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Abstract In this paper, we study existence and uniqueness of solutions for three-point boundary value

problem for Hilfer-Hadamard sequential fractional differential equations, via standard fixed point the-

orems. The existence is proved by Schaefer and Krasnoselskii fixed point theorems as well and Leray-

Schauder nonlinear alternative, while the existence and uniqueness by Banach contraction mapping prin-

ciple. Illustrative examples are also discussed.
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1. Introduction

The fractional calculus has always been an interesting research topic for many years.
This is because, fractional differential equations describe many real world process related
to memory and hereditary properties of various materials more accurately as compared
to classical order differential equations. Fractional differential equations arise in lots of
engineering and clinical disciplines which includes biology, physics, chemistry, economics,
signal and image processing, control theory and so on; see the monographs as [1–8].

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2023 by TJM. All rights reserved.



610 Thai J. Math. Vol. 21 (2023) /U.S. Tshering et al.

Various types of fractional derivatives were introduced among which the following
Riemann-Liouville and Caputo are the most widely used ones.

(1) Riemann-Liouville definition. For n− 1 < α < n, the derivative of u is

RLDαu(t) := DnIn−αu(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1u(s)ds.

(2) Caputo definition. For n− 1 < α < n, the derivative of u is

CDαu(t) := In−αDnu(t) =
1

Γ(n− α)

∫ t

a

(t− s)n−α−1
(
d

ds

)n
u(s)ds.

Both Riemann-Liouville definition and Caputo definition are defined via fractional inte-
gral, the Riemann-Liouville fractional integral, which is defined by

Iαu(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, n− 1 < α < n.

A generalization of derivatives of both Riemann-Liouville and Caputo was given by
R. Hilfer in [9], the known as the Hilfer fractional derivative of order α and a type
β ∈ [0, 1], which interpolates between the Riemann-Liouville and Caputo derivative, since
it is reduced to the Riemann-Liouville and Caputo fractional derivatives when β = 0 and
β = 1, respectively. The Hilfer fractional derivative of order α and parameter β of a
function u is defined by

HDα,βu(t) = Iβ(n−α)DnI(1−β)(n−α)u(t),

where n−1 < α < n, 0 ≤ β ≤ 1, t > a > 0, D =
d

dt
. Some properties and applications

of the Hilfer derivative are given in [10], [11] and references cited therein.
Initial value problems involving Hilfer fractional derivatives were studied by several au-

thors, see for example [12–15] and references therein. Nonlocal boundary value problems
for Hilfer fractional derivative were studied in [16, 17].

Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential frac-
tional differential equations with two point boundary conditions were studied in [18].

In this paper, we study existence and uniqueness of solutions for boundary value
problems for sequential Hilfer-Hadamard fractional differential equations with three-point
boundary conditions,

(HD
α,β
1+ + kHD

α−1,β
1+ )u(t) = f(t, u(t)), 1 < α ≤ 2, t ∈ [1, e], (1.1)

u(1) = 0, u(e) = λu(θ), θ ∈ (1, e), (1.2)

where HD
α,β
1+ is the Hilfer-Hadamard fractional derivative of order α ∈ (1, 2] and type

β ∈ [0, 1], n = 2, γ = α + β(2 − α), γ ∈ [α, 2], k ∈ R+ := [0,∞), λ ∈ R+ \ { 1
(log θ)γ−1 }

and f : [1, e]× R→ R is a given continuous function.
Existence and uniqueness results are established by using classical fixed point theorems.

We make use of Banach’s fixed point theorem to obtain the uniqueness result, while
Schaefer and Krasnoselskii’s fixed point theorem [19] as well nonlinear alternative of
Leray-Schauder type [20] are applied to obtain the existence results for the problem
(1.1)–(1.2).

The paper is constructed as follows: In Section 2 we recall some basic facts needed
in our study. The main results are proved in Section 3. Examples illustrating the main
results are presented in Section 4.
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2. Preliminaries

In this section, some basic definitions, lemmas and theorems are mentioned.

Definition 2.1. (Hadamard fractional integral [2]). The Hadamard fractional integral of
order α ∈ R+ for a function f : [a,∞)→ R is defined as

HI
α
a+f(t) =

1

Γ(α)

∫ t

a

(
log

t

τ

)α−1 f(τ)

τ
dτ, (t > a) (2.1)

provide the integral exists, where log(.) = loge(.).

