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Numerical solutions of flows under
an inclined gate

P. Guayjarernpanishk and J. Asavanant

Abstract : Two-dimensional free-surface flows of an inviscid and incompressible
fluid under an inclined gate is considered. The flow is assumed to be steady and
irrotational. This problem is solved numerically by using boundary integral equa-
tion technique. Numerical results for inclined gate are presented for various values
of the gate inclination γ and the gate length L when the upstream free surface
separates at a stagnation point. These solutions can be found for certain values
of γ, that is, χL < γ ≤ 90◦. Here χL is the lower bound for gate inclination de-
pending on the gate length L and the corresponding downstream Froude number.
As the gate length decreases, nonlinear effect on the upstream waves is apparent
so that the waves tend to develop narrow crests and broad troughs. When the
upstream free-surface separates tangentially from the gate, the so-called smooth
attachment, it is found that there exist solutions for larger values of gate inclina-
tion. As L increases, the elevation of the crests tends to the maximum level and
the waves ultimately reach their limiting configuration characterized by a 120◦

angle at the crests.
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1 Introduction

Free-surface flow under a gate is one of the well-known classical problem in
fluid mechanics. Analytical and numerical results have been proposed for different
flow configurations by many researchers. Free-streamline solutions of flow under a
gate were studied by Lord Rayleigh in the mid nineteenth century. He neglected
the effect of gravity and solved by using conformal transformations. Later on,
numerical solutions of free-surface flows under a gate with the effect of gravity
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were presented by Southwell and Vaisey (1946). In 1952, Binnie suggested the
use of nondimensional parameter, the Froude number F , and gave a tentative
argument indicating that waves cannot be present on the downstream side of the
gate. Approximate analytic solutions were derived by Benjamin (1956), using the
theories of jets and solitary wave, and compared with experimental results for the
same gate opening. Cheng and et al. (1981) was among others to formulate the
problem by using boundary integral equation technique and to achieve relatively
good solution accuracy.

Vanden-Broeck (1986) computed numerical solutions of flow under a gate with-
out upstream free surface by the method of series truncation. He found that there
are two solutions for 1.80 ≤ F ≤ 1.87, one solution for F > 1.87, and no solutions
for F < 1.80. Here F is the downstream Froude number. In 1996, Asavanant and
Vanden-Broeck considered the complete sluice gate problem with two free surfaces
and constructed solutions for which the free surface leave tangentially at both sep-
aration points by series truncation procedure. Their results could be obtained only
for small values of gate inclination γ. Vanden-Broeck (1997) computed numeri-
cal solution for the fully nonlinear vertical gate problem using boundary integral
equation technique. He showed that there exist solutions for which the flow does
not satisfy the upstream uniform flow condition. These solutions are characterized
by a train of waves on the upstream free surface. Analytic solution of the smooth
attachment problem was presented implicitly as an integral equation by Petrila
(2002). He reduced the problem to a boundary value problem of the Hilbert type
and employed Muskelishvili’s technique without solving for numerical solutions.
In 2005, Binder and Vanden-Broeck considered both fully nonlinear and weakly
nonlinear of the inclined gate problem. They introduced a new parameter to clas-
sify behavior of flow at the separation point between the upstream free-surface
and the gate without showing the relationship between parameters.

In this paper, we consider fully nonlinear problem of the steady free-surface
flows under an inclined gate with possibilities of either a stagnation point or a
smooth attachment to occur at the separation point. Formulation of the problem
and numerical procedure for flow under an inclined gate are given in § 2 and § 3,
respectively. In § 4 we discuss the numerical results of free-surface flows under
an inclined gate with stagnation point. The case in which the free surfaces leave
tangentially at both separation points, smooth attachment, is discussed in § 5.
Finally, concluding remarks are presented in § 6.

