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Abstract In this article, we study Diophantine equations 4x − ay = dz2 and 4x + ay = dz2 where

a, d, x, y, and z are non-negative integers. Under some conditions of integers a, d and by using congruence

properties, we give all non-negative integer solutions of 4x − ay = dz2 and we show that 4x + ay = dz2

has no non-negative integer solution.
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1. Introduction

Solving Diophantine equation is one of the most interesting topics in number theory
and it has been widely studied for many years. The knowledge of Diophantine equa-
tion can be applied to many areas such as balancing chemical equations, network flow
and word problem on business [1–4]. The solutions of Diophantine equation are inves-
tigated by many researchers and the solutions of Diophantine equation usually mean
non-negative integer solutions. In 2011, Suvarnamani et al. [5] proved that the Dio-
phantine equations 4x + 7y = z2 and 4x + 11y = z2 have no non-negative integer so-
lution. Later Chotchaisthit [6] showed that the Diophantine equation 4x + py = z2,
where p is a prime, has all non-negative integer solutions of the form (x, y, z, p) ∈
{(2, 2, 5, 3)}∪

{(
r, 1, 2r + 1, 2r+1 + 1

)
: r ∈ N0

}
∪{(r, 2r + 3, 3 · 2r, 2) : r ∈ N0}. Then Bur-

shtein [7] found positive integer solutions of the Diophantine equation px + qy = z2 where
p and q are odd primes with q− p ∈ {2, 4, 6, 8}. In 2018, Rabago [8] showed the set of all
non-negative integer solutions of the Diophantine equation 4x − py = z2 where a prime
p ≡ 3 (mod 4), that is, (x, y, z, p) ∈ {(0, 0, 0, p)}∪

{(
q − 1, 1, 2q−1 − 1, 2q − 1

)}
. Moreover,

Rabago proved that the Diophantine equation 4x−py = 3z2, where a prime p ≡ 3 (mod 4),
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has only two non-negative integer solutions (x, y, z) ∈ {(0, 0, 0) , (1, 0, 1)}. Recently, Elsha-
hed and Kamarulhaili [9] studied the Diophantine equation (4n)

x− py = z2 where p is an
odd prime and n is a positive integer. Elshahed and Kamarulhaili listed all of non-negative
integer solutions of such equation, that is, (x, y, z, p) ∈

{(
k, 1, 2nk − 1, 2nk+1 − 1

)
: k ∈ N

}
∪{(0, 0, 0, p)}. For the Diophantine equation 4x− py = 3z2 where a prime p ≡ 3 (mod 4),
all solutions of it are completely investigated in [8]. While the case p ≡ 1 (mod 4), there
was no result about its solutions and this case was left as an open problem in [8]. This
therefore motivates us to do research in this paper. In this article, the Diophantine equa-
tion 4x − py = 3z2 of [8] is extended to 4x − ay = dz2 where an integer a ≡ 1, 3 (mod 4)
does not need to be prime and an integer d ≡ 3 (mod 8) does not need to equal to 3. In
the special case when primes a ≡ 3 (mod 4) and d = 3, we get the same result as in the
main theorem of [8]. Moreover, we show that the Diophantine equation 4x + ay = dz2

has no non-negative integer solution with some assumptions of integers a and d. The
proofs of our theorems base on properties of congruence and our proofs do not apply the
previous results of Diophantine equations from any researchers.

2. Preliminaries

In this section, we recall some properties of congruence which is the background for
proving our main results. Let a, b, c, d ∈ Z and m ∈ N. We say a is congruent to b modulo
m if m|(a − b), and denote by a ≡ b (modm). We collect some properties of congruence
as follows.

1. If a ≡ b (modm) and b ≡ c (modm), then a ≡ c (modm).
2. If a ≡ b (modm) and c ≡ d (modm), then a± c ≡ b± d (modm).
3. If a ≡ b (modm), then ac ≡ bc (modm).
4. If a ≡ b (modm) and c ≡ d (modm), then ac ≡ bd (modm).
5. If a ≡ b (modm), then an ≡ bn (modm) for all n ∈ N.

3. Main Results

In this study, we focus on Diophantine equations 4x − ay = dz2 and 4x + ay = dz2. In
the first part, we investigate the Diophantine equation

4x − ay = dz2. (3.1)

We start to give all non-negative integer solutions of (3.1) where a ≡ 3 (mod 4) and
d ≡ 3 (mod 8) in Theorem 3.1.

Theorem 3.1. Let a, d ∈ N be such that a ≡ 3 (mod 4) and d ≡ 3 (mod 8). Then the Dio-
phantine equation (3.1) has non-negative integer solutions (x, y, z) ∈ {(0, 0, 0), (1, 0, 1)}
for d = 3 and (x, y, z) = (0, 0, 0) for d 6= 3.

