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Abstract Let X be a nonempty set and T (X) denote the semigroup of transformations from X to itself

under the composition of functions. For a fixed nonempty subset Y of X, let

S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y }.

Then S(X,Y ) is a semigroup of total transformations of X which leave a subset Y of X invariant. In

this paper, we characterize coregular elements of S(X,Y ) and give necessary and sufficient conditions for

S(X,Y ) to be coregular. Moreover, we study some properties of regularity on S(X,Y ) and give necessary

and sufficient conditions for S(X,Y ) to be left regular, right regular, completely regular, intra-regular

and directly finite.
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1. Introduction

Regular semigroups play an important role in the semigroup theory and they have
been studied from various aspects. An element a in a semigroup S is said to be regular if
a = aba for some b ∈ S, left regular if a = ba2 for some b ∈ S, right regular if a = a2b for
some b ∈ S, completely regular if a = aba and ab = ba for some b ∈ S and intra-regular
if a = ba2c for some b, c ∈ S. In fact, a is both left and right regular if and only if a is
completely regular. S is a regular [left regular, right regular, completely regular and intra-
regular ] semigroup if every element of S is regular [left regular, right regular, completely
regular and intra-regular].

A special case of a regular element is a coregular element. An element a in a semigroup
S is coregular if there exists b ∈ S such that a = aba = bab, and S is coregular if every
element in S is coregular. Clearly, an element a in a semigroup S is coregular if and only
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if a3 = a, and every coregular element is regular, left regular, right regular and completely
regular. Coregular semigroup was first introduced and studied by Bijev and Todorov [2].

We denote the set of all regular elements, left regular elements, right regular elements,
completely regular elements, intra-regular elements and coregular elements of a semigroup
S by Reg(S), LReg(S), RReg(S), CReg(S), IReg(S) and CoReg(S), respectively.

An element a in a semigroup S is said to be idempotent if a2 = a. Then an idempotent
of S is regular, left regular, right regular, completely regular, intra-regular and coregular.
The set of all idempotents of S is denoted by E(S).

A semigroup S is factorizable if S = GE for some subgroup G of S and some set E of
idempotents of S. We note that if a semigroup S is factorizable as GE, then S = GE(S).

An element a of a monoid S is said to be unit regular if a = aua for some unit u in S;
and S is a unit regular semigroup if every element of S is unit regular. A monoid S with
identity 1 is directly finite if for any a and b in S, ab = 1 implies ba = 1.

In 1980, Alarcao [1] characterized when a monoid S is unit regular and when it is
directly finite. The author also gave relationships between a factorizable semigroup, a
unit regular semigroup and a directly finite semigroup.

Let X be a nonempty set, and T (X) denote the set of all transformations from X to
itself. Then T (X) is a semigroup under the composition of maps and it is called the full
transformation semigroup on X. It is known that T (X) is a regular semigroup and every
semigroup can be embedded in T (Z) for some set Z (see [7]).

In 1979, Tirasupa [10] showed that T (X) is factorizable if and only if X is finite. Later,
in 1980 Alarcao [1] gave necessary and sufficient conditions for T (X) to be unit regular
and directly finite.

For a fixed nonempty subset Y of X, let

S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y }.
Then S(X,Y ) is a semigroup of total transformations on X which leave a subset Y of X
invariant. The semigroup S(X,Y ) was first introduced and studied by Magill [8] in 1966.
To the extent that S(X,X) = T (X), we may regard S(X,Y ) as a generalization of T (X).
Note that the identity map on X, denoted by idX , belongs to S(X,Y ). For many years,
its concepts in semigroup theory such as regularity, automorphisms, factorization, Green’s
relations and ideals are studied. In fact, elements of S(X,Y ) need not be regular that
means S(X,Y ) is not a regular semigroup in general. In 2005, Nenthein, Youngkhong
and Kemprasit [9] showed that S(X,Y ) is a regular semigroup if and only if X = Y or Y
contains exactly one element, and

Reg(S(X,Y )) = {α ∈ S(X,Y ) : Xα ∩ Y = Y α}
is the set of all regular elements of S(X,Y ). Boonmee [3] characterized when S(X,Y ) is
a factorizable semigroup in 2007. Later in 2011, Honyam and Sanwong [6] characterized
when S(X,Y ) is isomorphic to T (Z) for some set Z and proved that every semigroup
A can be embedded in S(A1, A) where A1 is a monoid obtained from A by adjoining
an identity if necessary. Moreover, they also described Green’s relations and ideals of
S(X,Y ). In 2013, Choomanee, Honyam and Sanwong [4] characterized left regular, right
regular and intra-regular elements of S(X,Y ) and considered the relationships between
these elements. Also, they found the number of left regular elements of S(X,Y ) when X
is a finite set.

