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Abstract Applications of graph theory in the theoretical investigation of molecular physiochemical

properties are the focus of mathematical chemistry. Atoms without hydrogen are the nodes of a chemical

network, and covalent bonds between them serve as the edges. Cactus graphs are specially connected

graphs in which no edge is part of more than one cycle. A topological index is a number calculated from

the graph. In this work, we develop precise formulas for the randic index, geometric arithmetic index, and

the atom bond connectivity index and second zagreb index, ABC4 index and GA5 index of hexagonal

cacti, many of which are not a hexagonal chain.
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1. Introduction

Chemical graph theory is a sub-field of mathematical chemistry with applications in
science, engineering, and chemistry. Edge set E(G) and vertex set V (G) form an ordered
pair of two sets that together make up a graph G = (V (G), E(G)). The degree of a vertex
is the total number of vertices in the graph G excluding v and that are adjacent to v
denoted by dG(v).

A connected graph having no edge that is part of more than one cycle is known as
cactus graph. This graph was studied in statistical mechanics in 1956 [1], communication
networks in 2005 [2] and chemistry by Zmazek et al. in 2003 [3]. Graphs of benzenoid
hydrocarbon can be represented by hexagonal systems, and they have a significant role
in theoretical chemistry, See Qu et al. [4] for example. A cactus graph having cycles of
6 vertices, i.e. hexagons, as blocks is known as a hexagonal cactus. A graph in which
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every hexagon has at most two cut-vertices is known as hexagonal cactus chain where
each cut-vertex is allocated by two hexagons exactly.

For a hexagonal cactus C, a leaf hexagon is a block that shares a cut vertex with exactly
one other block. A branching hexagon is a block that shares a cut vertex with at least
three other blocks. Hence, an internal hexagon is a hexagon, which is neither branching
nor leaf that shares a cut vertex to exactly two other blocks. An internal hexagon in the
cactus Hn whose cut-vertices are adjacent is called an ortho-hexagon. If the cut-vertices
of an internal hexagon are at distance 2, it is called a meta-hexagon and it is called a para-
hexagon, if the distance between the two cut-vertices is 3. A hexagonal cactus chain of n
hexagons is called ortho, denoted by On, if all internal hexagons are ortho, is called meta,
denoted by Mn, if all internal hexagons are meta and is called para, denoted by Ln, if the
internal hexagons are para. Not long ago, Sadeghieh et al. [5] calculated degree-based
topological indices of some cactus chain and their Hosoya polynomial as well. Further,
Sadeghieh et al. [6] also computed Gutman index of some cactus chains.

A numeric quantity that is mathematically derived from the graph is the topological in-
dex of a graph, which is always the same for isomorphic graphs. Different researchers have
recently defined many topological indices; these have many uses in chemistry, medicine,
biochemistry, and other fields to theoretically understand the physicochemical proper-
ties of the chemical compounds. Degree-related topological invariants having ability to
predict the biological activity of particular classes of chemical compounds make them
highly desirable for utilization in QSAR/QSPR studies known as the degree-based topo-
logical indices[7]. For some references on topological indices, the readers can see in [8].
Xu et.al. [9] published a survey on graphs extremel based on distance-based topological
indices. Recently, there has been a spike in interest in topological indices research. A
huge number of topological descriptors have been found and used in theoretical chem-
istry, particularly in QSPR or QSAR [[10],[11]]. In this paper, G is considered to be a
connected and simple graph with edge set E(G) and V (G) vertex set; d(v) is considered
as degree of vertex v ∈ V (G) and the open neighbourhood of v is Sv =

∑
u∈NG(v) d(v),

where NG(v) = {u ∈ V (G)|uv ∈ E(G)}.

The Wiener index was the first and most thoroughly studied in QSPR [12–14]. Many
new topological indices have been introduced to predict different physical properties of
the compounds ever since. The first topological index based on degree is the Randic
connectivity index, denoted by R− 1

2
(G) defined in [15] introduced by Milan Randić is

χ (G) =
∑

uv∈E(G)

1√
dudv

.

K.C.Das and S. Sorgun calculated Randic energy of graphs in [16]. The Atom-Bond
Connectivity (ABC) index is the regularly used connectivity index that was initiated by
Estrada et al. [17] and can be described as

ABC (G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.
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The Geometric-Arithmetic (GA) index was introduces in [18] by Vukičević et al. and is
calculated as

GA (G) =
∑

uv∈E(G)

2
√
dudv

(du + dv)
.

A survey on geometric-arithmetic indices of graphs was published by K.C. Das, I. Gutman
[19] in 2011. The second Zagreb index (ZG2(G)) is calculated as

ZG2 (G) =
∑

uv∈E(G)

(dudv).

where du and dv represent degrees of u and v. M. Azari and A. Iranmanesh calculated
Zagreb indices of some Chemical graphs [20]. In 2010, Ghorbani et al. [21] introduced
the ABC4 index which is the fourth version of ABC index and is defined as

ABC4 (G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

In 2011, Graovac et al. [22] proposed fifth version GA5 of GA index and defined as

GA5 (G) =
∑

uv∈E(G)

2
√
SuSv

(Su + Sv)
.

From the above discussion, it is clear that one can find the randic index, atom-bond
connectivity index, geometric arithmetic index, Zagreb index, fourth atom bond connec-
tivity index and fifth geometric arithmetic index if we know what types of edges are there
and what is the sum of degrees of end vertices of these edges are in the graphs.
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Figure 1. A cactus C11.
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Definition 1.1. Let Cn be a hexagonal cactus with n hexagons whose each branching
hexagon is adjacent to exactly 3 other hexagons via the 3 vertices that are distance 2
apart.