2 Mathematical Formulation

We consider the steady two-dimensional flow of an inviscid and incompressible
fluid under an inclined gate. The flow is assumed to be irrotational. Fluid domain
is bounded below by a horizontal rigid wall A′D′ and above by the free surfaces
AB and CD and the gate BC (see Figure 1).

Let us introduce Cartesian coordinates with the x-axis along the bottom and
the y-axis directed vertically upwards through the upstream separation point B.
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Figure 1: Sketch of the flow domain in the physical plane.
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Figure 2: Fluid domain in the complex potential f -plane.

Hence, gravity g acts in the negative y-direction. The gate inclination is denoted
by γ measured clockwise from the negative x-axis. At B, we denote by η the
angle between free surface and gate. The flow is subcritical far upstream and
supercritical far downstream. As x → ∞, the flow is assumed to approach a
uniform stream with constant velocity U and constant depth H. It is convenient
to define dimensionless variables by taking U as the unit velocity and H as the
unit length.

Let’s introduce the velocity potential φ(x, y) and the stream function ψ(x, y)
by defining the complex potential function f as

f = φ(x, y) + iψ(x, y).

The complex velocity w can be written as

w =
df

dz
= u− iv,

where u and v are the velocity components in the x and y directions, and z = x+iy.
Without loss of generality, we choose φ = 0 at B and ψ = 0 on the free surfaces AB,
CD and on the gate BC. The bottom A′D′ defines another streamline on which
ψ = −UH. By the choice of our dimensionless variables, we have ψ = −1 on the
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Figure 3: Flow domain in the lower half of complex ζ-plane.

bottom A′D′. We denote the value of the potential function at the downstream
separation point C by φC . Figure 2 depicts the fluid domain in the complex
potential f -plane.

In terms of the dimensionless veriables, the nonlinear free surface condition
for this problem can be expressed in terms of the Bernoulli equation as

u2 + v2 +
2

F 2
(y − 1) = 1, (2.1)

where F is the Froude number defined by F = U√
gH

. The kinematic boundary

condition on the bottom A′D′ and the gate BC can be written as

v = 0 on ψ = −1 and −∞ < φ <∞, (2.2)

and
v = −u tan γ on ψ = 0 and 0 < φ < φC . (2.3)

This concludes the mathematical formulation of the problem. We seek w as an
analytic function of f in the strip −1 < ψ < 0 such that w → 1 as φ → ∞ and
(2.1) - (2.3) are satisfied.

We map the flow domain from the complex potential f -plane onto the lower
half of complex ζ-plane by using the conformal mapping

ζ = α+ iβ = eπf (2.4)

as shown in Figure 3.
Next we introduce the new complex function τ − iθ by

w = eτ−iθ. (2.5)

To construct an integral equation for this problem, we apply the Cauchy’s integral
formula to the function τ − iθ in the complex ζ-plane with a contour consisting of



Numerical solutions of flows under an inclined gate 175

the real axis α and the circumference of a half circle of arbitrary large radius in
the lower half plane. After taking the real part, we obtain

τ(α) =
1

π

∫ ∞

−∞

θ(α′)

α′ − α
dα′ on β = 0, (2.6)

where τ(α) and θ(α) denote the value of τ and θ on the free surfaces.
The kinematic boundary conditions (2.2) and (2.3) become

θ(α) = 0 for β = 0 and α < 0, (2.7)

and
θ(α) = −γ for β = 0 and 1 < α < αC , (2.8)

where αC = eπφC . Substituting (2.7) and (2.8) into (2.6), we obtain

τ(α) = −γ
π

ln
|αC − α|
|1 − α| +

1

π

∫ 1

0

θ(α′)

α′ − α
dα′ +

1

π

∫ ∞

αC

θ(α′)

α′ − α
dα′. (2.9)

Equation (2.9) provides a relation between τ and θ on the free surfaces. Another
relation between τ and θ on the free surfaces can be found from equation (2.1) as

e2τ +
2

F 2
(y − 1) = 1. (2.10)