In this paper, we characterize coregular elements on S(X,Y ) and give necessary and
sufficient conditions for S(X,Y ) to be coregular in section 3. In section 4, we determine
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when S(X,Y ) is left regular, right regular, completely regular and intra-regular and we
characterize when LReg(S(X,Y )), RReg(S(X,Y )), CReg(S(X,Y )) and IReg(S(X,Y ))
to be subsemigroups of S(X,Y ). Moreover, in section 5, we give necessary and sufficient
conditions for S(X,Y ) to be directly finite.

2. Preliminaries

In this section, we introduced some concepts and some results that will be used through-
out this paper.

Throughout this paper, the cardinality of a set A is denoted by |A|. Also, we write
functions on the right; in particular, this means that for a composition αβ, α is applied
first.

According to Clifford and Preston [5], vol. 2, p. 241, we will use the notation

α =

(
Xi

ai

)
to mean that α ∈ T (X) and take as understood that the subscript i belongs to some
(unmentioned) index set I, the abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai}
and aiα

−1 = Xi for all i ∈ I. Given i ∈ I, if Xi = {x} for some x ∈ X, then we simply
write x instead of {x}.

We modify the convention as in T (X), for any α ∈ S(X,Y ) we can write

α =

(
Ai Bj Ck
ai bj ck

)
,

where Ai ∩ Y 6= ∅;Bj , Ck ⊆ X \ Y ; {ai} ⊆ Y, {bj} ⊆ Y \ {ai} and {ck} ⊆ X \ Y . Here, I
is a nonempty set, but J or K can be empty. For example: if α ∈ Reg(S(X,Y )), then J
is an empty set. And if α /∈ Reg(S(X,Y )), then both I and J are nonempty sets but K
can be an empty set.

We note that for any α ∈ S(X,Y ), the symbol πα will denote the partition of X
induced by the map α, namely

πα = {xα−1 : x ∈ Xα}
and πα(Y ) will denote the subset of πα which is defined by

πα(Y ) = {xα−1 : x ∈ Xα ∩ Y }.
Green’s relations on S(X,Y ) are given by Honyam and Sanwong [6], which are needed

in characterizing some properties of regularity on S(X,Y ).

Theorem 2.1. [6, Lemmas 2-3 and Theorems 4-5] Let α, β ∈ S(X,Y ). Then the following
statements hold.

(1) αLβ if and only if Xα = Xβ and Y α = Y β.
(2) αRβ if and only if πα = πβ and πα(Y ) = πβ(Y ).
(3) αHβ if and only if Xα = Xβ, Y α = Y β, πα = πβ and πα(Y ) = πβ(Y ).
(4) αDβ if and only if |Y α| = |Y β|, |Xα \ Y | = |Xβ \ Y | and

|(Xα ∩ Y ) \ Y α| = |(Xβ ∩ Y ) \ Y β|.
(5) αJ β if and only if |Xα| = |Xβ|, |Y α| = |Y β| and |Xα \ Y | = |Xβ \ Y |.

For an element a in a semigroup S, Da and Ha denote the equivalence class of D
containing a and the equivalence class of H containing a, respectively, that is

Da = {b ∈ S : bDa} and Ha = {b ∈ S : bHa}.
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In [6] the authors showed that HidX is the group of units of S(X,Y ). In this case

HidX =

{(
ai bj
aiσ bjσ

)
: σ ∈ G(X,Y )

}
where Y = {ai} and X \ Y = {bj}; and G(X,Y ) = {α ∈ S(X) : α|Y ∈ S(Y )}. Note
that S(X) and S(Y ) are the permutation group on X and the permutation group on Y ,
respectively.

In general, Reg(S(X,Y )) is not a subsemigroup of S(X,Y ). In [6], the authors gave
necessary and sufficient conditions for Reg(S(X,Y )) to be a subsemigroup of S(X,Y ) as
follows.

Reg(S(X,Y )) is a regular subsemigroup of S(X,Y ) if and only if Y = X or |Y | = 1.

Left regularity, right regularity and intra-regularity on S(X,Y ) were studied by Chooma-
nee, Honyam and Sanwong [4] as shown in the following theorems.

Theorem 2.2. [4, Theorems 3.1, 3.2 and 3.4] Let α ∈ S(X,Y ). Then the following
statements hold.

(1) α is left regular if and only if Xα = Xα2 and Y α = Y α2.
(2) α is right regular if and only if πα = πα2 and πα(Y ) = πα2(Y ).
(3) α is intra-regular if and only if |Xα| = |Xα2|, |Y α| = |Y α2| and

|Xα \ Y | = |Xα2 \ Y |.

Theorem 2.3. [4, Theorem 3.11] Let α ∈ S(X,Y ) be such that Xα is a finite set. Then
the following statements are equivalent.

(1) α is left regular.
(2) α is right regular.
(3) α is intra-regular.

Theorem 2.4. [4, Theorem 4.3] The number of left regular elements in S(X,Y ) is

n−r∑
m=0

r∑
k=1

(
r

k

)
k!kr−k

(
n− r
m

)
m!(k +m)n−r−m

where |X| = n and |Y | = r.