Figure 1 shows an example of a graph C11. Thus, the problem that arises is:

Problem 1.2. What are the structures of Cn such that their degree based topological
indices are maximum or minimum?

In this paper, we partially answer Problem 1.2 (in Theorems 2.5 and 2.6) by establishing
upper and lower bounds of Randic connectivity index, Atom-bond connectivity index,
Geometric-arithmetric index, second zagreb index, the fourth version of ABC index and
the fifth version GA index of Cn as well as characterizing all Cn satisfying the upper or
lower bounds. This paper is organized in the following manner: we state our main results
of this paper in the next section, while proofs are given in Section 3.

2. Main Results

In this section, we state all our main results. The first observation is obvious but
necessary in the proofs of main theorem.

Observation 2.1. For a hexagonal cactus Cn, we let h be the number of internal
hexagons, b be number of branching hexagons and l be number of leave hexagons. Then,

n = b+ h+ l.

The following lemma is an upper bound of the number of leaves of a tree in terms of
the maximum degree and order. We provide the proof in Section 3.

Lemma 2.2. Let G be a tree of order n having maximum degree ∆. If G has b branching
vertices and l leaves, then

(∆− 2)b ≥ l − 2

and the equality holds when every branching vertex has degree ∆. In particular, if ∆ = 3,
then b = l − 2.

In the following, for a Cactus Cn of n hexagons, we let

• l be the number of leaf hexagons,
• m be the number of meta-hexagons,
• p be the number of para-hexagons,
• o be the number of otho-hexagons
• h be the number of internal hexagons and
• b be the number of branching hexagons.

Hence, h = m+ p+ o.

Our first main theorem establishes the exact values of χ(Cn), ABC(Cn), GA(Cn) and
ZG2(Cn) in terms of the numbers of hexagons with different types.
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Theorem 2.3. Let Cn be a cactus of n hexagons. Then

χ(Cn) = (
1 + 2

√
2√

2
)l + (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p) +

3b√
2

(2.1)

ABC(Cn) = 3
√

2(l +m+ p+ b) +
10 +

√
3

2
√

2
o (2.2)

GA(Cn) = (
4
√

2

3
+ 4)(l + o) + (

8
√

2

3
+ 2)(m+ p) + 4

√
2b (2.3)

ZG2 (Cn) = 32l + 40(m+ p) + 44o+ 48b. (2.4)

Further, we let

• b̃ be the number of branching hexagons that are not attached to any ortho-
hexagon,

• b̄ be the number of branching hexagons that are attached to at least one ortho-
hexagon,

• l̃ be the number of leave hexagons that are not attached to any ortho-hexagons,

• l̄ be the number of leave hexagons that are attached to at least one ortho-
hexagon.

Hence, l = l̄ + l̃ and b = b̄+ b̃. Our second main theorem establishes the exact values of
ABC4(Cn) and GA5 (Cn).

Theorem 2.4. Let Cn be a cactus of n hexagons. Then

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)o

+ (

√
10

3
+ 2)p+ (

2√
3

+ 1 +

√
14

4
)m

+ (
3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄

(2.5)

GA5 (Cn) = (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)o+ (2 +

4
√

6

5
+

8
√

3

7
)(l̃ +m)

+ (2 +
4
√

6

5
+

√
15

2
)l̄ + (2 +

16
√

3

7
)p+ (4 +

8
√

5

9
)b̄+ 6b̃.

(2.6)

By applying the results in Theorems 2.3 and 2.4, we establish upper and lower bounds
of the topological indices and characterize the graphs Cn satisfying the bounds as detailed
in Theorems 2.5 and 2.6.
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Theorem 2.5. Let n be any positive number and Cn be a cactus of n hexagons. Then

2.414n+ 0.586 ≤ χ(Cn) ≤ 2.457n+ 0.5

4.148n+ 0.189 ≤ ABC(Cn) ≤ 4.243n

5.771n+ 0.229 ≤ GA(Cn) ≤ 5.886n

40n− 16 ≤ ZG2 (Cn) ≤ 44n− 24.

For atom bond connectivity index, the lower bound holds if there is no branching hexagon
and all the internal hexagons are ortho hexagon while the upper bound holds if there is no
branching hexagon and all the internal hexagons are either para or meta hexagons. For
randic index, geometric arithmetic index and second zagreb index the lower bound holds if
all the internal hexagons are either para or meta and there is no branching hexagon while
the upper bounds holds if all the hexagons are ortho and there is no branching hexagons.

Theorem 2.6. Let n be any positive number and Cn be a cactus of n hexagons. Then

3.054n− 5.457 ≤ ABC4(Cn) ≤ 3.257n+ 0.177.

The upper bound holds if there are no branching hexagons and all internal hexagons are
ortho while the lower bound holds if all internal hexagons are para with no branching
hexagon. Further,

5.852n+ 4.089 ≤ GA5 (Cn) ≤ 5.97n− 0.061.

The upper bound holds if Cn is a cactus of n hexagons having only branching hexagons
and leaf hexagons while the lower bound holds if all inner hexagons are ortho with no
branching hexagons.

From Theorems 2.3 and 2.4, we also obtain the following corollaries when all the
internal hexagons of Cn are the same type. We skip the proofs as they are obvious.