Definition 2.2. (Hadamard fractional derivative [2]). The Hadamard fractional deriva-
tive of order α > 0, applied to the fuction f : [a,∞)→ R, is defined as follows:

HD
α
a+f(t) = δn(HI

n−α
a+ f(t)), n− 1 < α < n, n = [α] + 1 (2.2)

where δn = (t ddt )
n and [α] denotes the integer part of the real number α.

Definition 2.3. (Hilfer-Hadamard fractional derivative [11]). Let n − 1 < α < n and
0 ≤ β ≤ 1, f ∈ L1(a, b). The Hilfer-Hadamard fractional derivative of order α and tybe
β of f is defined as

(HD
α,β
a+ f)(t) = (HI

β(n−α)
a+ δn HI

(n−α)(1−β)
a+ f)(t)

= (HI
β(n−α)
a+ δn HI

(n−γ)
a+ f)(t); γ = α+ nβ − αβ

= (HI
β(n−α)
a+ HD

γ
a+f)(t),

where HI
(.)
a+ and HD

(.)
a+ is the Hadamard fractional integral and derivative defined by (2.1)

and (2.2), respectively.
The Hilfer-Hadamard fractional derivative may be viewed as interpolating the Hadamard

fractional derivative. Indeed for β = 0 this derivative reduces to the Hadamard fractional
derivative.

We recall the following known theorem by Kilbas et al. [2] which I will use in the
following.

Theorem 2.4 ([2]). Let α > 0, 0 ≤ β ≤ 1, γ = α+ nβ − αβ, n− 1 < γ < n, n = [α] + 1

and 0 < a < b <∞. If f ∈ L1(a, b) and (HI
n−γ
a+ f)(t) ∈ ACnδ [a, b]

HI
α
a+(HD

α,β
a+ f)(t) = HI

γ
a+(HD

γ
a+f)(t)

= f(t)−
n−1∑
j=0

(δ(n−j−1)(HI
n−γ
a+ f))(a)

Γ(γ − j)

(
log

t

a

)γ−j−1
.

Finally, we will use the following well known fixed point theorems on Banach space
for proving the existence and uniqueness of the solutions to Hilfer-Hadamard fractional
boundary value problem (1.1)-(1.2):

Theorem 2.5. (Banach’s contraction principle [21]). Let X be a Banach space, D ⊂ X
be closed and F : D → D be a contraction ( i.e., there exists a constant L ∈ (0, 1) such
that for any x, y ∈ X, ‖Fx−Fy‖ ≤ L‖x− y‖ ). Then T has a unique fixed point on X.

Theorem 2.6. (Schaefer fixed point theorem [22]). Let F : E → E be a completely
continuous operator (i.e., a continuous map F restricted to any bounded set in E is
compact). Let ε(F) = {x ∈ E : x = λF(x), 0 ≤ λ ≤ 1}. Then either the set ε(F) is
unbounded or F has at least one fixed point.
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Theorem 2.7. (Krasnoselskii’s fixed point theorem [19]). Let Y be a bounded, closed,
convex, and nonempty subset of a Banach space X. Let F1 and F2 be the operators
satisfying the conditions: (i) F1y1 + F2y2 ∈ Y whenever y1, y2 ∈ Y ; (ii) F1 is compact
and continuous; (iii) F2 is a contraction mapping. Then there exists y ∈ Y such that
y = F1y + F2y.

Theorem 2.8. (Leray-Schauder nonlinear alternative [20]). Let E be a Banach space, C
a closed, convex subset of E, U an open subset of C and 0 ∈ U . Suppose that F : Ū → C
is a continuous, compact (that is, F(Ū) is a relatively compact subset of C) map. Then
either

(i) F has a fixed point in Ū , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with x = λF(x).

3. Main Results

We start by proving a basic lemma concerning a linear variant of the boundary value
problem (1.1)-(1.2), which be used to transform the boundary value problem (1.1)-(1.2)
into an equivalent integral equation.

In this section, we prove existence and uniqueness of solutions for Hilfer-Hadamard
sequential fractional boundary value problem (1.1)-(1.2).

Lemma 3.1. Let h ∈ C([1, e],R). Then u is a solution of the following Hilfer-Hadamard
sequential fractional differential equation

(HD
α,β
1+ + kHD

α−1,β
1+ )u(t) = h(t), 1 < α ≤ 2, t ∈ [1, e] (3.1)

supplemented with the boundary conditions (1.2), if and only if

u(t) =
(log t)γ−1

1− λ(log θ)γ−1

{
k

[∫ e

1

u(s)

s
ds− λ

∫ θ

1

u(s)

s
ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1h(s)

s
ds−

∫ e

1

(
log

e

s

)α−1h(s)

s
ds

]}
(3.2)

−k
∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1
h(s)

s
ds, t ∈ [1, e].