3. Coregular Elements on S(X, Y )

In this section, we characterize coregular elements of S(X,Y ) and give necessary and
sufficient conditions for S(X,Y ) to be coregular. Also, we describe when CoReg(S(X,Y ))
is a subsemigroup of S(X,Y ).

For regularity on S(X,Y ) when |X| ≤ 2, we obtain the following results.

Remark 3.1. If |X| = 1, then S(X,Y ) = T (X) contains exactly one element, and
hence S(X,Y ) is regular, coregular, left regular, right regular, completely regular and
intra-regular.

Lemma 3.2. If |X| = 2, then S(X,Y ) is regular, coregular, left regular, right regular,
completely regular and intra-regular.

Proof. Let |X| = 2. We consider two cases.
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Case 1: |Y | = 1. Let X = {a, b} and Y = {a}. Then

S(X,Y ) =

{(
a b
a b

)
,

(
{a, b}
a

)}
.

Thus all elements in S(X,Y ) are idempotents and so each element is regular, coregular,
left regular, right regular, completely regular and intra-regular.

Case 2: |Y | = 2. Then

S(X,Y ) = T (X) =

{
α1 =

(
a b
a b

)
, α2 =

(
a b
b a

)
, α3 =

(
{a, b}
a

)
, α4 =

(
{a, b}
b

)}
.

Thus α1, α3, α4 are idempotents and we obtain that α2 = α2
3 = (α2)α2

2 = α2
2(α2) =

idX(α2
2)α2. So α1, α2, α3 and α4 are regular, coregular, left regular, right regular, com-

pletely regular and intra-regular.
Therefore, S(X,Y ) is regular, coregular, left regular, right regular, completely regular

and intra-regular.

Now, we study coregularity on S(X,Y ). Recall that α in S(X,Y ) is coregular if and
only if α3 = α.

In general, S(X,Y ) is not a coregular semigroup that means there exists an element
in S(X,Y ) which is not coregular as shown in the following example.

Example 3.3. Let X = {1, 2, 3, 4, 5, 6} and Y = {1, 2, 3}. Define

α =

(
{1, 2} {3, 4} 5 6

2 1 4 5

)
.

Then Y α = {1, 2} ⊆ Y and hence α ∈ S(X,Y ). We see that

α3 =

(
{1, 2, 3, 4, 5} 6

2 1

)
.

So α3 6= α and therefore, α is not coregular.

The following theorem is a characterization of coregular elements of S(X,Y ).

Theorem 3.4. Let α ∈ S(X,Y ). Then the following statements are equivalent.
(1) α is coregular.
(2) xα ∈ xα−1 for all x ∈ Xα.
(3) α2|Xα = idXα.

Proof. (1) ⇒ (2) Assume that α is coregular. Thus α3 = α. Let x ∈ Xα. Then x = zα
for some z ∈ X. So

x = zα = zα3 = (zα)αα = (xα)α,

that means xα ∈ xα−1.

(2)⇒ (3) Assume that xα ∈ xα−1 for all x ∈ Xα. For each x ∈ Xα,

xα2 = (xα)α = x = x idXα.

Thus α2|Xα = idXα.

(3)⇒ (1) Assume that α2|Xα = idXα. Let x ∈ X. Then

xα3 = (xα)α2 = (xα) idXα = xα

and so α3 = α. Hence α is a coregular element.
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Now, we give a simple example of coregular elements of S(X,Y ).

Example 3.5. Let X = N denote the set of all positive integers and Y = {1, 2, 3, 4, 5, 6}.
Define α, β ∈ S(X,Y ) by

α =

(
{1, 2} 3 {4, 5} {6, 7} 2n 2n+ 1

6 4 3 1 2n+ 1 2n

)
n≥4

and

β =

(
{1, 2} {3, 4, 5} {6, 7} n

3 1 6 n+ 1

)
n≥8
.

Then

α2 =

(
{1, 2} 3 {4, 5} {6, 7} n

1 3 4 6 n

)
n≥8
.

Thus α2|Xα = idXα and hence α is a coregular element by Theorem 3.4 (3). However, β
is not a coregular element since 9 ∈ Xβ and 9β = 10 /∈ {8} = 9β−1.

As a consequence of Theorem 3.4, the necessary and sufficient condition for the semi-
group S(X,Y ) to be a coregular semigroup given as follows.

Theorem 3.6. S(X,Y ) is coregular if and only if |X| ≤ 2.

Proof. Assume that |X| ≤ 2. By Remark 3.1 and Lemma 3.2, we have S(X,Y ) is a
coregular semigroup. Conversely, assume that |X| ≥ 3. We consider two cases.

Case 1: |Y | = 1. Then |X \ Y | ≥ 2. Let Y = {y} and z ∈ X \ Y . So X \ {y, z} 6= ∅.
Define

α =

(
{y, z} X \ {y, z}
y z

)
∈ S(X,Y ).