Corollary 2.7. If the cactus Cn has no para or ortho hexagons, i.e. p = o = 0, then

l = l̃, b = b̃ and

χ(Cn) = (
1 + 2

√
2√

2
)l + (1 +

√
2)m+

3b√
2

ABC(Cn) = 3
√

2(l +m+ b)

GA(Cn) = (
4
√

2

3
+ 4)l + (

8
√

2

3
+ 2)m+ 4

√
2b

ZG2 (Cn) = 32l + 40m+ 48b

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l + (
2√
3

+ 1 +

√
14

4
)m+ (

3
√

14

4
)b

GA5 (Cn) = (2 +
4
√

6

5
+

8
√

3

7
)(l +m) + 6b.
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Corollary 2.8. If the cactus Cn has no para and meta hexagons, i.e. m = p = 0, then

χ(Cn) = (
1 + 2

√
2√

2
)l + (

4 + 7
√

2

4
√

2
)o+

3b√
2

ABC(Cn) = 3
√

2(l + b) +
10 +

√
6

2
√

2
o

GA(Cn) = (
4
√

2

3
+ 4)(l + o) + 4

√
2b

ZG2 (Cn) = 32l + 44o+ 48b

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)o

+ (
3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄

GA5 (Cn) = (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)o+ (2 +

4
√

6

5
+

8
√

3

7
)l̃

+ (2 +
4
√

6

5
+

√
15

2
)l̄ + (4 +

8
√

5

9
)b̄+ 6b̃.

Corollary 2.9. If the cactus Cn has no meta and ortho hexagons, i.e. m = o = 0, then

l = l̃, b = b̃ and

χ(Cn) = (
1 + 2

√
2√

2
)l + (1 +

√
2)p+

3b√
2

ABC(Cn) = 3
√

2(l + p+ b)

GA(Cn) = (
4
√

2

3
+ 4)l + (

8
√

2

3
+ 2)p+ 4

√
2b

ZG2 (Cn) = 32l + 40p+ 48b

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l + (

√
10

3
+ 2)p+ (

3
√

14

4
)b

GA5 (Cn) = (2 +
4
√

6

5
+

8
√

3

7
)l + (2 +

16
√

3

7
)p+ 6b.

Finally, from Theorems 2.3 and 2.4, we also obtain the following corollaries when Cn

is a hexagonal cactus chain, i.e. b = 0. Thus,

l = 2 and n = h+ b+ l = h+ 2.

We have that:
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Corollary 2.10. If Cn is a meta-hexagonal cactus chain, i.e. b = 0 and p = o = 0, then
l = l̃ = 2,m = h and n = h+ b+ l = m+ 2. Further, we have that

χ(Cn) = 2.414n+ 0.586

ABC(Cn) = 4.243n

GA(Cn) = 5.771n+ 0.229

ZG2 (Cn) = 40n− 16

ABC4(Cn) = 3.09n+ 0.579

GA5 (Cn) = 5.939n.

Corollary 2.11. If Cn is an otho-hexagonal cactus chain, i.e. b = 0 and p = m = 0,
then l = l̄ = 2, o = h and n = h+ b+ l = o+ 2. Further, we have that

χ(Cn) = 2.457n+ 0.5

ABC(Cn) = 4.148n+ 0.189

GA(Cn) = 5.886n

ZG2 (Cn) = 44n− 24

ABC4(Cn) = 3.257n+ 0.177

GA5 (Cn) = 5.852n+ 4.089.

Corollary 2.12. If Cn is an para-hexagonal cactus chain, i.e. b = 0 and o = m = 0,
then l = l̃ = 2, p = h and n = h+ b+ l = p+ 2. Further, we have that

χ(Cn) = 2.414n+ 0.586

ABC(Cn) = 4.243n

GA(Cn) = 5.77n+ 0.229

ZG2 (Cn) = 40n− 16

ABC4(Cn) = 3.054n− 5.457

GA5 (Cn) = 5.959n− 0.04.

3. Proofs

3.1. Proof of Lemma 2.2

Let B and L be the sets of branching vertices and leaves of G, respectively. Hence,
V (G) \ (B ∪ L) is the set of vertices of degree two of G. If B = ∅, then b = 0 and the
graph G is a path. Thus, (∆− 2)b = 0 ≥ 2− 2 = l− 2 because every path has l = 2. This
proves the lemma.

Thus, we may assume that B 6= ∅. We call a path P of length at least 2 in G a “bad
path” if both end vertices of P are in B ∪ L and all the internal vertices of P are in
V (G) \ (B ∪ L) (P always has internal vertices as it has length at least two).

We construct a tree T from G by replacing each bad path v1v2...v` by the edge v1v`
and remove all vertices v2, ..., v`−1. Figure (2) shows example to obtain T from G.
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Figure 2. A tree G (left) and the corresponding tree T (right).

Let B′ and L′ be the sets of all branching vertices and leaves of T , respectively. By the
construction of T , we see that:

(a) B = B′ and L = L′,

(b) V (T ) = B′ ∪ L′ and

(c) du,T = du,G for all u ∈ V (T ).

By (a), |B′| = b. It can be checked that T [B′] is a tree. Thus, T [B′] has b− 1 edges
We further let

du,B′ = |NT (u) ∩B′| and du,L′ = |NT (u) ∩ L′|.
Thus, by (b), we have that∑

u∈B′

du,L′ = |L′| = l (3.1)

and

∆ ≥ du,T = du,B′ + du,L′ (3.2)

for all u ∈ V (T ). We sum (3.2) overall u ∈ B′ and have that∑
u∈B′

∆ ≥
∑
u∈B′

du,B′ +
∑
u∈B′

du,L′ . (3.3)

Because T [B′] has b− 1 edges, it follows that
∑

u∈B′ du,B′ = 2(b− 1). By (3.1), we have
that

b∆ ≥ 2(b− 1) + l (3.4)

and this proves the first inequality of Lemma 2.2.