Proof. Taking the Hadamard fractional integral of order α to both sides of (3.1), we get

HI
α
1+(HD

α,β
1+ )u(t) + kHI

α
1+(HD

α−1,β
1+ )u(t) =H Iα1+h(t).

By Theorem 2.4 one has

HI
γ
1+(HD

γ
1+)u(t) + kHI

α
1+(HD

α−1,β
1+ )u(t) =H Iα1+h(t)

and

u(t)−
1∑
j=0

(
δ(2−j−1)(HI

2−γ
1+ u)

)
(1)

Γ(γ − j)
(log t)γ−j−1+kHI

α
1+(HD

α−1,β
1+ )u(t) =H Iα1+h(t).

(3.3)
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By Definition 2.3, we note that

HD
α−1,β
1+ u(t) = HI

β(1−(α−1))
1+

(
H
D

(α−1)+β−(α−1)β
1+

)
u(t)

= HI
β(2−α)
1+

(
H
Dα−1+β−αβ+β

1+

)
u(t)

= HI
(2β−αβ)
1+

(
H
Dα+2β−αβ−1

1+

)
u(t)

= HI
(2β−αβ)
1+

(
H
I−α−2β+αβ+1
1+

)
u(t)

= HI
2β−αβ−α−2β+αβ+1
1+ u(t)

= HI
1−α
1+ u(t).

Then, we have

u(t)−
δ(HI

2−γ
1+ u)(1)

Γ(γ)
(log t)γ−1−

(HI
2−γ
1+ u)(1)

Γ(γ − 1)
(log t)γ−2 + kHI1+u(t) =H Iα1+h(t).

(3.4)

The equation (3.4) can be written as follows

u(t) = c0(log t)γ−1 + c1(log t)γ−2 − k
∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

h(s)

s

(
log

t

s

)α−1
ds

(3.5)

where c0, c1 are arbitrary constants. Now, the first boundary condition u(1) = 0 together
with (3.5) yield c1 = 0. The equation (3.5) can be written as follows

u(t) = c0(log t)γ−1 − k
∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1h(s)

s
ds. (3.6)

Next, the second boundary conditions u(e) = λu(θ) together with (3.6) yield

c0 =
1

1− λ(log θ)γ−1

{
k

[∫ e

1

u(s)

s
ds− λ

∫ θ

1

u(s)

s
ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1h(s)

s
ds−

∫ e

1

(
log

e

s

)α−1h(s)

s
ds

]}
.

Substituting the value of c0 in (3.6), we get equation (3.2).
The converse follows by direct computation. The proof is completed.

Let us introduce the Banach space X = C
(
[1, e],R

)
endowed with the norm defined

by ‖u‖ := maxt∈[1,e]|u(t)|.
In view of Lemma 3.1, we define an operator F : X → X where

F(u)(t) =
(log t)γ−1

1− λ(log θ)γ−1

{
k

[∫ e

1

u(s)

s
ds− λ

∫ θ

1

u(s)

s
ds

]
+

1

Γ(α)[
λ

∫ θ

1

(
log

θ

s

)α−1 f(s, u(s))

s
ds−

∫ e

1

(
log

e

s

)α−1 f(s, u(s))

s
ds

]}
(3.7)

−k
∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1
f(s, u(s))

s
ds.
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We need the following hypotheses in the sequal:

(H1) There exists a constant l > 0 such that for all t ∈ [1, e] and ui ∈ R, i = 1, 2

|f(t, u1)− f(t, u2)| ≤ l|u1 − u2|.

(H2) There exists a continuous nonnegative function φ ∈ C([1, e],R+) such that

|f(t, u)| ≤ φ(t), for each (t, u) ∈ [1, e]× R.

(H3) There exists a real constant M > 0 such that for all t ∈ [1, e], u ∈ R

|f(t, u)| ≤M.

(H4) There exist p ∈ C([1, e],R+) and a continuous nondecreasing function ψ :
R+ → R+ such that

|f(t, u)| ≤ p(t)ψ(‖u‖) for each (t, u) ∈ [1, e]× R.