Thus z ∈ Xα and zα = y /∈ X \ {y, z} = zα−1. By Theorem 3.4 (2), we get α is not
coregular.

Case 2: |Y | > 1. Let a, b ∈ Y be such that a 6= b. Then X \ {a, b} 6= ∅ since |X| ≥ 3.
Define

α =

(
{a, b} X \ {a, b}
a b

)
.

We see that Xα = {a, b} ⊆ Y and so α ∈ S(X,Y ). From b ∈ Xα and bα = a /∈
X \ {a, b} = bα−1, we conclude that α is not coregular by Theorem 3.4 (2).

Therefore, S(X,Y ) is not a coregular semigroup.

From Theorem 3.4, we obtain that

CoReg(S(X,Y )) = {α ∈ S(X,Y ) : xα ∈ xα−1 for all x ∈ Xα}
=
{
α ∈ S(X,Y ) : α2|Xα = idXα

}
.

The following example shows that, in general, CoReg(S(X,Y )) is not a subsemigroup
of S(X,Y ).

Example 3.7. Let X = {1, 2, 3, 4, 5} and Y = {1, 2, 3}. Define

α =

(
{1, 2, 3} {4, 5}

1 4

)
and β =

(
{1, 2} {3, 4, 5}

3 2

)
.
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Then α, β ∈ S(X,Y ) such that α is an idempotent and

β2 =

(
{1, 2} {3, 4, 5}

2 3

)
Thus α3 = α and β2|Xβ = idXβ , and so α, β ∈ CoReg(S(X,Y )). Consider

αβ =

(
{1, 2, 3} {4, 5}

3 2

)
.

We see that 2(αβ) = 3 /∈ {4, 5} = 2(αβ)−1. By Theorem 3.4 (2), we have αβ is not
coregular, that means αβ /∈ CoReg(S(X,Y )).

In order to give necessary and sufficient conditions for the set of all coregular elements
is a subsemigroup of S(X,Y ), the following lemma is needed.

Lemma 3.8. If |X| ≥ 3, then CoReg(S(X,Y )) is not a subsemigroup of S(X,Y ).

Proof. Let |X| ≥ 3. We consider two cases.

Case 1: X = Y . Let x, y, z be distinct elements in X. Define α, β ∈ S(X,Y ) = T (X)
by

α =

(
{x, y} X \ {x, y}
y z

)
and β =

(
y X \ {y}
y x

)
.

Then α, β are idempotents and so α, β are coregular elements. We see that

αβ =

(
{x, y} X \ {x, y}
y x

)
and x ∈ Xαβ such that x(αβ) = y /∈ X \{x, y} = x(αβ)−1. By Theorem 3.4 (2), we have
αβ is not a coregular element.

Case 2: Y ( X. Let y ∈ Y and z ∈ X \ Y .

Subcase 2.1: |Y | = 1. Thus Y = {y} and there exists x ∈ X \ {y, z}. Define

α =

(
{x, y} X \ {x, y}
y z

)
and β =

(
y X \ {y}
y x

)
.

We see that α, β are idempotents in S(X,Y ) and so α, β are coregular. Then

αβ =

(
{x, y} X \ {x, y}
y x

)
and x(αβ) = y /∈ X \ {x, y} = x(αβ)−1. Thus αβ is not a coregular element.

Subcase 2.2: |Y | ≥ 2. Then there is x ∈ Y \ {y}. Define

α =

(
Y X \ Y
y z

)
and β =

(
Y \ {x} (X \ Y ) ∪ {x}

y x

)
.

So α, β ∈ S(X,Y ) and α, β are idempotents, which implies that α, β are coregular. We
obtain that

αβ =

(
Y X \ Y
y x

)
and x(αβ) = y /∈ X \ Y = x(αβ)−1, thus αβ is not coregular.

Therefore, CoReg(S(X,Y )) is not a subsemigroup of S(X,Y ).
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The following theorem is a direct consequence of Theorem 3.6 and Lemma 3.8.

Theorem 3.9. The following statements are equivalent.
(1) |X| ≤ 2.
(2) S(X,Y ) is coregular.
(3) CoReg(S(X,Y )) is a subsemigroup of S(X,Y ).

4. Some Properties of Regularity of S(X, Y )

In this section, we characterize when S(X,Y ) is left regular, right regular, completely
regular and intra-regular. Moreover, we give necessary and sufficient conditions for
LReg(S(X,Y )), RReg(S(X,Y )), CReg(S(X,Y )) and IReg(S(X,Y )) to be subsemigroups
of S(X,Y ).

Theorem 4.1. The following statements are equivalent.
(1) |X| ≤ 2.
(2) S(X,Y ) is left regular.
(3) LReg(S(X,Y )) is a subsemigroup of S(X,Y ).