It can be observed that the equality (3.4) holds if the equality (3.2) holds implying
that every vertex in B′ has degree ∆. Hence, by (a), the equality of Lemma 2.2 holds



594 Thai J. Math. Vol. 21 (2023) /H. Tabassum et al.

if every branching vertex of G has degree ∆. For the case when ∆ = 3, it is easy to see
that every branching vertex has degree ∆ = 3. Hence, b = l − 2 when ∆ = 3 and this
completes the proof.

3.2. Proof of Theorem 2.3

Let Cn be the graph of hexagonal cacti defined in Definition 1.1. We have V (Cn) =
5n + 1 and E(Cn) = 6n where n represents number of hexagons in Cn. We have found
the edge partition of Cn based on the degree of end vertices of each edge.

It can be observed that there are 3 types of edges in Cn which are (2, 2), (2, 4) and
(4, 4). For the type (2, 2), there are 4 such edges in each leaf hexagon, 2 such edges in
each meta- or para-hexagon and 3 edges in each ortho-hexagon. Thus, the number of
(2, 2) edges in Cn is 4l+ 2(m+ p) + 3o. Similarly, the number if (2, 4) and (4, 4) edges in
Cn are 2(l + o) + 4(m+ p) + 6b and o, respectively. Table 1 concludes such partition for
Cn. Moreover, we have 3 type of edges according to degrees.

Table 1. Edge partition of hexagonal cactus based on the degree of end vertices

(du, dv)|uv ∈ E(G) Number of edges
(2,2) 4l+2(m+p)+3o
(2,4) 2(l+o)+4(m+p)+6b
(4,4) o

Now, by using the edge partition given in Table 1, we can use formula of Randic index to
compute this index for Cn.

χ (Cn) =
∑

uv∈E(G)

1√
dudv

.

This implies that,

χ (Cn) = (4l + 2(m+ p) + 3o)
1√

2× 2

+ (2(l + o) + 4(m+ p) + 6b)
1√

2× 4

+ o
1√

4× 4
.

After an easy simplification, we can get

χ(Cn) = (
1 + 2

√
2√

2
)l + (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p) +

3b√
2
.

Now, we apply formula of Atom-bond connectivity index for Cn. By using edge partition
given in Table 1, we can compute this index for Cn. Since,

ABC (Cn) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.
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This implies that,

ABC (Cn) = (4l + 2(m+ p) + 3o)

√
2 + 2− 2

2× 2

+ (2(l + o) + 4(m+ p) + 6b)

√
2 + 4− 2

2× 4

+ o

√
4 + 4− 2

4× 4
.

An easy simplification gives,

ABC(Cn) = 3
√

2(l +m+ p+ b) +
10 +

√
3

2
√

2
(o).

Now, we apply formula of geometric arithmetic index for Cn. By using edge partition
given in Table 1, we can compute this index for Cn. Since,

GA (Cn) =
∑

uv∈E(G)

2
√
dudv

(du + dv)
.

This implies that,

GA (Cn) = (4l + 2(m+ p) + 3o)
2
√

2× 2

(2 + 2)

+ [2(l + o) + 4(m+ p) + 6b]
2
√

2× 4

(2 + 4)

+ o
2
√

4× 4

(4 + 4)
.

An easy simplification gives,

GA(Cn) = (
4
√

2

3
+ 4)(l + o) + (

8
√

2

3
+ 2)(m+ p) + 4

√
2b.

Now, we apply formula of second Zagreb index for Cn. By using edge partition given in
Table 1, we can compute this index for Cn. Since,

ZG2 (G) =
∑

uv∈E(G)

(dudv).

This implies that,

ZG2 (Cn) = [4l + 2(m+ p) + 3o](2× 2) + [2(l + o) + 4(m+ p) + 6b](2× 4)

+ o(4× 4).

An easy simplification gives,

ZG2 (Cn) = 32l + 40(m+ p) + 44o+ 48b.
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Table 2. Edge partition of hexagonal cactus based on the degree sum
of neighbors of end vertices

(Su, Sv)|uv ∈ E(G) Number of edges

(4,4) 2o+ 2l̃ + 2l̄

(4,6) o+ 2m+ 2l̃ + l̄
(4,10) o
(6,6) 2p

(6,8) 4p+ 2m+ 2l̃
(6,10) o+ 2l̄

(8,8) 6b̃+ 4b̄+ 2m
(8,10) 2b̄
(10,10) o

3.3. Proof of Theorem 2.4

Let Cn be the graph of hexagonal chain cacti. We have V (Cn) = 5n+1 and E(Cn) = 6n
where n represents number of hexagons in hexagonal chain cacti. Let the number of
branches be b and b = b̃ + b̄ where b̃ number of branches that are not attached to ortho
hexagons and b̄ be tha branches attached to ortho hexagons. The number of leaves be
l = l̃+ l̄ where l̃ number of leaves that are not attached to ortho hexagons and let l̄ be the
leaves attached to ortho-hexagon. We can use formula of ABC4 index to compute this
index for Cn. We have found the edge partition of Cn based on degree sum of neighbors
of end vertices of each edge.

It can be observed that there are 9 types of edges in Cn which are (4, 4), (4, 6), (4, 10),
(6, 6), (6, 8), (6, 10), (8, 8), (8, 10) and (10, 10). Table 1 concludes such partition for Cn.
Moreover, we have 3 type of edges according to degrees.

