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Abstract In this paper, the author proposes an optimal control model describing the containment of an

outbreak used for determining an optimal vaccination schedule where the vaccination supply is limited

within a given time period. The model also takes into account different age groups, which incorporates

varying contact rates within and across the groups. The optimality is provided using the Pontryagin

maximal principle via an adjoint system. A numerical example is then presented based on the age-

specific contact behaviors and dermographic data of Bangkok to illustrate how the model can be used to

obtain the optimal schedule.
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1. Introduction

An infectious diseases, also known as a transmissible disease, is caused by organisms
for example bacteria, viruses, fungi or parasites. There are different types of infectious
diseases, some infectious diseases can be passed directly from one person to another while
some are transmitted by insects or other vector animals. Many infectious diseases can be
prevented by vaccines such as influenza, chickenpox etc.

In late 2019, the world is facing a global pandemic. The first confirmed case started
in Wuhan, China, then the Chinese government announced severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) variants, known more commonly as the coronavirus
disease 2019 (COVID-19) [7, 15]. COVID-19 rapidly spreading all countries around the
world. The World Health Organization (WHO) informed about the COVID-19 is an in-
fectious disease caused by a newly discovered coronavirus and could spread from person
to person [6]. As of today, most countries around the world have been affected from
COVID-19. In December of 2020, the Alpha variant was detected in the UK [5] and in
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middle of 2021, So many countries cannot control the COVID-19, the Delta variant be-
ing the most concerning variant so far because almost all of countries reinfect with delta
variant after recovery from breakthrough infection by alpha variant.

To effectively slow down and reduce infection rate of the SARS-CoV-2 pandemic, so
many countries have locked down since the end of January 2020. Other means of pro-
tection include wearing a mask, keeping social distance and increasing oneself’s hygiene.
However, these approaches are just temporary procedures to confront and contain the
dreadful disease with enormous direct and indirect costs. As of now, one have observe
the massive impacts of such harsh measures including global economical collapse, rise in
poverty, human rights violations, mental health problems, big halts in social and aca-
demic activities, etc. We have also seen a huge improvement over the recent period where
vaccination enters the stage and helps reducing the severity of the symptoms as well as
the death rate. It was also obvious that the availability of the vaccine is never sufficient
to the needs and so many people would need to wait for their turn to get vaccinated.

With the above motivation, the author propose a systematic study to determine an
optimal vaccination schedule, under the supply limitation constraint in mind, using an
optimal control technique attached to an epidemiological model that takes into account
the age-group strucutres. This special structure is adopted as we perceive different ac-
tivities and behaviors as well as the difference in how the body reacts to the disease in
people from different age groups. The general analysis regarding the stability, reproduc-
tion number, and the state-adjoint dynamics were carried out using eigenvalue criteria,
next-generation method, and Pontryagin maximal principle. We also simulate our model
numerically the COVID-19 situation with age-specific dataset in Thailand and discuss
the resulting simulations.

2. Model Description

2.1. Epidimiological Dynamics

The infectious disease model is a mathematical tool that has been widely used to study
the mechanisms by which a disease spreads, to predict the future course of an outbreak
and to evaluate strategies to control an epidemic [8]. We consider the infectious diseases
model based on [9], as described visually by Figure 1 and analytically by (2.1). In our
model, when a susceptible individual (in S) got exposed to the disease, he/she will be
moved to exposed state E, and then to symptomatic (I) or asymptomatic (A) infectious
states. An asymptomatic infected individual is assumed to recover (the state R) by
themselves, while a symptomatic infected individual would need to go to a quarantine
(Q), before recovering (going to R) or dying (going to D). Every recovered individuals
would eventually lose their immunity and would again become susceptible (S). We also
introduce a vaccinated state V , where a vaccinated induvidual can still get the disease,
but with only a mild symptom, similar to those in state A. This also means that the
affected vaccinated individual would be able to recover by oneself. In this paper, we
assume that the vaccinated individuals would not lose their protections over time, which
can also be corresponded to the scenario where the vaccinated ones would get their next
doses iteratively. This comparmental structure is then repeated in all the age groups. For
simplicity, we would adopt the following four age groups in our model: (1) 0-19 years, (2)
20-39 years, (3) 40-59 years and (4) 60+ years. The different age-group structure can also
be adopted and analyzed with the same technique presented in the sequel of this paper.
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Figure 1. Infectious diseases model.