(H5) There exists a constant K > 0 such that{
1− k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]}
K

‖p‖ψ(K)

Γ(α+ 1)

[
1 + λ(log θ)α

|1− λ(log θ)γ−1|
+ 1

] > 1.

3.1. Existence and Uniqueness Result via Banach’s Fixed Point

Theorem

We prove an existence and uniqueness result based on Banachs contraction mapping
principle.

Theorem 3.2. Assume that (H1) holds. Then the boundary value problem (1.1)-(1.2)
has a unique solution on [1, e], provided that

Π := k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
+

l

Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]
< 1. (3.8)

Proof. We will use Banachs fixed point theorem to prove that F , defined by (3.7) has a
unique fixed point. Fixing N = maxt∈[1,e] |f(t, 0)| < ∞ and using the hypothesis (H1),
we obtain

|f(t, u(t))| ≤ |f(t, u(t))− f(t, 0)|+|f(t, 0)| ≤ l|u(t)|+ |f(t, 0)| ≤ l‖u‖+N. (3.9)

Choose

r ≥ N

(1−Π)Γ(α+ 1)

(
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

)
.

We divide the proof into two steps.
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Step I : We show that F(Br) ⊂ Br, where Br = {u ∈ X : ‖u‖ ≤ r}. Let u ∈ Br. Then
we have

|F(u)(t)| ≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u(s)|
s

ds+ λ

∫ θ

1

|u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u(s))|
s

ds+

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

]}

+k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ 1

|1− λ(log θ)γ−1|

{
k‖u‖(1 + λ log θ) +

(l‖u‖+N)

Γ(α+ 1)
(λ(log θ)α + 1)

}

+k‖u‖+
(l‖u‖+N)

Γ(α+ 1)

= k‖u‖

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

]
+

(l‖u‖+N)

Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]

≤ kr

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

]
+

(lr +N)

Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]
≤ r.

Thus

‖F(u)‖ = max
t∈[1,e]

|F(u)(t)| ≤ r.

Step II : To show that the operator F is a contraction, let u1, u2 ∈ X. Then, for any
t ∈ [1, e], we have

|F(u2)(t)−F(u1)(t)|

≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u2(s)− u1(s)|
s

ds+ λ

∫ θ

1

|u2(s)− u1(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u2(s))− f(s, u1(s))|
s

ds

+

∫ e

1

(
log

e

s

)α−1 |f(s, u2(s))− f(s, u1(s))|
s

ds

]}
+ k

∫ t

1

|u2(s)− u1(s)|
s

ds

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u2(s))− f(s, u1(s))|
s

ds

≤ ‖u2 − u1‖

{
k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
+

l

Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]}
= Π‖u2 − u1‖.

Thus

‖F(u2)−F(u1)‖ = max
t∈[1,e]

|F(u2)(t)−F(u1)(t)| ≤ Π‖u2 − u1‖,
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which in view of (3.8), shows that the operator F is a contraction. By theorem 3.2, we
get that the operator F has a unique fixed point. Therefore the problem (1.1)-(1.2) has
a unique solution on [1, e]. The proof is completed.

3.2. Existence Result via Krasnoselskii’s Fixed Point Theorem

In this subsection, we prove an existence result based on Krasnoselskii’s fixed point
theorem.

Theorem 3.3. Assume that (H2) holds. Then, the problem (1.1)-(1.2) has at least one
solution on [1, e], provided that

k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
< 1. (3.10)

Proof. By assumption (H2), we can fix

ρ ≥

‖φ‖
Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]

1− k

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

] ,

where ‖φ‖ = supt∈[1,e] |φ(t)| and consider Bρ = {u ∈ C([1, e],R) : ‖u‖ ≤ ρ}. We split the

operator F : C([1, e],R)→ C([1, e],R) defined by (3.7) as F = F1 +F2 where F1 and F2

are given by

(F1u)(t) =
(log t)γ−1

1− λ(log θ)γ−1
k

[∫ e

1

u(s)

s
ds− λ

∫ θ

1

u(s)

s
ds

]
− k

∫ t

1

u(s)

s
ds,

and

(F2u)(t) =
(log t)γ−1

1− λ(log θ)γ−1
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 f(s, u(s))

s
ds

−
∫ e

1

(
log

e

s

)α−1 f(s, u(s))

s
ds

]
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1
f(s, u(s))

s
ds.

