} converges strongly to ξ∗. The condition on λn

for each n ≥ N0, and the following is still holds (even when αn = 0)

0 < λn <
1

2L2 + 4L1
, ∀n ≥ N0.

It follows from above expression and Lemma 3.5, we obtain

2γλn∥vn − ξ∗∥2 ≤ ∥ξn − ξ∗∥2 − ∥un+1 − ξ∗∥2 + 4L1λn∥un − vn−1∥2

+ ∥un+1 − un∥2, ∀n ≥ N0.

From the expression (3.24) and (3.47) implies that

2γλn∥vn − ξ∗∥2 ≤ −∥un+1 − ξ∗∥2 + (1 + αn)∥un − ξ∗∥2 − αn∥un−1 − ξ∗∥2

+ αn(1 + αn)∥un − un−1∥2 + 4L1λn∥un − vn−1∥2 + ∥un+1 − un∥2
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≤ (∥un − ξ∗∥2 − ∥un+1 − ξ∗∥2) + 2α∥un − un−1∥2 + ∥un+1 − un∥2

+ (αn∥un − ξ∗∥2 − αn−1∥un−1 − ξ∗∥2) + 4L1λn∥un − vn−1∥2.
(3.48)

From the above expression with (3.38) and (3.43) implies that

k∑
n=N0

2γλn∥vn − ξ∗∥2

≤ (∥uN0
− ξ∗∥2 − ∥uk+1 − ξ∗∥2) + 2α

k∑
n=N0

∥un − un−1∥2 +
k∑

n=N0

∥un+1 − un∥2

+ (αk∥uk − ξ∗∥2 − αN0−1∥uN0−1 − ξ∗∥2) + 4L1

2L2 + 4L1

k∑
n=N0

∥un − vn−1∥2

≤ ∥uN0
− ξ∗∥2 + α∥uk − ξ∗∥2 + 2α

k∑
n=N0

∥un − un−1∥2

+
4L1

2L2 + 4L1

k∑
n=N0

∥un − vn−1∥2 +
k∑

n=N0

∥un+1 − un∥2

≤ M,

for M ≥ 0. This means that

∞∑
n=1

2γλn∥vn − ξ∗∥2 < +∞. (3.49)

By Lemma 2.3 and (3.49) such that

lim inf ∥vn − ξ∗∥ = 0. (3.50)

Finally, by (3.46) and (3.50) implies that limn→∞ ∥un − ξ∗∥ = 0. This completes the
proof.

4. Numerical Experiments

We suppose that in a Nash-Cournot oligopolistic model of equilibrium there are n
companies [3, 11]. Let u be a vector whose entry ui denotes the volume of the products
produced by the company i. Next, we consider that price pi(s) is a decreasing function
of s =

∑n
i=1 ui such that pi(s) = αi − βis, while αi, βi > 0. Thus, the profits contributed

by the company i is given by Fi(u) = pi(s)ui − ci(ui) while ci(ui) is the tax and fee for
contributing ui. Let Ci = [ui,min, ui,max] is the policy set of firm i. Therefore the action
set of the model is C = C1×···×Cn. In fact, every company aims to achieve maximum its
earnings. The standard approach towards this model is premised on the renowned Nash
equilibrium idea. We’re recalling that point ξ∗ ∈ C = C1 × · · · × Cn is an equilibrium
point of the model if

Fi(ξ
∗) ≥ Fi(ξ

∗[xi]),∀xi ∈ Ci, ∀i = 1, ..., n,
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while ξ∗[ui]. It continues to stand for the vector acquired from ξ∗ by replacing ξ∗i with ui.
By taking F (u, v) = Ψ(u, v)−Ψ(u, u) with Ψ(u, v) = −

∑n
i=1 Fi(u[vi]). The challenge of

seeking a Nash equilibrium point of the model could be developed as continues to follow:

Determine ξ∗ ∈ C such that ∀ v ∈ C,F (ξ∗, v) ≥ 0.

Herein, the bifunction F convert into the following way:

F (u, v) = ⟨Pu+Qv + q, v − u⟩,
while q ∈ Rn and P,Q are matrices of order n such that Q is symmetric positive semi-
definite and Q− P is symmetric negative semi-definite. However, unlike [30–32]. Due to
Q− P , if F (u, v) ≥ 0, we have

F (v, u) ≤ F (v, u) + F (u, v)

= ⟨Pv +Qu+ q, u− vi⟩+ ⟨Pu+Qv + q, v − ui⟩
= ⟨(P −Q)v + (Q− P )u, u− vi⟩
= (u− v)T (Q− P )(u− v)

≤ −γ∥u− v∥2

where γ > 0. This proves that f is strongly pseudomonotone.