Table 2 explains such partition for Cn. Moreover, we have 9 type of edges according
to degrees.As given in the table,

ABC4 (G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

This implies that,

ABC4 (Cn) =

√
4 + 4− 2

4× 4
(2o+ 2l̃ + 2l̄)

+

√
4 + 6− 2

4× 6
(o+ 2m+ 2l̃ + 2l̄) +

√
4 + 10− 2

4× 10
o

+

√
6 + 6− 2

6× 6
(2p) +

√
6 + 8− 2

6× 8
(4p+ 2m+ 2l̃)

+

√
6 + 10− 2

6× 10
(o+ 2l̄) +

√
8 + 8− 2

8× 8
(6b̃+ 4b̄+ 2m)

+

√
8 + 10− 2

8× 10
(2b̄) +

√
10 + 10− 2

10× 10
o
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an easy simplification gives,

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)o+ (

√
10

3
+ 2)p

+ (
2√
3

+ 1 +

√
14

4
)m+ (

3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄.

Now, we apply formula of fifth geometric arithmetic index for Cn. By using edge partition
given in Table 2, we can compute this index for Cn. Since,

GA5 (G) =
∑

uv∈E(G)

2
√
SuSv

(Su + Sv)

this implies that,

GA5 (Cn) =
2
√

4× 4

4 + 4
(2o+ 2l̃ + 2l̄)

+
2
√

4× 6

4 + 6
(o+ 2m+ 2l̃ + 2l̄) +

2
√

4× 10

4 + 10
o

+
2
√

6× 6

6 + 6
(2p) +

2
√

6× 8

6 + 8
(4p+ 2m+ 2l̃)

+
2
√

6× 10

6 + 10
(o+ 2l̄) +

2
√

8× 8

8 + 8
(6b̃+ 4b̄+ 2m)

+
2
√

8× 10

8 + 10
(2b̄) +

2
√

10× 10

10 + 10
o

an easy simplification gives,

GA5 (Cn) = (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)o+ (2 +

4
√

6

5
+

8
√

3

7
)(l̃ +m)

+ (2 +
4
√

6

5
+

√
15

2
)l̄ + (2 +

16
√

3

7
)p+ (4 +

8
√

5

9
)b̄+ 6b̃.

3.4. Proof of Theorem 2.5

By Observation 2.1 we have:

n = b+ h+ l (3.5)

We further construct a tree T from Cn where the set of vertices of T is the set of hexagons
of Cn. Two vertices of T are adjacent if and only if the two corresponding hexagons share
a common vertex. Clearly, T is a tree with n vertices having l leaves, b vertices of degree at
least three and h vertices of degree two. Further, by the definition of Cn, T has maximum
degree three. Thus, Lemma 2.2 gives that b = l − 2. This implies that b = l − 2 for the
graph Cn too. By Equation (3.5), we have

n = h+ 2b+ 2
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which gives

2b+ h = n− 2. (3.6)

We will use Equations (3.5) and (3.6) to find bounds for all the indices given below.

3.4.1. Bounds of Randic Index

We first prove the lower bound. By Equation (2.1), we have

χ(Cn) = (
1 + 2

√
2√

2
)l + (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p) +

3b√
2
.

Replacing l by b+ 2 and 2b+ h by n− 2 yield

χ(Cn) = (
1 + 2

√
2√

2
)(b+ 2) + (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p) +

3b√
2

= (
4 + 2

√
2√

2
)b+

2 + 4
√

2

4
√

2
+ (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p)

≥ (
4 + 2

√
2√

2
)b+

2 + 4
√

2

4
√

2
+ (1 +

√
2)o+ (1 +

√
2)(m+ p)

= (2 + 2
√

2)b+
2 + 4

√
2

4
√

2
+ (1 +

√
2)(m+ p+ o)

= (1 +
√

2)(2b) +
2 + 4

√
2

4
√

2
+ (1 +

√
2)h

= (1 +
√

2)(2b+ h) +
2 + 4

√
2

4
√

2

= (1 +
√

2)(n− 2) +
2 + 4

√
2

4
√

2

= (1 +
√

2)n− 2− 2
√

2 +
√

2 + 4

= (1 +
√

2)n+ 2−
√

2.

Thus,

χ(Cn) ≥(1 +
√

2)n+ 2−
√

2. (3.7)

It can be observed that, if the equality of Equation (3.7) holds, then o = 0. Thus, the

cactus Cn satisfies χ(Cn) = (1 +
√

2)n+ 2−
√

2 if all the inner hexagons are either meta
or para.

Next, we prove the upper bound. We have by Equation (3.6) that
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χ(Cn) = (
1 + 2

√
2√

2
)(b+ 2) + (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p) +

3b√
2

= (
4 + 2

√
2√

2
)b+ (

4 + 7
√

2

4
√

2
)o+ (1 +

√
2)(m+ p) +

√
2 + 4

≤ (
4 + 2

√
2√

2
)b+ (

4 + 7
√

2

4
√

2
)o+ (

4 + 7
√

2

4
√

2
)(m+ p) +

√
2 + 4

= (2 + 2
√

2)b+ (
4 + 7

√
2

4
√

2
)(m+ p+ o) +

√
2 + 4

≤ (
4 + 7

√
2

4
√

2
)(2b) + (

4 + 7
√

2

4
√

2
)h+

√
2 + 4

= (
4 + 7

√
2

4
√

2
)(n− 2) +

√
2 + 4.

Thus,

χ(Cn) ≤ 4 + 7
√

2

4
√

2
)(n− 2) +

√
2 + 4. (3.8)

It can be observed that, if the equality of Equation (3.8) holds, then b = m = p = 0.