For any u, v ∈ Bρ, we have

|(F1u)(t) + (F2v)(t)| ≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u(s)|
s

ds+ λ

∫ θ

1

|u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, v(s))|
s

ds+

∫ e

1

(
log

e

s

)α−1 |f(s, v(s))|
s

ds

]}

+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, v(s))|
s

ds

≤ 1

|1− λ(log θ)γ−1|

{
k‖u‖(1 + λ log θ) +

‖φ‖
Γ(α+ 1)

(λ(log θ)α + 1)

}
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+ k‖u‖+
‖φ‖

Γ(α+ 1)

= k‖u‖

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

]
+

‖φ‖
Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]

≤ kρ

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

]
+

‖φ‖
Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]
≤ ρ.

Hence, ‖F1u + F2v‖ ≤ ρ, which shows that F1u + F2v ∈ Bρ. It is easy to prove, using
condition (3.10) that the operator F1 is a contraction mapping. The operator F2 is
continuous by the continuity of f. Also F2 is uniformly bounded on Bρ, since

‖F2u‖ ≤
‖φ‖

Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]
.

Finally we prove the compactness of the operator F2.We define sup(t,u)∈[1,e]×Bρ
|f(t, u)|

= f and take t1, t2 ∈ [1, e], t1 < t2. Then we have

|F2u(t2)−F2u(t1)| ≤ |(log t2)γ−1 − (log t1)γ−1|
|1− λ(log θ)γ−1|

1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u(s))|
s

ds

+

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

]

+
1

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1] |f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1 |f(s, u(s))|
s

ds

≤ |(log t2)γ−1 − (log t1)γ−1|
|1− λ(log θ)γ−1|

{
f

Γ(α+ 1)

[
λ(log θ)α + 1

]}

+
f

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1]1

s
ds+

f

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
1

s
ds

≤ |(log t2)γ−1 − (log t1)γ−1|
|1− λ(log θ)γ−1|

f

Γ(α+ 1)

[
λ(log θ)α + 1

]
+

f

Γ(α+ 1)

[
(log t2)α − (log t1)α

]
,

which tends to zero, independently of u ∈ Bρ, as t1 → t2. Thus, F2 is equicontinuous.
From the Arzelá-Ascoli theorem we conclude that the operator F2 is compact on Bρ.
Thus, the hypotheses of Krasnoselskii fixed point theorem are satisfied, and therefore
there exists at least one solution on [1, e]. The proof is finished.
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3.3. Existence Result via Schaefer’s Fixed Point Theorem

Our second existence result is based on Schaefer’s fixed point theorem.

Theorem 3.4. Assume that (H3) holds and

k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|

]
< 1.

Then, the boundary value problem (1.1)-(1.2) has at least one solution on [1, e].

Proof. We will prove that the operator F , defined by (3.7), has a fixed point, by using
Schaefer’s fixed point theorem. We divide the proof into two steps.

Step I : We show that the operator F : X → X is completely continuous.
We show first that F is continuous. Let {un} be a sequence such that un → u in X.
Then for each t ∈ [1,e], consider

|F(un)(t)−F(u)(t)|

≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|un(s)− u(s)|
s

ds+ λ

∫ θ

1

|un(s)− u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds

+

∫ e

1

(
log

e

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds

]}

+ k

∫ t

1

|un(s)− u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds.

Since f is continuous, we get

|f(s, un(s))− f(s, u(s))| → 0 as un → u.

Then

‖F(un(t))−F(u(t))‖ → 0 as un → u.

Hence F is continuous.
Secondly, we show that the operator F maps bounded sets into bounded sets in X.

For a positive number R, let BR = {u ∈ X : ‖u‖ ≤ R} be a bounded ball in X. Then, for
t ∈ [1, e], we have,

|F(u)(t)| ≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u(s)|
s

ds+ λ

∫ θ

1

|u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u(s))|
s

ds+

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

]}

+k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ kR

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

]
+

M

Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]
,
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and

‖F(u)‖ ≤ kR

[
1 + λ(log θ)∣∣1− λ(log θ)γ−1

∣∣ + 1

]
+

M

Γ(α+ 1)

[
λ(log θ)α + 1∣∣1− λ(log θ)γ−1

∣∣ + 1

]
.