We write our algorithm using Matlab programs (Matlab R2018 b) and computed on
a PC Intel(R) Core(TM) i7 @ 1.80 GHz, Ram 8.00 GB. The feasible set C = {u ∈ R5 :
−5 ≤ ui ≤ 5}, is a box inside R5, the vector q is produced randomly and taking values
in the closed interval [−m,m] and P,Q randomly generated. Thus, for our experiment
Algorithm 1 used and it uses four sets of stepsize sequences {λn} which are define below:

(I) λn = 1
(n+2)p , p ∈ {0.3, 0.5, 0.8, 1.0};

(II) λn = 1
logp(n+3) , p ∈ {0.6, 1.0, 3.0, 5.0};

(III) λn = 1
(n+1) logp(n+3) , p ∈ {0.6, 1.0, 3.0, 5.0};

(IV) λn = logp(n+1)
(n+1) , p ∈ {0.1, 0.5, 1.0, 4.0}.

All sequence {λn} are to meet the conditions (K1) and (K2). The behaviour of these four
classes of stepsize λn defined above for the first 200 iterations you can observe in Figures 1.
Next, Figures 2-9 shows the numerical results shows the relation of error term with number
of iteration and elapsed time in seconds for Algorithm 1, for the 200 first iterations, using
the stepsize sequences {λn} in class (I), (II), (III) and (IV), respectively. Actually, we
want to see that what is the impact of stepsize sequence {λn} on the convergence of the
iterative sequence. We give the following observation regarding our concern.

(i) We can see that the convergence of rate iterative sequence {un} developed by
Algorithm 1, strictly depends on the convergence rate of the stepsize sequence.

(ii) The stepsize sequence {λn} which are slowly convergent has a great effect on
Dn, for early iteration Dn going to decrease quickly, but after that, it’s going to
unstable.

(iii) The stepsize sequence {λn} which are fast convergent to zero, the error term
looks more stable for all iterations.

Furthermore, Figures 10-17 shows the comparison between the Algorithm 1, Algorithm
2 [33] and Algorithm 3 [33] in the term of number of iterations and execution time with
respect to error term using the stepsize sequence {λn}.
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(a) λn = 1
(n+2)p (b) λn = 1

logp(n+3)

(c) λn = 1
(n+1) logp(n+3) (d) λn =

logp(n+1)
(n+1)

Figure 1. The behaviour of stepsize sequence λn for the first 200 iter-
ations.
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Figure 2. The behaviour of Algorithm 1 using λn = 1
(n+2)p .
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Figure 3. The behaviour of Algorithm 1 using λn = 1
(n+2)p .
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Figure 4. The behaviour of Algorithm 1 using λn = 1
logp(n+3) .
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Figure 5. The behaviour of Algorithm 1 using λn = 1
logp(n+3) .
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Figure 6. The behaviour of Algorithm 1 using λn = 1
(n+1) logp(n+3) .
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Figure 7. The behaviour of Algorithm 1 using λn = 1
logp(n+3) .
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Figure 8. The behaviour of Algorithm 1 using λn = logp(n+1)
(n+1) .
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Figure 9. The behaviour of Algorithm 1 using λn = logp(n+1)
(n+1) .
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Figure 10. The comparison of algorithms using the stepsize sequence

λn =
1

n+ 2
.
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Figure 11. The comparison of algorithms using the stepsize sequence

λn =
1

n+ 2
.
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Figure 12. The comparison of algorithms using the stepsize sequence

λn =
1

(n+ 2)0.8
.
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Figure 13. The comparison of algorithms using the stepsize sequence

λn =
1

(n+ 2)0.8
.
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Figure 14. The comparison of algorithms using the stepsize sequence

λn =
1

(n+ 2)0.5
.
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Figure 15. The comparison of algorithms using the stepsize sequence

λn =
1

(n+ 2)0.5
.
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Figure 16. The comparison of algorithms using the stepsize sequence

λn =
1

(n+ 2)0.3
.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-8

10-6

10-4

10-2

100

102

Figure 17. The comparison of algorithms using the stepsize sequence

λn =
1

(n+ 2)0.3
.



482 Thai J. Math. Vol. 22 (2024) /P. Yordsorn and H. Rehman

Acknowledgments

The first author was supported by Rajabhat Rajanagarindra University (RRU).

References

[1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium
problems, The Mathematics Student 63 (1994) 123–145.

[2] M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems,
Journal of Optimization Theory and Applications 90 (1) (1996) 31–43.

[3] F. Facchinei, J.S. Pang, Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Springer Series in Operations Research, Springer-Verlag, New York,
2003.

[4] B. Martinet, Regularisation d inequations variationnelles par approximations suc-
cessives, Revue Francaise D automatique, Informatique, Recherche Operationnelle
(1970) 154–158.

[5] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Jour-
nal on Control and Optimization 14 (1976) 877–898.

[6] A. Moudafi, Proximal point algorithm extended to equilibrium problem, Journal of
Natural Geometry (1999) 91–100.

[7] I.V. Konnov, Application of the proximal point method to nonmonotone equilibrium
problems, Journal of Optimization Theory and Applications 119 (2003) 317–333.