Using (2.4) and integrating the identity

d

df
(x+ iy) = w−1, (2.11)

we can find the downstream free surface displacement from

x(α) =
1

π

∫ α

1

e−τ(α′)

α′
cos θ(α′)dα′, (2.12)

y(α) = 1 +
F 2

2
(1 − e2τ(αB)) +

1

π

∫ α

1

e−τ(α′)

α′
sin θ(α′)dα′ (2.13)

for 0 < α < 1 and the upstream free surface displacement from

x(α) = xC +
1

π

∫ α

αC

e−τ(α′)

α′
cos θ(α′)dα′, (2.14)

y(α) = 1 +
1

π

∫ α

∞

e−τ(α′)

α′
sin θ(α′)dα′ (2.15)

for α > αC , where xC is the position of separation point C.
Equations (2.9), (2.10) and (2.12) - (2.15) define a system of nonlinear integral

equations for the unknowns θ(α) on the free surfaces 0 < α < 1 and α > αC .
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3 Numerical procedure

The above system of nonlinear equations is solved numerically by using equally
spaced points in the potential function φ. Introducing the change of variables

α = eπφ

on free surfaces, we can rewrite (2.9) as

τ̄(φ) = −γ
π

ln
|eπφC − eπφ|
|1 − eπφ| +

∫ 0

−∞

θ̄(φ0)e
πφ0

eπφ0 − eπφ
dφ0 +

∫ ∞

φC

θ̄(φ0)e
πφ0

eπφ0 − eπφ
dφ0. (3.1)

Accordingly, equations (2.10), (2.12) - (2.15) can be rewritten as follows

e2τ̄(φ) +
2

F 2
(ȳ(φ) − 1) = 1, (3.2)

x̄(φ) =

∫ φ

0

e−τ̄(φ0) cos θ̄(φ0)dφ0, (3.3)

ȳ(φ) = 1 +
F 2

2
(1 − e2τ̄(φB)) +

∫ φ

0

e−τ̄(φ0) sin θ̄(φ0)dφ0, (3.4)
for −∞ < φ < 0, and

x̄(φ) = xC +

∫ φ

φC

e−τ̄(φ0) cos θ̄(φ0)dφ0, (3.5)

ȳ(φ) = 1 +

∫ φ

∞
e−τ̄(φ0) sin θ̄(φ0)dφ0, (3.6)

for φC < φ < ∞. Here τ̄(φ) = τ(eπφ), θ̄(φ) = θ(eπφ), x̄(φ) = x(eπφ) and
ȳ(φ) = y(eπφ).

Next we introduce equally spaced mesh points in the potential function φ by

φU
I = −(I − 1)∆1, I = 1, ..., N1

and
φD

I = φC + (I − 1)∆2, I = 1, ..., N2

on the upstream and downstream free surfaces. Here ∆1 > 0 and ∆2 > 0 are the
mesh sizes on upstream and downstream free surfaces, respectively. The corre-

sponding unknowns are F,
{

θ̄(φU
I )

}N1

I=1
and

{

θ̄(φD
I )

}N2

I=1
. For simplicity, we denote

θU
I = θ̄(φU

I ) and θD
I = θ̄(φD

I ).
We assign the values θU

1 = δ and θD
1 = −γ, where δ will be defined later.

There are N1 + N2 − 1 unknowns: F,
{

θU
I

}N1

I=2
and

{

θD
I

}N2

I=2
. We evaluate the

values τU
I+ 1

2

and τD
I+ 1

2

of τ̄(φ) at the midpoints

φU
I+ 1

2

=
φU

I + φU
I+1

2
, I = 1, ..., N1 − 1

and
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φD
I+ 1

2

=
φD

I + φD
I+1

2
, I = 1, ..., N2 − 1

by applying the trapezoidal rule to the first and second integrals in (3.1) with
summations over the φU