Proof. It is clear that (2) ⇒ (3). To prove that (1) ⇒ (2), assume that |X| ≤ 2. Then
S(X,Y ) is left regular by Remark 3.1 and Lemma 3.2. Now, we prove that (3) ⇒ (1).
Assume that |X| ≥ 3. If X = Y , then we define α, β as in Lemma 3.8 (Case 1). So α, β
are idempotent and hence α, β are left regular elements. We see that

αβ =

(
{x, y} X \ {x, y}
y x

)
and (αβ)2 =

(
X
y

)
,

so X(αβ) 6= X(αβ)2. Thus αβ is not left regular by Theorem 2.2 (1). If Y ( X and
|Y | = 1, then we define α, β as in Lemma 3.8 (Subcase 2.1). By the same prove as given
for the case X = Y , we get α, β are left regular, but αβ is not left regular. And, if Y ( X
and |Y | ≥ 2, we define α, β as in Lemma 3.8 (Subcase 2.2). So α, β are idempotent and
also left regular elements. We obtain that

αβ =

(
Y X \ Y
y x

)
and (αβ)2 =

(
X
y

)
,

and hence X(αβ) 6= X(αβ)2. Thus αβ is not left regular by Theorem 2.2 (1). Therefore,
LReg(S(X,Y )) is not a subsemigroup of S(X,Y ).

Theorem 4.2. The following statements are equivalent.
(1) |X| ≤ 2.
(2) S(X,Y ) is right regular.
(3) RReg(S(X,Y )) is a subsemigroup of S(X,Y ).

Proof. Clearly (2) ⇒ (3). By Remark 3.1 and Lemma 3.2, we conclude that (1) ⇒ (2).
Now, we prove that (3)⇒ (1). Assume that |X| ≥ 3. Define α, β ∈ S(X,Y ) as in Lemma
3.8. Then α, β are right regular elements. But, we obtain that παβ 6= π(αβ)2 , thus αβ
is not right regular by Theorem 2.2 (2). So RReg(S(X,Y )) is not a subsemigroup of
S(X,Y ).

Remark 4.3. α ∈ S(X,Y ) is completely regular if and only if α is both left and right
regular.
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Theorem 4.4. The following statements are equivalent.
(1) |X| ≤ 2.
(2) S(X,Y ) is completely regular.
(3) CReg(S(X,Y )) is a subsemigroup of S(X,Y ).

Proof. Obviously (2)⇒ (3). By Theorems 4.1, 4.2 and Remark 4.3, it follows immediately
that (1) ⇒ (2). Assume that |X| ≥ 3. Define α, β ∈ S(X,Y ) as in Lemma 3.8. Then
α, β are completely regular elements. But, we get παβ 6= π(αβ)2 , thus αβ is not right
regular by Theorem 2.2 (2) and hence αβ is not completely regular by Remark 4.3. So
CReg(S(X,Y )) is not a subsemigroup of S(X,Y ).

Theorem 4.5. The following statements are equivalent.
(1) |X| ≤ 2.
(2) S(X,Y ) is intra-regular.
(3) IReg(S(X,Y )) is a subsemigroup of S(X,Y ).

Proof. From Remark 3.1 and Lemma 3.2, we obtain that (1) ⇒ (2). To prove (3) ⇒
(1), assume that |X| ≥ 3. Then there exist α, β ∈ IReg(S(X,Y )) which are defined
as in Lemma 3.8. But, we obtain that |Xαβ| = 2 6= 1 = |X(αβ)2| and hence αβ /∈
IReg(S(X,Y )) by Theorem 2.2 (3). And, it is clear that (2) ⇒ (3), so the proof is
complete.

As a direct consequence of Theorems 3.9, 4.1, 4.2, 4.4 and 4.5, we have the following
corollary.

Corollary 4.6. The following statements are equivalent.
(1) |X| ≤ 2.
(2) S(X,Y ) is coregular.
(3) S(X,Y ) is left regular.
(4) S(X,Y ) is right regular.
(5) S(X,Y ) is completely regular.
(6) S(X,Y ) is intra-regular.

We know that every coregular element is both left and right regular, but there are left
and right regular elements which are not coregular as shown in the following lemma.

Lemma 4.7. If |Y | ≥ 3 or |X \ Y | ≥ 3, then there exists α ∈ LReg(S(X,Y )) ∩
RReg(S(X,Y )) such that α /∈ CoReg(S(X,Y )).

Proof. Assume that |Y | ≥ 3 or |X \ Y | ≥ 3. We consider two cases.

Case 1: |Y | ≥ 3. Let a, b, c be distinct elements in Y . Define

α =

(
a b c x
b c a x

)
x∈X\{a,b,c}
.

Then α ∈ S(X,Y ) and we see that

α2 =

(
a b c x
c a b x

)
x∈X\{a,b,c}
.