Thirdly, we show that F maps bounded sets into equicontinuous sets. Let t1, t2 ∈ [1, e]
with t1 < t2 and u ∈ BR. Then we have

|F(u)(t2)−F(u)(t1)| ≤ |(log t2)γ−1 − (log t1)γ−1|
|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u(s)|
s

ds+ λ

∫ θ

1

|u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u(s))|
s

ds+

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

]}

+ k

∫ t2

t1

|u(s)|
s

ds+
1

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1] |f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1 |f(s, u(s))|
s

ds

≤ |(log t2)γ−1 − (log t1)γ−1|
|1− λ(log θ)γ−1|

{
k‖u‖

[
1 + λ log θ

]
+

M

Γ(α+ 1)

[
λ(log θ)α + 1

]}

+ k

∫ t2

t1

|u(s)|
s

ds+
1

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1] |f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1 |f(s, u(s))|
s

ds

≤ |(log t2)γ−1 − (log t1)γ−1|
|1− λ(log θ)γ−1|

{
k‖u‖

[
1 + λ log θ

]
+

M

Γ(α+ 1)

[
λ(log θ)α + 1

]}

+ k‖u‖| log t2 − log t1|+
M

Γ(α+ 1)

[
2(log t2 − log t1)α + |(log t2)α − (log t1)α|

]
≤ |(log t2)γ−1 − (log t1)γ−1|

|1− λ(log θ)γ−1|

{
kR
[
1 + λ log θ

]
+

M

Γ(α+ 1)

[
λ(log θ)α + 1

]}

+ kR| log t2 − log t1|+
M

Γ(α+ 1)

[
(log t2)α − (log t1)α

]
,

which tends to zero, independently of u ∈ BR, as t1 → t2. Thus, the Arzelá-Ascoli theorem
applies and hence F : X → X is completely continuous.

Step II : We show that the set E = {u ∈ X | u = ηF(u), 0 ≤ η ≤ 1} is bounded. Let
u ∈ E , then u = ηF(u). For any t ∈ [1, e], we have u(t) = ηF(u)(t). Then, in view of the
hypothesis (H3), as in Step I, we obtain

|u(t)| ≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u(s)|
s

ds+ λ

∫ θ

1

|u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u(s))|
s

ds+

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

]}
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+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ k‖u‖

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
+

M

Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]
,

or {
1− k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|

}
‖u‖ ≤ M

Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]
.

Thus

‖u‖ ≤ M

Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]{
1− k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|

]}−1
,

which shows that the set E is bounded. By Theorem 2.6, we get that the operator F has
at least one fixed point. Therefore, the boundary value problem (1.1)-(1.2) has at least
one solution on [1, e]. This completes the proof.

3.4. Existence Result via Leray-Schauder Nonlinear Alternative

Our final existence result is proved via Leray-Schauder nonlinear alternative.

Theorem 3.5. Assume that (H4), (H5) and (3.10) hold. Then, the boundary value
problem (1.1)-(1.2) has at least one solution on [1, e].

Proof. As in Theorem 3.4 we can prove that the operator F is completely continuous.
We will prove that there exists an open set U ⊆ C([1, e],R) with u 6= µF(u) for µ ∈ (0, 1)
and u ∈ ∂U.

Let u ∈ C([1, e],R) be such that u = µF(u) for some 0 < µ < 1. Then, for each
t ∈ [1, e], we have

|u(t)| ≤ (log t)γ−1

|1− λ(log θ)γ−1|

{
k

[∫ e

1

|u(s)|
s

ds+ λ

∫ θ

1

|u(s)|
s

ds

]

+
1

Γ(α)

[
λ

∫ θ

1

(
log

θ

s

)α−1 |f(s, u(s))|
s

ds+

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

]}

+k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ k‖u‖

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
+
‖p‖ψ(‖u‖)
Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]
,

or {
1− k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]}
‖u‖ ≤ ‖p‖ψ(‖u‖)

Γ(α+ 1)

[
λ(log θ)α + 1

|1− λ(log θ)γ−1|
+ 1

]
.



Sequential Hilfer-Hadamard Fractional Three-Point Boundary Value Problems 621

Consequently {
1− k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]}
‖u‖

‖p‖ψ(‖u‖)
Γ(α+ 1)

[
1 + λ(log θ)α

|1− λ(log θ)γ−1|
+ 1

] ≤ 1.

In view of (H5), there is no solution u such that ‖u‖ 6= K. Let us set

U = {u ∈ C([1, e],R) : ‖u‖ < K}.