From Figure 1, the following dynamical system is derived:

dSi

dt
= µRi − εuSi −

β1

N

K∑
j=1

CijSi(Aj +Av
j + Ij) (2.1a)

dEi

dt
= −σEi +

β1

N

K∑
j=1

CijSi(Aj +Av
j + Ij) (2.1b)

dIi

dt
= ηiσEi − αIi (2.1c)

dAi

dt
= (1− ηi)σEi − γAi − κAi (2.1d)

dQi

dt
= αIi − δiωQi + κAi (2.1e)

dRi

dt
= γAi + (1− δi)ωQi − µRi (2.1f)

dVi

dt
= µRv

i + εuSi −
β2

N

K∑
j=1

CijVi(Aj +Av
j + Ij) (2.1g)

dEv
i

dt
= −σEv

i +
β2

N

K∑
j=1

CijVi(Aj +Av
j + Ij) (2.1h)

dAv
i

dt
= σEv

i − γAv
i (2.1i)

dRv
i

dt
= γAv

i − µRv
i (2.1j)

dDi

dt
= δiωQi (2.1k)
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2.2. Limited Vaccination Supply Scenario

To introduce a supply limit constraint of avalilable vaccines, we need to introduce a
virtual state W describing the total number of individuals that have been vaccinated so
far. If X ≥ 0 denotes the number of available vaccines during the period [0, T ], we may
formulate the dynamics of W as well as their boundary conditions by

dW

dt
= (S1(t) + S2(t) + S3(t) + S4(t))u(t) (2.2a)

W (0) = 0 (2.2b)

W (T ) ≤ X. (2.2c)

This state should be added to the system (2.1) to form a correct dynamics in the limited
vaccination supply scenario. Also note that we allows the leftover vaccine stocks. This
is explainable as the cost of vaccination (u2 in the integrand) may be overcame by the
already small affected cases.

2.3. Optimal Control Model of Vaccination Schedule

A dynamical system, like the one we used to describe the states of infection of a disease,
is a system that follows some particular rules of the dynamics given by ODEs. Hence,
we cannot control the states directly to meet our preference. However, this can be done
indirectly via the control variable. Optimal control was originally an engineering topic
that enables the optimal selection of control among the vastly available choices in order
to get a desirable states (see e.g. [2, 16–18]). The technique is mostly popular with the
electrical engineers for several reasons. One may think of the effect of a control as a
conditioning which will drive the systems to produce the best outcome. Several events
in systems biology can be affected by the human activities and decisions [10–12]. The
authors consider control the spread of an infectious disease which can be achieved through
various vaccination strategies. We emphasize the optimal control method with disease
model to present the vaccination schedule when vaccination supplies are limited. We
used the mathematical model to explain the behaviour of infectious diseases and show
the outcome of an epidemic. The modelling can also predict future growth patterns,
which can help public health.

In our model (2.1), u = u(t) denotes the percentage of susceptible is individuals being
vaccinated per unit of time. If u = 0, then no vaccination is done and u = 1 indicates
that all susceptible population is vaccinated [4]. We consider in this paper an optimal
vaccination schedule, which explains the rate of vaccination over the time period [0, T ].
The following optimal control problem is then used to derive an optimal vaccination
schedule:

min
u

J [u] :=

∫ T

0

a

K∑
i=1

(Ii(t) +Ai(t) +Qi(t)) + u2(t)dt

s.t. (2.1a)–(2.1k) and (2.2a)–(2.2c),

(2.3)

where a > 0 is a weight constant for the number of sick individuals. If the weight a is close
to 0, then we expect to see less vaccination. Otherwise, the vaccination rate increases
with the higher value of a.
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3. Model Analysis

3.1. Basic Reproduction Number

In this section, we calculate the basic reproduction number or R0 which is the number
of secondary infections occurring in population. This number represents the number of
individuals that could be infected from a single infectious individual in a population,
hence determining the spreadability of the disease. In epidemiological modelling, the
next-generation matrix method is used to derive R0 for a compartmental model of the
spread of infectious diseases.