Thus, the cactus Cn satisfies χ(Cn) = ( 4+7
√
2

4
√
2

)(n−2)+
√

2+4 if it is the ortho-hexagonal

cactus chain of n hexagons.

3.4.2. Bounds of Atom Bond Connectivity Index

We first prove the lower bound. By Equations (2.2) and (3.6), we have

ABC(Cn) = 3
√

2(2b+ 2 +m+ p) +
10 +

√
3

2
√

2
o

= 6
√

2b+ 6
√

2 + 3
√

2(m+ p) +
10 +

√
3

2
√

2
o

≥ 6
√

2b+ 6
√

2 +
10 +

√
3

2
√

2
(m+ p+ o)

≥ 10 +
√

3

2
√

2
(2b) + 6

√
2 +

10 +
√

3

2
√

2
h

=
10 +

√
3

2
√

2
(2b+ h) + 6

√
2

=
10 +

√
3

2
√

2
(n− 2) + 6

√
2.

Thus,

ABC(Cn) ≥ (
10 +

√
3

2
√

2
)(n− 2) + 6

√
2. (3.9)

It can be observed that, if the equality of Equation (3.9) holds, then b = m = p = 0.
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Thus, the cactus Cn satisfies ABC(Cn) = (10+
√
3

2
√
2

)(n−2)+6
√

2 if it is the ortho-hexagonal

cactus chain of n hexagons.

Next, we prove the upper bound.

ABC(Cn) = 3
√

2(l +m+ p+ b) +
10 +

√
3

2
√

2
o.

Replacing l by b+ 2 and 2b+ h by n− 2 yield

ABC(Cn) = 3
√

2(2b+ 2 +m+ p) +
10 +

√
3

2
√

2
o

= 6
√

2b+ 6
√

2 + 3
√

2(m+ p) +
10 +

√
3

2
√

2
o

≤ 6
√

2b+ 6
√

2 + 3
√

2(m+ p+ o)

= 6
√

2b+ 6
√

2 + 3
√

2h

≤ 3
√

2(2b+ h) + 6
√

2

= 3
√

2(n− 2) + 6
√

2

= 3
√

2n.

Thus,

ABC(Cn) ≤ 3
√

2n. (3.10)

It can be observed that, if equality of Equation (3.10) holds, then o = 0. Thus, the cactus

Cn satisfies ABC(Cn) = 3
√

2n if all the inner hexagons are either meta or para.

3.4.3. Bound of Geometric Arithmetic Index

We first prove the lower bound. By Equations (2.3) and (3.6), we have

GA(Cn) = (
4
√

2

3
+ 4)(b+ 2 + o) + (

8
√

2

3
+ 2)(m+ p) + 4

√
2b

= (
16
√

2 + 12

3
)b+ (

8
√

2

3
+ 8) + (

8
√

2

3
+ 2)(m+ p)

+ (
4
√

2

3
+ 4)o

≥ (
8
√

2

3
+ 2)(2b) + (

8
√

2

3
+ 8) + (

8
√

2

3
+ 2)(m+ p+ o)

≥ (
8
√

2

3
+ 2)(2b) + (

8
√

2

3
+ 8) + (

8
√

2

3
+ 2)(m+ p+ o)

= (
8
√

2

3
+ 2)(2b) + (

8
√

2

3
+ 8) + (

8
√

2

3
+ 2)h

= (
8
√

2

3
+ 2)(2b+ h) + (

8
√

2

3
+ 8)

= (
8
√

2

3
+ 2)(n− 2) + (

8
√

2

3
+ 8).
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Thus,

GA(Cn) ≥ (
8
√

2

3
+ 2)(n− 2) + (

8
√

2

3
+ 8). (3.11)

It can be observed that, if the equality of Equation (3.11) holds, then o = 0. Thus, the

cactus Cn satisfies GA(Cn) = (8
√
2

3 + 2)(n− 2) + (8
√
2

3 + 8) if all the inner hexagons are
either meta or para.

Next, we prove the upper bound.

GA(Cn) = (
4
√

2

3
+ 4)(l + o) + (

8
√

2

3
+ 2)(m+ p) + 4

√
2b.

Replacing l by b+ 2 and 2b+ h by n− 2 yield

GA(Cn) = (
4
√

2

3
+ 4)(b+ 2 + o) + (

8
√

2

3
+ 2)(m+ p) + 4

√
2b

= (
16
√

2 + 12

3
)b+ (

8
√

2

3
+ 8) + (

8
√

2

3
+ 2)(m+ p)

+ (
4
√

2

3
+ 4)o

≤ (
8
√

2 + 6

3
)(2b) + (

8
√

2

3
+ 8) + (

4
√

2

3
+ 4)(m+ p+ o)

= (
8
√

2 + 6

3
)(2b) + (

8
√

2

3
+ 8) + (

4
√

2

3
+ 4)h

≤ (
4
√

2

3
+ 4)(2b) + (

8
√

2

3
+ 8) + (

4
√

2

3
+ 4)h

= (
4
√

2

3
+ 4)(2b+ h) + (

8
√

2

3
+ 8)

= (
4
√

2

3
+ 4)(n− 2) + (

8
√

2

3
+ 8)

= (
4
√

2

3
+ 4)n.

Thus,

GA(Cn) ≤(
4
√

2

3
+ 4)n. (3.12)

It can be observed that, if the equality of Equation (3.12) holds, then b = m = p = 0.

Thus, the cactus Cn satisfies GA(Cn) = ( 4
√
2

3 + 4)n if it is the ortho-hexagonal cactus
chain of n hexagons.