Proof. Let x, y, z ∈ N0 be a solution of (3.1).
Case 1. x = 0. From (3.1), we consider equation 1 − ay = dz2. Since 0 ≤ dz2 =

1− ay, a ≥ 3 and d ≥ 3, we get y = 0 and z = 0. Then (x, y, z) = (0, 0, 0) is a solution of
(3.1) in this case.

Case 2. x = 1. From (3.1), we have equation 4 − ay = dz2. Since 0 ≤ dz2 = 4 − ay

and a ≥ 3, we have y = 0 or y = 1. Since d ≥ 3 and z ∈ N0, we get dz2 6= 1. If y = 1
then a = 3 and 1 = dz2, a contradiction. If y = 0 then 3 = dz2 so d = 3 and z = 1. Thus,
(x, y, z) = (1, 0, 1) is a solution of (3.1) in this case.
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Case 3. x ≥ 2. Since a is odd, we see that ay is odd and so 4x − ay is odd.
From (3.1), it implies that z is odd, and hence z2 ≡ 1 (mod 8). By assumption d ≡
3 (mod 8), we get dz2 ≡ 3 (mod 8). Consequently, dz2 ≡ −1 (mod 4). From (3.1), we
have 4x − ay ≡ −1 (mod 4) and ay ≡ 1 (mod 4). Since a ≡ −1 (mod 4), we have y is
even. Then y = 2n for some n ∈ N0. Since a is odd, we see that a2 ≡ 1 (mod 8). Thus,
ay = a2n ≡ 1 (mod 8). This implies 4x− ay ≡ −1 (mod 8) and so dz2 ≡ −1 (mod 8) which
contradicts dz2 ≡ 3 (mod 8). Hence, there is no solution of (3.1) when x ≥ 2.

The assumptions a ≡ 3 (mod 4) and d ≡ 3 (mod 8) in Theorem 3.1 make equation (3.1)
a general of 4x − py = 3z2 which studied in [8]. The special case of (3.1) when y = 0 is
investigated in the next corollary and the proof of it is directly from Theorem 3.1.

Corollary 3.2. If d ∈ N with d ≡ 3 (mod 8), then the Diophantine equation 4x− 1 = dz2

has non-negative integer solutions (x, z) ∈ {(0, 0), (1, 1)} for d = 3 and (x, z) = (0, 0) for
d 6= 3.

As we know that the Diophantine equation 4x− py = 3z2 where a prime p ≡ 1 (mod 4)
is still left as an open problem in [8], so we try to find out the solutions of 4x−py = 3z2 in
this case p ≡ 1 (mod 4). We remark that a ≡ 1 (mod 4) iff a ≡ 1 (mod 8) or a ≡ 5 (mod 8).
In another word, set of integers a, which a ≡ 1 (mod 4), is separated into two parts,
that is, a ≡ 1 (mod 8) or a ≡ 5 (mod 8). In the next theorem, we investigate the first
part a ≡ 1 (mod 8) and we give all non-negative integer solutions of general equation
4x − ay = dz2 when a ≡ 1 (mod 8) and d ≡ 3 (mod 8).

Theorem 3.3. If a, d ∈ N − {1} with a ≡ 1 (mod 8) and d ≡ 3 (mod 8), then the Dio-
phantine equation (3.1) has non-negative integer solutions (x, y, z) ∈ {(0, 0, 0), (1, 0, 1)}
for d = 3 and (x, y, z) = (0, 0, 0) for d 6= 3.

Proof. Let x, y, z ∈ N0 be a solution of (3.1).
Case 1. x = 0. From (3.1), we consider equation 1 − ay = dz2. Note that 0 ≤

dz2 = 1 − ay. Since a 6= 1 and a ≡ 1 (mod 8), we have y = 0 and so z = 0. Thus,
(x, y, z) = (0, 0, 0) is a solution of (3.1) in this case.

Case 2. x = 1. From (3.1), we consider equation 4− ay = dz2. Recall that 0 ≤ dz2 =
4 − ay. Since a > 1 and a ≡ 1 (mod 8), we get y = 0. Then 3 = dz2. Since z2 6= 3, we
have d = 3 and z = 1. Hence, (x, y, z) = (1, 0, 1) is a solution of (3.1) when d = 3.

Case 3. x ≥ 2. Remark that 4x ≡ 0 (mod 8). Since a ≡ 1 (mod 8), we obtain
ay ≡ 1 (mod 8). Then we get 4x − ay ≡ −1 (mod 8) and 4x − ay is odd. From (3.1),
dz2 ≡ −1 (mod 8) and dz2 is odd. This means z is odd and hence z2 ≡ 1 (mod 8). Now
we have dz2 ≡ 3 (mod 8) which contradicts dz2 ≡ −1 (mod 8). Therefore, there is no
solution of (3.1) when x ≥ 2.