I and φD
I , respectively. The symmetry of the quadrature

and of the distribution of mesh points enables us to evaluate the Cauchy principal
values as if they were ordinary integrals. Then we replace (3.1) by

τ̄(φ) = −γ
π

ln
|eπφC − eπφ|
|1 − eπφ| +

∫ 0

φU

N1

θ̄(φ0)e
πφ0

eπφ0 − eπφ
dφ0 +

∫ φD

N2

φC

θ̄(φ0)e
πφ0

eπφ0 − eπφ
dφ0. (3.7)

Following Hocking and Vanden-Broeck (1997), the last integral in (3.7) can be
rewritten for computational purpose as

∫ φD

N2

φC

θ̄(φ0)e
πφ0

eπφ0 − eπφ
dφ0 =

∫ φD

N2

φC

(θ̄(φ0) − θ̄(φ))eπφ0

eπφ0 − eπφ
dφ0

+
θ̄(φ)

π
ln

|eπφD

N2 − eπφ|
|eπφC − eπφ| (3.8)

before applying the trapezoidal rule. The values of θ̄ at the midpoints are evaluated
using the four-point interpolation formula. Free surface profile can be determined
directly from (3.3) - (3.6) as follows

xU
I = x̄(φU

I ) =







0, I = 1;

xU
I−1 − e

(−τU

I−
1
2

)
cos(θU

I− 1
2

)∆1, I = 2, 3, . . . , N1

yU
I = ȳ(φU

I ) =







1 + 1
2F

2(1 − e2τU

1 ), I = 1;

yU
I−1 − e

(−τU

I−
1
2

)
sin(θU

I− 1
2

)∆1, I = 2, 3, . . . , N1

where τU
1 is 3

2τ
U
1+ 1

2

− 1
2τ

U
2+ 1

2

, and

xD
I = x̄(φD

I ) =







xC , I = 1;

xD
I−1 + e

(−τD

I−
1
2

)
cos(θD

I− 1
2

)∆2, I = 2, 3, . . . , N2

yD
I = ȳ(φD

I ) =







yD
I+1 − e

(−τD

I+ 1
2

)
sin(θD

I+ 1
2

)∆2, I = N2 − 1, N2 − 2, . . . , 1;

1, I = N2

We use yU
I and yD

I to evaluate ȳ at the midpoints φU
I+ 1

2

and φD
I+ 1

2

. We now

satisfy (3.2) at the midpoints. This yields N1+N2−2 nonlinear algebraic equations
for N1 +N2 − 1 unknowns. The last equation is obtained by fixing the length L
of the gate BC. The final relation is then

L−
√

(xU
1 − xD

1 )2 + (yU
1 − yD

1 )2 = 0. (3.9)

For given values of φC and γ, we solve this system of N1 + N2 − 1 nonlinear
algebraic equations with N1 +N2 − 1 unknowns by Newton’s method.
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4 Flows with a stagnation point

The above numerical procedure is used to find solution of free-surface flow un-
der an inclined gate for given values of φC and γ. Accuracy of numerical solutions
depends on the grid spacings, ∆1 and ∆2, and the domain truncations, N1 and
N2. Most of the calculations are obtained with N1 = 841, N2 = 501,∆1 = 0.01
and ∆2 = 0.01. We computed solutions for various values of ∆1 and ∆2, and N1

and N2 until the numerical solutions were in agreement within graphical accuracy.
Figure 4 shows the effect of mesh size on the upstream free surface profile corre-
sponding to φC = 0.26 and γ = 60◦ for ∆1 = 0.01 and ∆1 = 0.02. This shows
that our results are independent of ∆1.
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Figure 4: Profiles of the upstream free surface with ∆1 = 0.01 (dashed line)
and ∆1 = 0.02 (solid line) for φC = 0.26 and γ = 60◦.