To find R0, we use the formula

R0 = ρ(FV−1), (3.1)

where ρ denotes the spectral radius of the corresponding matrix. Here, the matrices F
and V are called the transmission and transition parts, respectively. The transmission
part describes the newly infected while the transition part describes changing of states.
The product FV−1 is then called the next-generation matrix.

For our model (2.1), we may compute the matrices F and V by

F =



∂fE,i

∂Ei

∂fE,i

∂Ii

∂fE,i

∂Ai

∂fE,i

∂Ev
i

∂fE,i

∂Av
i

∂fI,i

∂Ei

∂fI,i

∂Ii

∂fI,i

∂Ai

∂fI,i

∂Ev
i

∂fI,i

∂Av
i

∂fA,i

∂Ei

∂fA,i

∂Ii

∂fA,i

∂Ai

∂fA,i

∂Ev
i

∂fA,i

∂Av
i

∂fEv,i

∂Ei

∂fEv,i

∂Ii

∂fEv,i

∂Ai

∂fEv,i

∂Ev
i

∂fEv,i

∂Av
i

∂fAv,i

∂Ei

∂fAv,i

∂Ii

∂fAv,i

∂Ai

∂fAv,i

∂Ev
i

∂fAv,i

∂Av
i


and

V =



∂vE,i

∂Ei

∂vE,i

∂Ii

∂vE,i

∂Ai

∂vE,i

∂Ev
i

∂vE,i

∂Av
i

∂vI,i

∂Ei

∂vI,i

∂Ii

∂vI,i

∂Ai

∂vI,i

∂Ev
i

∂fI,i

∂Av
i

∂vA,i

∂Ei

∂vA,i

∂Ii

∂vA,i

∂Ai

∂vA,i

∂Ev
i

∂fA,i

∂Av
i

∂vEv,i

∂Ei

∂vEv,i

∂Ii

∂vEv,i

∂Ai

∂vEv,i

∂Ev
i

∂vEv,i

∂Av
i

∂vAv,i

∂Ei

∂fAv,i

∂Ii

∂vAv,i

∂Ai

∂vAv,i

∂Ev
i

∂vAv,i

∂Av
i


,
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where f and v are given by

f =


fE,i

fI,i
fA,i

fEv,i

fAv,i

 =



β1

N

∑K
j=1 CijSi(Aj +Av

j + Ij)

0
0

β2

N

∑K
j=1 CijVi(Aj +Av

j + Ij)

0


and

v =


vE,i

vI,i
vA,i

vEv,i

vAv,i

 =


σEi

αIi − ηiσEi

γAi + κAi + (1− ηiσEi)
σEv

i

γAv
i − σEv

i

 .

The next-generation matrix is then computed via (3.1), yielding

FV−1 =
[
aij
]
,

where the entries are given by

aij =



Ci,j−4b j−1
4 cSiβ1bj

N
where i ≤ 4

Ci−12,j−4b j−1
4 cVi−12β2bj
N

where 13 ≤ i ≤ 16

0 otherwise.

and

bj =



(
ηj

α
− (ηj − 1)

γ + κ

)
where j ≤ 4

1

α
where 5 ≤ j ≤ 8

1

γ + κ
where 9 ≤ j ≤ 12

1

γ
where j ≥ 13.

Since our system is large, the general form of R0 is omitted. To this end, we resort to
computing the reproduction number only in our selected situation, where the parameters
are given as in Table 1.