3.4.4. Bounds of Second Zagreb Index

We first prove the lower bound. By Equations (2.4), we have

ZG2 (Cn) = 32l + 40(m+ p) + 44o+ 48b.
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Replacing l by b+ 2 and 2b+ h by n− 2 yield

ZG2 (Cn) = 32(b+ 2) + 40(m+ p) + 44o+ 48b

= 80b+ 40(m+ p) + 44o+ 64

≥ 40(2b) + 40(m+ p+ o) + 64

= 40(2b) + 40h+ 64

= 40(2b+ h) + 64

= 40(n− 2) + 64

= 40n− 16.

Thus,

ZG2 (Cn) ≥ 40n− 16. (3.13)

It can be observed that, if the equality of Equation (3.13) holds, then o = 0. Thus, the
cactus Cn satisfies ZG2 (Cn) = 40n−16 if all the inner hexagons are either meta or para.

Next, we prove the upper bound. We have that

ZG2 (Cn) = 32(b+ 2) + 40(m+ p) + 44o+ 48b

= 80b+ 40(m+ p) + 44o+ 48b+ 64

≤ 40(2b) + 44(m+ p+ o) + 64

= 40(2b) + 44h+ 64

≤ 44(2b+ h) + 64

= 44(n− 2) + 64

= 44n− 24.

Thus,

ZG2 (Cn) ≤ 44n− 24. (3.14)

It can be observed that, if the equality of Equation (3.14) holds, then b = m = p = 0.
Thus, the cactus Cn satisfies ZG2 (Cn) = 44n − 24 if it is the ortho-hexagonal cactus
(chain) of n hexagons.

3.5. Proof of Theorem 2.6

3.5.1. Bounds of Fourth Atom Bond Connectivity Index

We first prove the upper bound. By Equation (2.5), we have

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)o

+ (

√
10

3
+ 2)p+ (

2√
3

+ 1 +

√
14

4
)m

+ (
3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄.
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Replacing the coefficients of p and m by the coefficient of o yield

ABC4(Cn) ≤ (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)(m+ p+ o)

+ (
3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄.

The equality holds if m = p = 0. As all inner hexagons are ortho hexagons, b̃ = l̃ = 0.

This implies b = b̄ and l = l̄. By Equations (3.5) and (3.6), we have

ABC4(Cn) = (

√
3

2
+

2√
3

+ 2

√
7√
30

)l + (

√
14

2
+

2√
5

)b

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)h

= (

√
3

2
+

2√
3

+ 2

√
7√
30

+

√
14

2
+

2√
5

)b+ 2(

√
3

2
+

2√
3

+ 2

√
7√
30

) + (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)h

= (

√
3

2
√

2
+

1√
3

+

√
7√
30

+

√
14

4
+

1√
5

)(2b)

+ 2(

√
3

2
+

2√
3

+ 2

√
7√
30

)

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)h

≤ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)(2b+ h)

+ 2(

√
3

2
+

2√
3

+ 2

√
7√
30

)

= (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)(n− 2)

+ 2(

√
3

2
+

2√
3

+ 2

√
7√
30

)

= (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)n

− 2

√
3

10
+ 2

√
7√
30
− 3

√
2

5
+

2√
3
.

Thus,
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ABC4(Cn) ≤ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)n

− 2

√
3

10
+ 2

√
7√
30
− 3

√
2

5
+

2√
3
.

(3.15)

It can be observed that, if the equality of Equation (3.15) holds, then b = m = p = 0.

Thus, the cactus Cn satisfies ABC4(Cn) = (
√

3
2 +

√
3√
10

+
√
7√
30

+ 3
√
2

10 + 1√
3
)n − 2

√
3
10 +

2
√
7√
30
− 3

√
2
5 + 2√

3
if it is the ortho-hexagonal cactus chain of n hexagons.

Next, we prove the lower bound. By Equation (2.5), we have

ABC4(Cn) = (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
3

2
+

√
3√
10

+

√
7√
30

+
3
√

2

10
+

1√
3

)o

+ (

√
10

3
+ 2)p+ (

2√
3

+ 1 +

√
14

4
)m

+ (
3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄

≥ (

√
3

2
+

2√
3

+ 1)l̃ + (

√
3

2
+

2√
3

+ 2

√
7√
30

)l̄

+ (

√
10

3
+ 2)(m+ p+ o)

+ (
3
√

14

4
)b̃+ (

√
14

2
+

2√
5

)b̄.

Thus, the equality holds if m = o = 0. As all the inner hexagons are para hexagons, we
have that b̄ = l̄ = 0. This implies b = b̃ and l = l̃. By Equations (3.5) and (3.6), we have
that

ABC4(Cn) ≥ (

√
3

2
+

2√
3

+ 1)l + (

√
10

3
+ 2)(m+ p+ o) + (

3
√

14

4
)b

= (

√
3

2
+

2√
3

+ 1)l + (

√
10

3
+ 2)h+ (

3
√

14

4
)b

= (

√
3

2
+

2√
3

+ 1)(b+ 2) + (

√
10

3
+ 2)h+ (

3
√

14

4
)b

= (

√
3

2
+

2√
3

+ 1 +
3
√

14

4
)b+ (

√
10

3
+ 2)h

+ 2(

√
3

2
+

2√
3

+ 1)
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= (

√
3

8
+

1√
3

+
1

2
+

3
√

14

8
)(2b) + (

√
10

3
+ 2)h

+ 2(

√
3

2
+

2√
3

+ 1)

≥ (

√
10

3
+ 2)(2b+ h) + 2(

√
3

2
+

2√
3

+ 1)

= (

√
10

3
+ 2)(n− 2) + 2(

√
3

2
+

2√
3

+ 1)

= (

√
10

3
+ 2)n− 2

√
10

3
+
√

6 +
4√
3
− 2.