So Xα = X = Xα2, Y α = Y = Y α2, πα = πα2 and πα(Y ) = πα2(Y ). By Theorem 2.2,
we obtain that α is left regular and right regular. But, since cα = a /∈ {b} = cα−1, we
have α /∈ CoReg(S(X,Y )) by Lemma 3.4 (2).
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Case 2: |X \ Y | ≥ 3. Let a, b, c be distinct elements in X \ Y . Define α as in Case 1.
By the same proof, we obtain that α is left regular and right regular but not coregular.

Recall that CoReg(S(X,Y )) = LReg(S(X,Y )) = RReg(S(X,Y )) = CReg(S(X,Y )) =
IReg(S(X,Y )) = S(X,Y ) when |X| ≤ 2. Here, there are some other cases that coregular
elements, left regular elements, right regular elements, completely regular elements and
intra-regular elements are coincide as the following theorem.

Theorem 4.8. If (|X|, |Y |) ∈ {(3, 1), (3, 2), (4, 2)}, then

CoReg(S(X,Y ))=LReg(S(X,Y ))=RReg(S(X,Y ))=CReg(S(X,Y ))=IReg(S(X,Y )).

Proof. We know that every idempotent is coregular and every coregular element is left
regular. So E(S(X,Y )) ⊆ CoReg(S(X,Y )) ⊆ LReg(S(X,Y )). Assume that (|X|, |Y |) ∈
{(3, 1), (3, 2), (4, 2)}. We consider three cases.

Case 1: (|X|, |Y |) = (3, 1). Let X = {a, b, c} and Y = {a}. Then

E(S(X,Y )) =

{(
a b c
a b c

)
,

(
a {b, c}
a b

)
,

(
a {b, c}
a c

)
,(

{a, b} c
a c

)
,

(
{a, c} b
a b

)
,

(
{a, b, c}

a

)}
.

Let

α =

(
a b c
a c b

)
∈ S(X,Y ).

Then α2 = idX and hence α is coregular by Theorem 3.4 (3). Hence E(S(X,Y ))∪{α} ⊆
CoReg(S(X,Y )) ⊆ LReg(S(X,Y )). By Theorem 2.4, we get

|LReg(S(X,Y ))| =
2∑

m=0

1∑
k=1

(
1

k

)
k!k1−k

(
2

m

)
m!(k +m)2−m

=

(
1

1

)
1!11−1

(
2

0

)
0!(1 + 0)2−0 +

(
1

1

)
1!11−1

(
2

1

)
1!(1 + 1)2−1

+

(
1

1

)
1!11−1

(
2

2

)
2!(1 + 2)2−2

= 1 + 4 + 2

= 7.

Since |E(S(X,Y )) ∪ {α}| = 7 = |LReg(S(X,Y ))|, we obtain that CoReg(S(X,Y )) =
LReg(S(X,Y )).

Case 2: (|X|, |Y |) = (3, 2). let X = {a, b, c} and Y = {a, b}. Then

E(S(X,Y )) =

{(
a b c
a b c

)
,

(
{a, b} c
a c

)
,

(
{a, b} c
b c

)
,

(
{a, c} b
a b

)
,(

a {b, c}
a b

)
,

(
{a, b, c}

a

)
,

(
{a, b, c}

b

)}
.

Define α1, α2, α3 ∈ S(X,Y ) by

α1 =

(
a b c
b a c

)
, α2 =

(
{a, c} b
b a

)
, α3 =

(
a {b, c}
b a

)
.
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Then α1
2 = idX , α2

2 =

(
{a, c} b
a b

)
and α3

2 =

(
a {b, c}
a b

)
and so α2

2|Xα2
= idXα2

and α3
2|Xα3

= idXα3 . By Theorem 3.4 (3), we see that α1, α2, α3 are coregular. Hence

E(S(X,Y )) ∪ {α1, α2, α3} ⊆ CoReg(S(X,Y )) ⊆ LReg(S(X,Y )). By Theorem 2.4, we
have

|LReg(S(X,Y ))| =
1∑

m=0

2∑
k=1

(
2

k

)
k!k2−k

(
1

m

)
m!(k +m)1−m

=

1∑
m=0

[(
2

1

)
1!12−1

(
1

m

)
m!(1 +m)1−m

+

(
2

2

)
2!22−2

(
1

m

)
m!(2 +m)1−m

]
=

1∑
m=0

[
(2)

(
1

m

)
m!(1 +m)1−m + (2)

(
1

m

)
m!(2 +m)1−m

]
=

[
(2)

(
1

0

)
0!(1 + 0)1−0 + (2)

(
1

0

)
0!(2 + 0)1−0

]
+

[
(2)

(
1

1

)
1!(1 + 1)1−1 + (2)

(
1

1

)
1!(2 + 1)1−1

]
= 2 + 4 + 2 + 2

= 10.

So |E(S(X,Y )) ∪ {α1, α2, α3}| = 10 = |LReg(S(X,Y ))| and thus CoReg(S(X,Y )) =
LReg(S(X,Y )).