R0 = ρ(FV−1)

= 4.342
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Table 1. Parameter Values

Parameter Description Value Reference
β1 The effective contact rate ∼ 1 [1]
β2 The effective contact rate ∼ 1 [1]
1/γ Recovery period 21 Days [3]
1/α Pre-isolation infection period 4.6 Days [3]
1/ω Post-isolation recovery period 16.4 Days [3]
1/µ Immunity duration 1 year Estimated
1/σ Latent period 5.1 Days [13]

κ Transmission rate state A transfer to Q 0.2 Day−1 Estimated
η Proportion of symptomatic infections Age-specific [21]
δ Proportion of disease mortality Age-specific [14]

3.2. Optimal Control

To solve the optimal control model (2.3), we exploit the well-known Pontryagin’s Max-
imum Principle (see e.g. [19]) where we state as follows for the convenience of the readers.

Theorem 3.1. If u∗(t) and x∗(t) are optimal for problem (2.3), then there exists variable
λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)),

at each time, for all u with values in U1 where the Hamiltonian H is defined by

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and

λ′(t) = −∂H(t, x(t), u(t), λ(t))

∂x
λ(t) = 0.

Optimal Control method will be used for controlling the spread of an infectious disease
with vaccination strategies. This is described by the problem (2.3). Using Pontryagin’s
Maximum Principle (Theorem 3.1) to find the optimal vaccination schedule with limited
supply, we get the Hamiltonian in the form

H = a

K∑
i=1

(Ii(t) +Ai(t) +Qi(t)) + u2

+

K∑
i=1

λSi

µRi − εuSi −
β1

N

K∑
j=1

CijSi(Aj +Av
j + Ij)


+

K∑
i=1

λEi

−σEi +
β1

N

K∑
j=1

CijSi(Aj +Av
j + Ij)


+

K∑
i=1

λIi(ηiσEi − αIi) +

K∑
i=1

λAi
((1− ηi)σEi − γAi − κAi)
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+

K∑
i=1

λQi
(αIi − δiωQi + κAi) +

K∑
i=1

λRi
(γAi + (1− δi)ωQi − µRi) (3.2)

+

K∑
i=1

λVi

µRv
i + εuSi −

β2

N

K∑
j=1

CijVi(Aj +Av
j + Ij)


+

K∑
i=1

λEv
i

−σEv
i +

β2

N

K∑
j=1

CijVi(Aj +Av
j + Ij)


+

K∑
i=1

λAv
i
(σEv

i − γAv
i ) +

K∑
i=1

λRv
i
(γAv

i − µRv
i ) +

K∑
i=1

λDi(δiωQi)

+ λWu

K∑
i=1

Si.

The values λSi
, λEi

, λIi , λAi
, λQi

, λDi
, λRi

, λVi
, λEv

i
, λAv

i
, λRv

i
and λW are the

associated adjoints for the states Si, Ei, Ii, Ai, Qi, Di, Ri, Vi, E
v
i , Av

i , Rv
i and W ,

respectively. By differentiating the Hamiltonian with respect to each state variable, we
find the differential equation for the associated adjoints in the following

λ′Si
= λSi

εu+
β1

N

K∑
j=1

Cij(Aj +Av
j + Ij)

− λVi
(εu)

− λEi

β1
N

K∑
j=1

Cij(Aj +Av
j + Ij)

 (3.3a)

λ′Ei
= λEi

(σ)− λAi
((1− ηi)σ)− λIi(ηiσ) (3.3b)

λ′Ii = −a+ λIiα− λQi
α+ (λSi

− λEi
)
β1

N
CiiSi

+ (λVi
− λEv

i
)
β2

N
CiiVi (3.3c)

λ′Ai
= −a+ λAi(γ + κ)− λQi(κ)− λRi(γ) (3.3d)

+ (λSi − λEi)
β1
N
CiiSi + (λVi − λEv

i
)
β2
N
CiiVi (3.3e)

λ′Qi
= −a+ λQi(δiω)− λRi(ω(1− δi))− λDi(δiω) (3.3f)