Following Asavanant and Vanden-Broeck (1996), free-surface inclination at the
stagnation point B can be described as

η =

{

120◦, 0◦ ≤ γ ≤ 60◦;

180◦ − γ, 60◦ ≤ γ ≤ 90◦

and

δ =

{

60◦ − γ, 0◦ ≤ γ ≤ 60◦;

0◦, 60◦ ≤ γ ≤ 90◦.

Numerical solutions for gate inclination 0 < γ ≤ 90◦ are presented and discussed
as follows.

4.1 Case of vertical gate (γ = 90
◦)

This is the case considered by many investigators such as, Fangmeier and Strelkoff
(1968), Naghdi and Vongsarnpigoon (1986), Vanden-Broeck (1997), Defina and
Susin (2003). Here η = 90◦, δ = 0◦. Typical free-surface profile is shown in Figure
5. It is found that the amplitude of upstream waves increases as φC decreases.
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Figure 5: Profiles of the free surfaces and the gate when γ = 90◦, φC = 0.26
and F = 2.0221. The symbol ◦ indicates the end points of the gate at which
separation occurs.
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The contraction coefficient Cc, defined as the ratio of depth far downstream
and gate opening, constitutes another important check on our numerical scheme.
In case of zero gravity (Batchelor, 1967), the contraction coefficient for the free-
streamline solution is given by

C∗
c =

π

π + 2
≈ 0.611015.

From our calculations, the numerical value of Cc differs from C∗
c by 0.21% (see

Figure 6).

4.2 Case of inclined gate

4.2.1 60◦ ≤ γ < 90◦

In this case, the free-surface is horizontal in the neighborhood of stagnation point.
That is, θU

1 = δ = 0◦. Typical free surface profiles for γ = 70◦ is shown in Figure
7. It is found that there is a train of nonlinear waves on the upstream free-surface
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similar to case of the vertical gate problem. For a given value of γ, the amplitude
of upstream waves increases and the profiles develop broad troughs and narrow
crests as φC decreases (see Figure 7 (b) - (d)). these wave ultimately reach the
Stokes limiting configuration of 120◦ angle corner at the crests.
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Figure 7: Profiles of the free surfaces and the gate when γ = 70◦: (a) φC =
0.71, F = 2.5704 (b) φC = 0.41, F = 2.0172 (c) φC = 0.19, F = 1.6250
and (d) φC = 0.075, F = 1.4064.
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Relationships between the contraction coeffcient Cc and yC

yB
for various values

of γ, where yB and yC are value of y at point B and C, are shown in Figure 8. For
each gate inclination γ, Cc is found to be a decreasing function of the ratio yC

yB
.
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4.2.2 0 < γ < 60◦

To find numerical solutions of this case, it is required to set the value of θ in the
neighborhood of the stagnation point to be 60◦−γ, i.e. θU

1 = δ = 60◦−γ. Typical
free surface profile is shown in Figure 9 for γ = 35◦. However, for a given φC that
corresponds with gate length L, solutions exist for the gate inclination γ greater
than some critical value χL. This critical value χL depends on gate length L.
For small γ, it is difficult to find the numerical solution because the free surface
near upstream separation can no longer satisfy the prescribed local behavior at
the stagnation point (η = 120◦).
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Figure 9: Profiles of the free surfaces and the gate when γ = 35◦: (a) φC =
2.00, F = 2.8161 (b) φC = 1.70, F = 2.6066 (c) φC = 1.60, F = 2.5622
and (d) φC = 1.50, F = 2.5403.
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In Figure 10, it is shown that the amplitude of the waves increases as F
decreases. For larger value of F , the upstream waves persist with finitely small
amplitude. In addition, for a fixed value of F , these wave amplitude increases
as the gate inclination decreases. Plots of numerical values of the contraction
coefficient Cc versus yC

yB
for various values of γ are shown in Figure 11.
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Figure 12: Profiles of the free surfaces and the gate when γ = 6◦: (a) φC =
2.50, F = 1.2273 (b) φC = 3.00, F = 1.2543 (c) φC = 3.50, F = 1.2848
and (d) φC = 3.618, F = 1.2897.
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5 Flows with smooth separations