We only get a non-negative integer solution of 4x − ay = dz2 in the first two cases of
the proof of Theorem 3.3 and we have y = 0 in these two cases. This leads to result in
the next Corollary 3.4, which we describe the situation when the Diophantine equation
4x − ay = dz2 has no non-negative integer solution.

Corollary 3.4. Let a, d ∈ N− {1} be such that a ≡ 1 (mod 8) and d ≡ 3 (mod 8).
If y > 0, then (3.1) has no non-negative integer solution.
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In the second part, we study the Diophantine equation

4x + ay = dz2. (3.2)

We show that the equation (3.2) has no non-negative integer solution in various assump-
tions of integers a and d.

Theorem 3.5. If a, d ∈ N with a ≡ 1 (mod 4) and d ≡ 3 (mod 4), then the Diophantine
equation (3.2) has no non-negative integer solution.

Proof. Suppose x, y, z ∈ N0 is a solution of (3.2).
Case 1. x = 0. From (3.2), we have 1 + ay = dz2. Since a ≡ 1 (mod 4), we see that

ay ≡ 1 (mod 4) and 1 + ay ≡ 2 (mod 4). Note that 1 + ay is even. Then dz2 ≡ 2 (mod 4)
and dz2 is even. Since d is odd, we have z is even. Consequently, z2 ≡ 0 (mod 4) and
dz2 ≡ 0 (mod 4) which contradicts dz2 ≡ 2 (mod 4).

Case 2. x ≥ 1. Then 4x ≡ 0 (mod 4). Since ay ≡ 1 (mod 4), we obtain 4x + ay ≡
1 (mod 4). From (3.2), we have dz2 ≡ 1 (mod 4). This implies z is odd and hence z2 ≡
1 (mod 4). Thus, dz2 ≡ 3 (mod 4) which contradicts dz2 ≡ 1 (mod 4).

Theorem 3.6. Let a, d ∈ N be such that a ≡ 3 (mod 4) and d ≡ 3 (mod 4). If y is even,
then the Diophantine equation (3.2) has no non-negative integer solution.

Proof. Suppose x, y, z ∈ N0 is a solution of (3.2) where y is even.
Case 1. x = 0. We consider 1 + ay = dz2. Since 1 + ay is even and d is odd, we have

z is even and so z2 ≡ 0 (mod 4) and dz2 ≡ 0 (mod 4). Thus, 1 + ay ≡ 0 (mod 4) and hence
ay ≡ −1 (mod 4). Since a ≡ −1 (mod 4), we get y is odd which contradicts y is even.

Case 2. x ≥ 1. Since 4x is even and ay is odd, we have 4x + ay is odd. Then
dz2 is odd. This means z is odd and so z2 ≡ 1 (mod 4). Thus, dz2 ≡ 3 (mod 4). From
(3.2), 4x + ay ≡ 3 (mod 4). Since 4x ≡ 0 (mod 4), we have ay ≡ −1 (mod 4). Since
a ≡ −1 (mod 4) and ay ≡ −1 (mod 4), we get y is odd which contradicts y is even.

Theorem 3.7. Let a, d ∈ N be such that a ≡ 7 (mod 8) and d ≡ 3 (mod 8). If x ≥ 2, then
the Diophantine equation (3.2) has no non-negative integer solution.

Proof. Suppose x, y, z ∈ N0 is a solution of (3.2) where x ≥ 2. Since a ≡ 7 (mod 8),
we have ay ≡ 1, 7 (mod 8) and ay is odd. From (3.2), we obtain dz2 is odd. Since
d ≡ 3 (mod 8), we have d is odd and so z is odd. Thus, z2 ≡ 1 (mod 8) and hence
dz2 ≡ 3 (mod 8). From (3.2) and x ≥ 2, we get ay ≡ 3 (mod 8) which contradicts ay ≡
1, 7 (mod 8).

4. Conclusions

We provide conclusions after studying Diophantine equations 4x − ay = dz2 and 4x +
ay = dz2 as follows. For the Diophantine equation 4x − ay = dz2 with condition d ≡
3 (mod 8), we try to find all non-negative integer solutions of it in both cases a ≡ 3 (mod 4)
and a ≡ 1 (mod 4). In the case a ≡ 3 (mod 4), we completely obtain all non-negative
integer solutions of it in Theorem 3.1. While the case a ≡ 1 (mod 4), we can not get
completely non-negative integer solutions of it. We notice that a ≡ 1 (mod 4) iff a ≡
1 (mod 8) or a ≡ 5 (mod 8). In the first part a ≡ 1 (mod 8), we find all non-negative integer
solutions of it in Theorem 3.3. However, we can not conclude about its non-negative
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integer solutions in the latter part a ≡ 5 (mod 8), and hence the case when a ≡ 5 (mod 8)
remains an open problem to be solved. For the Diophantine equation 4x + ay = dz2, we
confirm that it has no non-negative integer solution under some conditions in Theorem
3.5 - Theorem 3.7.
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