Case 3: (|X|, |Y |) = (4, 2). Let X = {a, b, c, d} and Y = {a, b}. Then

E(S(X,Y )) =

{(
a b c d
a b c d

)
,

(
{a, b} c d
a c d

)
,

(
{a, b} c d
b c d

)
,(

{a, c} b d
a b d

)
,

(
{a, d} b c
a b c

)
,

(
a {b, c} d
a b d

)
,(

a {b, d} c
a b c

)
,

(
a b {c, d}
a b c

)
,

(
a b {c, d}
a b d

)
,(

{a, b} {c, d}
a c

)
,

(
{a, b} {c, d}
a d

)
,

(
{a, b} {c, d}
b c

)
,(

{a, b} {c, d}
b d

)
,

(
{a, c} {b, d}
a b

)
,

(
{a, d} {b, c}
a b

)
,(

{a, b, c} d
a d

)
,

(
{a, b, c} d

b d

)
,

(
{a, b, d} c

a c

)
,(

{a, b, d} c
b c

)
,

(
{a, c, d} b

a b

)
,

(
a {b, c, d}
a b

)
,(

{a, b, c, d}
a

)
,

(
{a, b, c, d}

b

)}
.

Define
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α1 =

(
a b c d
b a c d

)
, α2 =

(
a b c d
a b d c

)
, α3 =

(
a b c d
b a d c

)
,

α4 =

(
{a, b} c d
a d c

)
, α5 =

(
{a, b} c d
b d c

)
, α6 =

(
{a, c} b d
b a d

)
,

α7 =

(
{a, d} b c
b a c

)
, α8 =

(
a {b, c} d
b a d

)
, α9 =

(
a {b, d} c
b a c

)
,

α10 =

(
a b {c, d}
b a c

)
, α11 =

(
a b {c, d}
b a d

)
, α12 =

(
{a, c} {b, d}
b a

)
,

α13 =

(
{a, d} {b, c}
b a

)
, α14 =

(
{a, c, d} b

b a

)
, α15 =

(
a {b, c, d}
b a

)
.

Then αi ∈ S(X,Y ) for all i ∈ {1, . . . , 15}. It is easy to check that αi
2|Xαi

= idXαi for all

i ∈ {1, . . . , 15}. Thus αi ∈ CoReg(S(X,Y )) by Theorem 3.4 (3) and hence

E(S(X,Y )) ∪ {αi : i ∈ {1, . . . , 15}} ⊆ CoReg(S(X,Y )) ⊆ LReg(S(X,Y )).

By Theorem 2.4, we obtain that

|LReg(S(X,Y ))| =
2∑

m=0

2∑
k=1

(
2

k

)
k!k2−k

(
2

m

)
m!(k +m)2−m

=

2∑
m=0

[(
2

1

)
1!12−1

(
2

m

)
m!(1 +m)2−m

+

(
2

2

)
2!22−2

(
2

m

)
m!(2 +m)2−m

]
=

2∑
m=0

[
(2)

(
2

m

)
m!(1 +m)2−m + (2)

(
2

m

)
m!(2 +m)2−m

]
=

[
(2)

(
2

0

)
0!(1 + 0)2−0 + (2)

(
2

0

)
0!(2 + 0)2−0

]
+

[
(2)

(
2

1

)
1!(1 + 1)2−1 + (2)

(
2

1

)
1!(2 + 1)2−1

]
+

[
(2)

(
2

2

)
2!(1 + 2)2−2 + (2)

(
2

2

)
2!(2 + 2)2−2

]
= 2 + 8 + 8 + 12 + 4 + 4

= 38.

So |E(S(X,Y )) ∪ {αi : i ∈ {1, . . . , 15}}| = |E(S(X,Y ))| + 15 = 23 + 15 = 38 =
|LReg(S(X,Y ))|. Hence CoReg(S(X,Y )) = LReg(S(X,Y )).

Since X is a finite set, we have LReg(S(X,Y )) = RReg(S(X,Y )) = IReg(S(X,Y )) by
Theorem 2.3. By Remark 4.3, we get LReg(S(X,Y )) = RReg(S(X,Y )) = CReg(S(X,Y )).
Therefore, CoReg(S(X,Y )) = LReg(S(X,Y )) = RReg(S(X,Y )) = CReg(S(X,Y )) =
IReg(S(X,Y )).
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Moreover, we have the following theorem.

Theorem 4.9. CoReg(S(X,Y )) = LReg(S(X,Y )) = RReg(S(X,Y )) if and only if |X| ≤
2 or (|X|, |Y |) ∈ {(3, 1), (3, 2), (4, 2)}.

Proof. Assume that |X| ≤ 2 or (|X|, |Y |) ∈ {(3, 1), (3, 2), (4, 2)}. By Remark 3.1, Lemma
3.2 and Theorem 4.8, we get CoReg(S(X,Y )) = LReg(S(X,Y )) = RReg(S(X,Y )).