λ′Ri
= λRi

µ (3.3g)

λ′Vi
= λVi

β2
N

K∑
j=1

Cij(Aj +Av
j + Ij)


− λEv

i

β2
N

K∑
j=1

Cij(Aj +Av
j + Ij)

 (3.3h)

λ′Ev
i

= λEv
i
(σ)− λAv

i
(σ) (3.3i)
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λ′Av
i

= λAv
i
(γ)− λRv

i
(γ) + (λSi

− λEi
)
β1
N
CiiSi − (λVi

− λEv
i
)
β2
N
CiiVi (3.3j)

λ′Rv
i

= λRv
i
(µ) (3.3k)

λ′Di
= 0 (3.3l)

λ′W = 0. (3.3m)

Except λW , all the other adjoint variables, denoted generically by λ, are attached with
the transversality condition λ(T ) = 0.

4. Numerical Simulations and Discussions

In this section, we simulate our model numerically to illustrate how the model works in
general. We simulate using the contact matrix between different age groups in Thailand
taken from [20] and the initial population data is taken from the dermographic data
provided by National Statistical Office of Thailand. We take the time period of 180 days,
which is related to an accepted effective period of any COVID-19 vaccines. We assume
that 1,600,000 doses of vaccines are available within this time span.

The optimal control model (2.3) is solved using the forward-backward sweeping tech-
nique, which is quite a standard approach to solve an optimal control problem. The
approach solves alternatively the state and adjoint variables through the state dynamical
system (2.1) and the adjoint dynamical system (3.3). The following Figure 3 shows the
result of our simulation.

From our simulations, it turns out that the vaccination should take place at full capacity
in the early period (in this case it is 20 percent of the susceptible individuals) and then a
quick ramp down means the that we may halt the program almost immediately. This can
by understood also by looking at the number of individuals in other states keeping in mind
that only susceptible individuals are allowed to get the vaccine. Particularly, one may
observe that the number of exposed, infected (symptomatically and asymptomatically)
and vaccinated individuals are rising up fast. This results in a quick decreasing in the
population eligible to the vaccination.

Another important observation from Figure 3 is the difference in state transitions of
different age groups. For instance, the number of individuals in the last age group (age
60+ y.o.) is higher than of the first group (age 0–19 y.o.) but due to their behaviors,
the exposure to the disease after vaccination of the young individuals (first group) are
significantly higer than the old individuals (fourth group). This causes the same trends
for the infected and recovered states after being vaccinated. However, the disease is more
fatal to the old individuals from the fourth group.

It is not against our intuition that the maximum vaccination rate would be preferrable
in order to contain the outbreak. Setting our mind in this direction, our model is helpful
in determining the duration of time that vaciination program is needed. To see this more
clearly, compare the main experimental result in Figure 3 to the Figure 2 below where the
exposure rate β1 is assumed to be 10 times less aggressive. As expected, a shorter and
smaller vaccination program can be launched and less number of vaccination is required.
As a consequence of this simulation, we can spend less money by ordering a smaller stock
to contain an outbreak.
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Finally, we would also like to add a more technical discussion as well. Solving the
adjoint system (3.3) results in λW being a constant function, with some undetermined
value k > 0. In principle, the value k is reversely proportional to the final state W (T ).
The value of k is, in general, then adjusted by hand until W (T ) falls within the scope of
satisfaction.

Figure 2. States of disease of each age groups and optimal vaccination
schedule with β1 adjusted to be 10 times less aggressive (compared to
Figure 3).
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Figure 3. States of disease of each age groups and optimal vaccination
schedule.

5. Conclusion

In this paper, we have proposed an optimal control model for optimal vaccination
schedule paying attention to (1) the limited vaccination supply, (2) the different behaviors
of different age groups, and (3) the post-vaccination infection. It was not unexpected to
see that the vaccination rate would be maximized and get done as rapid as possible until
the immuned population is sufficiently large. Our model is, however, still very helpful in
determining the length of the vaccination program within a given scope of time.
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