The operator F : U → C([1, e],R) is continuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u = µF(u) for some µ ∈ (0, 1). Consequently,
by the nonlinear alternative of Leray-Schauder type [20], we deduce that F has a fixed
point u ∈ U which is a solution of the boundary value problem (1.1)-(1.2). The proof is
completed.

4. Examples

In order to illustrate our results, we give in this section examples.

Example 4.1. Consider the following boundary value problem
(
H
D

5
4 ,

1
2

1+ +
1

7
HD

1
4 ,

1
2

1+

)
u(t) =

(1 + log t)|u(t)|
100 + |u(t)|

, t ∈ [1, e],

u(1) = 0, u(e) =
1

3
u(2).

(4.1)

Here α = 5
4 , β = 1

2 , k = 1
7 , λ = 1

3 , γ = 13
8 and θ = 2. For each u1, u2 ∈ R we have

|f(t, u1)−f(t, u2)| ≤ 1
50 |u1−u2|, and thus (H1) is satisfied. Using the given data, we find

that Π ≈ 0.4289 < 1. Thus, all the conditions of Theorem 3.2 are satisfied. Therefore,
it follows by the conclusion of Theorem 3.2 that the boundary value problem (4.1) has a
unique solution on [1, e].

Example 4.2. Consider the following boundary value problem
(
H
D

3
2 ,

1
4

1+ +
1

6
HD

1
2 ,

1
4

1+

)
u(t) = et sin u(t), t ∈ [1, e],

u(1) = 0, u(e) =
1

2
u(2).

(4.2)

Here α = 3
2 , β = 1

4 , k = 1
6 , λ = 1

2 , γ = 13
8 and θ = 2. For each u ∈ R we have

|f(t, u)| ≤ et, and thus (H2) is satisfied. Using the given data, we find that

k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
≈ 0.5392 < 1.

Hence, all the conditions of Theorem 3.3 are satisfied. Therefore, it follows by the con-
clusion of Theorem 3.3 that the boundary value problem (4.2) has at least one solution
on [1, e].
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Example 4.3. Consider the following boundary value problem
(
H
D

3
2 ,

1
2

1+ +
2

5
HD

1
2 ,

1
2

1+

)
u(t) = e|u(t)| log t, t ∈ [1, e],

u(1) = 0, u(e) =
1

4
u(

3

2
).

(4.3)

Here α = 3
2 , β = 1

2 , k = 2
5 , λ = 1

4 , γ = 7
4 and θ = 3

2 . For each u ∈ R we have |f(t, u)| ≤ 1,
and thus (H3) is satisfied. Using the given data, we find that

k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|

]
≈ 0.5047 < 1.

Therefore, all the conditions of Theorem 3.4 are satisfied. Therefore, it follows by the
conclusion of Theorem 3.4 that the boundary value problem (4.3) has at least one solution
on [1, e].

Example 4.4. Consider the following boundary value problem
(
H
D

3
2 ,

1
4

1+ +
1

6
HD

1
2 ,

1
4

1+

)
u(t) = [u(t)]2 cos t, t ∈ [1, e],

u(1) = 0, u(e) =
1

2
u(2).

(4.4)

Here α = 3
2 , β = 1

4 , k = 1
6 , λ = 1

2 , γ = 13
8 and θ = 2. For each u ∈ R, there exists

a constant function p(t) = 1 and continuous nondecreasing function ψ(x) = x2 for all
x ∈ R+ such that |f(t, u)| ≤ p(t)ψ(‖u‖) = ‖u‖2, and then (H4) is satisfied. Using the
given data, we find that

k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]
≈ 0.5392 < 1,

and there exists a constant K = 0.1892 such that{
1− k

[
1 + λ(log θ)

|1− λ(log θ)γ−1|
+ 1

]}
K

‖p‖ψ(K)

Γ(α+ 1)

[
1 + λ(log θ)α

|1− λ(log θ)γ−1|
+ 1

] ≈ 1.00041 > 1.

That is (H5) is satisfied. Thus, all the conditions of Theorem 3.5 are satisfied. Therefore,
it follows by the conclusion of Theorem 3.5 that the boundary value problem (4.4) has at
least one solution on [1, e].

5. Conclusion

In this paper, existence and uniqueness results are established for a boundary value
problem for Hilfer-Hadamard sequential fractional differential equation, with three-point
boundary conditions. The existence and uniqueness result is proved via Banach contrac-
tion mapping principle, while for the existence results the Schaefer and Krasnoselskii fixed
point theorems as well and Leray-Schauder nonlinear alternative are used.
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