Conversely, assume that |X| ≥ 3 and (|X|, |Y |) /∈ {(3, 1), (3, 2), (4, 2)}. Then |Y | ≥ 3
or |X \Y | ≥ 3. By Lemma 4.7, CoReg(S(X,Y )) ( LReg(S(X,Y ))∩RReg(S(X,Y )), that
means CoReg(S(X,Y )) 6= LReg(S(X,Y )) and CoReg(S(X,Y )) 6= RReg(S(X,Y )).

5. Finiteness Conditions on S(X, Y )

In this section, we characterize when S(X,Y ) is unit regular and directly finite which
depend on the finiteness conditions on sets.

Alarcao [1] characterized when a monoid S is directly finite and gave a relationship
between a unit regular semigroup and a factorizable semigroup as follows.

Theorem 5.1. [1, Propositions 1-3] Let S be a semigroup with identity 1. Then the
following statements hold.

(1) S is unit regular if and only if S is factorizable.
(2) S is directly finite if and only if H1 = D1.

Later, Boonmee [3] characterized when S(X,Y ) is factorizable as follows.

Theorem 5.2. [3, Theorem 3.3.13] S(X,Y ) is factorizable if and only if the following
conditions hold.

(1) X is finite.
(2) X = Y or |Y | = 1.

As a direct consequence of Theorems 5.1 and 5.2, we have the following theorem.

Theorem 5.3. S(X,Y ) is unit regular if and only if the following statements hold.
(1) X is a finite set,
(2) X = Y or |Y | = 1.

The following example shows that if X is an infinite set, S(X,Y ) need not be directly
finite.

Example 5.4. Let X = N and Y be the set of all even positive integers. Define

α =

(
2 2n+ 2 2n− 1
2 2n+ 4 2n− 1

)
n≥1

and

β =

(
{2, 4} 2n+ 4 2n− 1

2 2n+ 2 2n− 1

)
n≥1
.

Then α, β ∈ S(X,Y ) and

αβ =

(
2 2n+ 2 2n− 1
2 2n+ 2 2n− 1

)
n≥1

= idX ,

but

βα =

(
{2, 4} 2n+ 4 2n− 1

2 2n+ 4 2n− 1

)
n≥1
6= idX .
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Thus S(X,Y ) is not directly finite.

Finally, we give the necessary and sufficient condition for S(X,Y ) to be directly finite.

Theorem 5.5. S(X,Y ) is directly finite if and only if X is a finite set.

Proof. Assume that X is a finite set. Let α, β ∈ S(X,Y ) be such that αβ = idX . Then α
is injective. Since X is finite, we have α is surjective and hence Xα = X. Let x ∈ X. Thus
x ∈ Xα and there exists z ∈ X such that x = zα. So xβα = zαβα = z idX α = zα = x,
and we conclude that βα = idX .

Conversely, assume that X is an infinite set. To prove that S(X,Y ) is not directly
finite, we consider two cases.

Case 1: Y is infinite. Choose a ∈ Y . Then |Y \ {a}| = |Y | and hence there is a
bijection ϕ : Y \ {a} → Y . Let Y \ {a} = {yi : i ∈ I}. Fix i0 ∈ I and let I ′ = I \ {i0}.
Define α ∈ S(X,Y ) by

α =

(
{yi0 , a} yi′ x
yi0ϕ yi′ϕ x

)
x∈X\Y
.

Thus α is surjective and hence |Y α| = |Y | = |Y idX |, |Xα \ Y | = |X \ Y | = |XidX \ Y |
and |(Xα∩Y ) \Y α| = |Y \Y | = |(XidX ∩Y ) \Y idX |. So α ∈ DidX by Theorem 2.1 (4).
We see that πα 6= πidX , that means α /∈ HidX . Thus DidX 6= HidX and hence S(X,Y ) is
not directly finite by Theorem 5.1 (2).

Case 2: Y is finite. Thus X \Y is infinite. Choose b ∈ X \Y . Then |X \ (Y ∪{b})| =
|X \ Y | and there exists a bijection σ : X \ (Y ∪ {b})→ X \ Y . Let X \ (Y ∪ {b}) = {xj :
j ∈ J}. Fix j0 ∈ J and let J ′ = J \ {j0}. Define

β =

(
y {xj0 , b} xj′

y xj0σ xj′σ

)
y∈Y
.

Then β ∈ S(X,Y ) and Xβ = X. So |Y β| = |Y | = |Y idX |, |Xβ\Y | = |X\Y | = |XidX\Y |
and |(Xβ ∩ Y ) \ Y β| = |Y \ Y | = |(XidX ∩ Y ) \ Y idX |. By Theorem 2.1 (4), we have
β ∈ DidX . However, β /∈ HidX since πβ 6= πidX . Thus DidX 6= HidX and therefore,
S(X,Y ) is not directly finite.
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