Therefore,

ABC4(Cn) ≥(

√
10

3
+ 2)n− 2

√
10

3
+
√

6 +
4√
3
− 2. (3.16)

It can be observed that, if the equality of Equation (3.16) holds, then b = m = o = 0.

Thus, the cactus Cn satisfies ABC4(Cn) = (
√
10
3 + 2)n − 2

√
10
3 +

√
6 + 4√

3
− 2 if it is

para-hexagonal cactus chain of n hexagons.

3.5.2. Bounds of Fifth Geometric Arithmetic Index

We first prove the upper bound. By Equation (2.6), we have

GA5 (Cn) = (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)o+ (2 +

4
√

6

5
+

8
√

3

7
)(l̃ +m)

+ (2 +
4
√

6

5
+

√
15

2
)l̄ + (2 +

16
√

3

7
)p+ (4 +

8
√

5

9
)b̄+ 6b̃.

Replacing the coefficients of o and m by the coefficient of p yield

GA5 (Cn) ≤ (2 +
16
√

3

7
)(m+ p+ o) + (2 +

4
√

6

5
+

8
√

3

7
)(l̃)

+ (2 +
4
√

6

5
+

√
15

2
)l̄ + (4 +

8
√

5

9
)b̄+ 6b̃.

The equality holds if m = o = 0. As there is no ortho hexagon, we have that b̄ = l̄ = 0.
This implies b = b̄ and l = l̄. By Equations (3.5) and (3.6), we have

GA5 (Cn) = (2 +
16
√

3

7
)h+ (2 +

4
√

6

5
+

8
√

3

7
)l + 6b

= (2 +
16
√

3

7
)h+ (2 +

4
√

6

5
+

8
√

3

7
)(b+ 2) + 6b
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= (2 +
16
√

3

7
)h+ (8 +

4
√

6

5
+

8
√

3

7
)b

+ 2(2 +
4
√

6

5
+

8
√

3

7
)

= (2 +
16
√

3

7
)h+ (4 +

2
√

6

5
+

4
√

3

7
)(2b)

+ 2(2 +
4
√

6

5
+

8
√

3

7
)

≤ (4 +
2
√

6

5
+

4
√

3

7
)(2b+ h) + 2(2 +

4
√

6

5
+

8
√

3

7
)

= (4 +
2
√

6

5
+

4
√

3

7
)(n− 2) + 2(2 +

4
√

6

5
+

8
√

3

7
)

= (4 +
2
√

6

5
+

4
√

3

7
)n− 4 +

4
√

6

5
+

8
√

3

7
.

Thus,

GA5 (Cn) ≤ (4 +
2
√

6

5
+

4
√

3

7
)n− 4 +

4
√

6

5
+

8
√

3

7
. (3.17)

It can be observed that, if the equality of Equation (3.17) holds, then h = 0. Thus, the

cactus Cn satisfies GA5 (Cn) = (4 + 2
√
6

5 + 4
√
3

7 )n − 4 + 4
√
6

5 + 8
√
3

7 if it is a cactus of n
hexagons having only branching hexagons and leaf hexagons.

Next, we prove the lower bound. By Equation (2.6), we have

GA5 (Cn) = (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)o+ (2 +

4
√

6

5
+

8
√

3

7
)(l̃ +m)

+ (2 +
4
√

6

5
+

√
15

2
)l̄ + (2 +

16
√

3

7
)p+ (4 +

8
√

5

9
)b̄+ 6b̃

≥ (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)(o+m+ p) + (2 +

4
√

6

5

+
8
√

3

7
)l̃ + (2 +

4
√

6

5
+

√
15

2
)l̄ + (4 +

8
√

5

9
)b̄+ 6b̃.

Thus, the equality holds if m = p = 0. That is all the inner hexagons are ortho hexagons.

So, b̃ = l̃ = 0. This implies b = b̄ and l = l̄. By Equations (3.5) and (3.6), we have

GA5 (Cn) = (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)h+ (2 +

4
√

6

5
+

√
15

2
)l

+ (4 +
8
√

5

9
)b

= (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)h+ (2 +

4
√

6

5

+

√
15

2
)(b+ 2) + (4 +

8
√

5

9
)b
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= (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)h+ (6 +

4
√

6

5

+

√
15

2
+

8
√

5

9
)b+ 2(2 +

4
√

6

5
+

√
15

2
)

= (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)h+ (3 +

2
√

6

5

+

√
15

4
+

4
√

5

9
)(2b) + 2(2 +

4
√

6

5
+

√
15

2
)

≥ (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)(2b+ h)

+ 2(2 +
4
√

6

5
+

√
15

2
)

= (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)(n− 2) + 2(2 +

4
√

6

5
+

√
15

2
)

= (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)n+ 2 +

4
√

6

5
− 4
√

10

7
+

√
15

2

GA5 (Cn) ≥ (3 +
2
√

6

5
+

2
√

10

7
+

√
15

4
)n+ 2 +

4
√

6

5
− 4
√

10

7
+

√
15

2
. (3.18)

It can be observed that, if the equality of Equation (3.18) holds, then b = m = p = 0.

Thus, the cactus Cn satisfies GA5 (Cn) = (3+ 2
√
6

5 + 2
√
10
7 +

√
15
4 )n+2+ 4

√
6

5 −
4
√
10
7 +

√
15
2

if it is the ortho-hexagonal cactus chain of n hexagons.
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