[8] G. Cohen, Auxiliary problem principle and decomposition of optimization problems,
Journal of Optimization Theory and Applications 32 (3) (1980) 277–305.

[9] G. Mastroeni, On auxiliary principle for equilibrium problems, in: P. Daniele, F. Gi-
annessi, A. Maugeri (eds), Equilibrium Problems and Variational Models, Nonconvex
Optimization and Its Applications, vol. 68, Springer (2003), 289–298.

[10] G.M. Korpelevich, An extragradient method for finding saddle points and for other
problems, Ekonomika i Matematicheskie Metody (1976) 747–756.

[11] T.D. Quoc, L.D. Muu, V.H. Nguyen, Extragradient algorithms extended to equilib-
rium problems, Optimization 57 (2008) 749–776.

[12] S.D. Flam, A.S. Antipin, Equilibrium programming and proximal like algorithms,
Mathematical Programming 78 (1997) 29–41.

[13] S.I. Lyashko, V.V. Semenov, A new two-step proximal algorithm of solving the prob-
lem of equilibrium programming, in: B. Goldengorin (eds), Optimization and Its
Applications in Control and Data Sciences, Springer Optimization and Its Applica-
tions, vol. 115, Springer (2016), 315–325.

[14] L.D. Popov, A modification of the Arrow-Hurwicz method for search of saddle points,
Mathematical Notes of the Academy of Sciences of the USSR 28 (1980) 845–848.

[15] B.T. Polyak, Some methods of speeding up the convergence of iteration methods,
USSR Computational Mathematics and Mathematical Physics 4 (5) (1964) 1–17.

[16] A. Adamu, A.A. Adam, Approximation of solutions of split equality fixed point
problems with applications, Carpathian J. Math. 37 (3) (2021) 381–392.

[17] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
inverse problems, SIAM Journal on Imaging Sciences 2 (1) (2009) 183–202.



Modified Popov’s Extragradient-like Method ... 483

[18] C.E. Chidume, A. Adamu, M.O. Nnakwe, Strong convergence of an inertial algo-
rithm for maximal monotone inclusions with applications, Fixed Point Theory and
Applications 2020 (2020) Article no. 13.

[19] P. Yordsorn, P. Kumam, H. Rehman, Modified two-step extragradient method
for solving the pseudomonotone equilibrium programming in a real Hilbert space,
Carpathian J. Math 36 (2) (2020) 313–330.

[20] P. Yordsorn, P. Kumam, H. Rehman, A.H. Ibrahim, A weak convergence self-adaptive
method for solving pseudomonotone equilibrium problems in a real Hilbert space,
Mathematics (2020) 8 (7) 1165.

[21] J. Deepho, P. Kumam, P. Sukprasert, Viscosity approximation methods for split equi-
librium problem and fixed point problem for finite family of nonexpansive mappings
in Hilbert spaces, Prog. Appl. Sci. Tech. 11 (1) (2021) 25–37.

[22] H. Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The iner-
tial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium
problems, Symmetry 12 (3) (2020) 463.

[23] H. Rehman, P. Kumam, I.K. Argyros, N.A. Alreshidi, W. Kumam, W. Jirakitpuwa-
pat, A self-adaptive extra-gradient methods for a family of pseudomonotone equi-
librium programming with application in different classes of variational inequality
problems, Symmetry 12 (4) (2020) 523.

[24] H. Rehman, P. Kumam, I.K. Argyros, W. Deebani, W. Kumam, Inertial extra-
gradient method for solving a family of strongly pseudomonotone equilibrium prob-
lems in real Hilbert spaces with application in variational inequality problem, Sym-
metry 12 (4) (2020) 503.

[25] J.V. Tiel, Convex Analysis, John Wiley, 1984.

[26] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, Springer, New York, 2011.

[27] E.U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptot-
ically pseudocontractive mapping in real Banach space, Journal of Mathematical
Analysis and Applications 321 (2) (2006) 722–728.

[28] K.K. Tan, H.K. Xu, Approximating fixed points of non-expansive mappings by the
Ishikawa iteration process, Journal of Mathematical Analysis and Applications 178
(1993) 301–308.

[29] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone opera-
tors via discretization of a nonlinear oscillator with damping, Set-Valued Analysis 9
(1) (2001) 3–11.

[30] D.V. Hieu, Halpern subgradient extragradient method extended to equilibrium prob-
lems, RACSAM 111 (2017) 823–840.

[31] D.V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems,
Math. Model. Anal. 21 (4) (2016) 478–501.

[32] D.V. Hieu, An extension of hybrid method without extrapolation step to equilibrium
problems, J. Ind. Manag. Optim. 13 (4) (2017) 1723–1741.

[33] D.V. Hieu, New extragradient method for a class of equilibrium problems in Hilbert
spaces, Applicable Analysis 97 (5) (2018) 811–824.


	Introduction
	Preliminaries
	Main Results
	Numerical Experiments