In this case, we impose the following conditions θU
1 = δ = θD

1 = −γ. These
imply that the values of θ at both upstream and downstream separation points take
on the value of gate inclination. Following the numerical scheme derived in sections
2 and 3, solutions are computed for various values of φC and γ. Most of the results
are obtained with N1 = 636, N2 = 801,∆1 = 0.04 and ∆2 = 0.01. Asavanant and
Vanden-Broeck (1996) found solutions of this case for small gate inclination with
limited values of downstream Froude number. Their solutions contain no waves
on the upstream free surface due to some constraints of the numerical technique.
Here we show that there exist solutions with upstream waves for larger values of
gate inclination. The upper bound of gate inclination is found to depend on φC .
For example, 9◦ when φC = 2.00. Typical free-surface profile is shown in Figure
12 (a) - (d) for γ = 6◦. The upstream waves tend to develop narrow crests and
broad troughs showing the effect of nonlinearity as F increases.
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Figure 16: The steepness s of the waves versus the upstream Froude number
FU . The dashed curve corresponds the limiting cases characterized by a
120◦ angle at the crests (Cokelet 1977).

Numerical values of the contraction coefficient Cc and F 2 are shown in Figure
13. The contraction coefficient Cc is an increasing function of F 2 for a fixed value
of γ. However the contraction coefficient Cc increases as the ratio of yC and yB

decreases (see Figure 14). As F 2 increases, the level of wave crests approaches the

highest level y∗ of the free surface, i.e., y∗ = F 2

2 + 1 (see Figure 15).
In addition, steepness s of the waves, defined as ratio of the wave height and the

wavelength, is shown to be a decreasing function of the upstream Froude number
FU as shown in Figure 16. Here FU is defined as

FU =
V√
gD

,

where V is the average upstream velocity and D is the average upstream depth.
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The Froude numbers F and FU are related by

F 2
U =

F 2

8

[

(

8

F 2
+ 1

)
1
2

− 1

]3

.

As FU decreases to the critical value F ∗
U , the elevation of the crests tends to the

maximum level
F∗

2

U

2 + 1 and the waves reach their limiting configuration charac-
terized by a 120◦ angle at the crests (see Figure 16).

6 Conclusions

We have presented accurate numerical solutions of the free-surface flows un-
der an inclined gate by using boundary integral method. The results show that
there is a two-parameter family of solutions for which the parameters are the gate
inclination γ and φC .

When the upstream separation is a stagnation point, the contact angle be-
tween the upstream free surface and the gate can be varied between 90◦ to 120◦

depending on the gate inclination γ. Solutions of the vertical gate (γ = 90◦) are
computed and compared with previous results. This constitutes a check on the
numerical scheme. For inclined gate with a stagnation point, it is found that nu-
merical solutions exist for all value of γ ∈ (χL, 90

◦). Here χL is the lower bound of
the gate inclination and its value depends on φC or gate length L. Amplitude of
the upstream waves appears to be a decreasing function of φC or the downstream
Froude number F for a given γ. For large F , amplitude of the waves is finitely
small and cannot be visually seen in the figure. In addition, the contraction coef-
ficient Cc and gate length L decrease as F decreases.

Finally, we consider the inclined gate problem under which the free surfaces
leave tangentially at both separation points. Numerical solutions for this case
showed that there also exists a train of nonlinear waves on the upstream free
surface. These solutions can be found for small gate inclination because of insuf-
ficient mesh points in the neighbourhood of the upstream separation point. It is
observed from the local behavior of flow near the upstream separation point that,
ultimately, the flow would satisfy the tangential separation condition. In addition,
as the upstream Froude number FU decreases, amplitude A and steepness s of the
waves increase to the limiting values of Cokelet (1977). This case is thus required
further investigation for large gate inclination.
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