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Abstract In this study, we construct a bivariate quadratic transformation of trivariate quasi-copulas.

This construction yields new quasi-copulas by composing two priori given quasi-copulas with a quadratic

polynomial function. We show that the constructed transformation is not a bivariate transformation of

semi-copulas which show that these two classes of transformations are different. The constructed trans-

formation is also not symmetric which implies similar transformations can be constructed via change of

variables. This also implies that these transformations cannot be constructed from univariate transfor-

mations which show that the class of bivariate transformations is much larger and more complicated than

that of the univariate case.
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1. Introduction

Aggregation functions have gained attention in the last few decades. Because of their
properties, they are usually used for finding a data representation. Aggregation functions
can be applied in many fields, especially, data analysis and decision making, for example,
statistics, engineering sciences, and economics and finance, see [1–4]. Thus, a quasi-
copula, a type of aggregation functions, is also gained interest. The construction of
quasi-copulas becomes an interesting topic, after all, the more choices we have, the more
tools we can select.

In this work, we are interested in the construction of quasi-copulas transformations in
the form of

TP (f1, . . . , fk)(x1, . . . , xn) = P (x1, . . . , xn, f1(x1, . . . , xn), . . . , fk(x1, . . . , xn))

where P is a quadratic polynomial and f1, . . . , fk are real-value functions. This concept
was first introduced in 2013 by Kolesárová et al. [5]. They introduced this idea to con-
struct univariate transformations of bivariate (quasi-) copulas based on a given quadratic
polynomial. After that, the characterization of a quadratic polynomial P is studied for

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2023 by TJM. All rights reserved.



554 Thai J. Math. Vol. 21 (2023) /P. Tongjundee and V. Boonyasri

finding necessary and sufficient conditions of (quasi, semi-) copulas transformations TP . In
the case of univariate transformations of bivariate functions, we refer [6, 7]. The bivariate
quadratic transformation of bivariate copulas was examined in [8] and more detail about
transformations of k bivariate copulas based on polynomial functions has been introduced
in [9]. Boonmee and Tasena [10] characterized a quadratic polynomial P such that TP
is a univariate transformation of multivariate (semi-copulas) quasi-copulas. They also
show that multivariate quadratic transformations of aggregation functions must come
from quadratic aggregation functions themselves. See also [11] for characterizations of
quadratic aggregation functions. Recently, the concept of transformations of multivariate
semi-copulas was presented in [12].

We observe that the study of transformations of multivariate quasi-copulas remains
opened. In this work, we construct a bivariate transformation of trivariate quasi-copulas
using the same idea with in the first literature [5], that is, we construct this transformation
based on a given quadratic polynomial.

The next section, we present some notations, basic terminologies, and theorems which
are useful for this work. In Section 3, we will show our construction of a bivariate qua-
dratic transformation of trivariate quasi-copulas. We also prove some special properties
of this transformation. In addition, some quasi-copulas, which are constructed by this
transformation, are provided in this section. The conclusion and discussion are discussed
in the last section.

2. Preliminary

The closed unit interval [0, 1] is denoted by a symbol I.

Definition 2.1. [3] A non-decreasing function A : In → I is said to be an aggregation

function if A(~0) = 0 and A(~1) = 1.

For instance, well-known aggregation functions are the arithmetic mean, the maximum,
the minimum, the median, and the product function. Moreover, semi-copulas and quasi-
copulas, the functions that we concentrate in this study, are also aggregation functions.

Definition 2.2. [13] A function S : In → I is said to be a semi-copula if

(i) S is non-decreasing, and
(ii) S(x1, . . . , xn) = xi if xj = 1 for all j 6= i.

The minimum function and the product function are semi-copulas. Besides, quasi-
copulas are also semi-copulas.

Recall that a function f : In → I is called Lipschitz if

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤
n∑
i=1

|xi − yi|

for all xi, yi ∈ I.
For example, the minimum function and the product function are Lipschitz.

Definition 2.3. [14] A function Q : In → I is said to be a quasi-copula if

(i) Q is non-decreasing,
(ii) Q(x1, . . . , xn) = xi if xj = 1 for all j 6= i, and
(iii) Q is Lipschitz.
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This implies that the minimum function and the product function are also quasi-
copulas. Other well-known quasi-copulas are the FGM-copula Cθ : In → I defined by

Cθ(x1, . . . , xn) =

n∏
i=1

xi + θ

n∏
i=1

xi (1− xi)

where θ ∈ [−1, 1] and the function Wn : In → I defined as follows

Wn(x1, . . . , xn) = max

{
0,

n∑
i=1

xi − n+ 1

}
for all xi ∈ I. A function Wn is the lower bound of the class of quasi-copulas, that is,

Wn(x1, . . . , xn) ≤ Q(x1, . . . , xn) ≤ min(x1, . . . , xn)

for all quasi-copula Q. For convenience, let M and W stand for the minimum function
and the function Wn in the 3−dimension, respectively.

There is another way to prove quasi-copula properties instead of the definition.

Theorem 2.4. [15] Let Q : In → I be a function satisfying

Q(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0

and the second property of the quasi-copula definition. Then Q is a quasi-copula if and
only if Q is absolutely continuous in each coordinate and for any j ∈ {1, 2, . . . , n} and
(x1, . . . , xj−1, xj+1, . . . , xn) ∈ In−1, the partial derivative

∂

∂xj
Q(x1, . . . , xj , . . . , xn)

exists for almost all xj ∈ I and belongs to the interval I.

Next, we state the definitions of semi-copulas transformations and quasi-copulas trans-
formations. Let P be a quadratic polynomial of n + k variables and f1, . . . , fk be real-
valued functions on In. A transformation TP (f1, . . . , fk) : In → R defined via

TP (f1, . . . , fk)(x1, . . . , xn) = P (x1, . . . , xn, f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)).

(2.1)

The transformation TP in the form of (2.1) is called a transformation of k semi-copulas
if TP (S1, . . . , Sk) is a semi-copula for all semi-copulas S1, . . . , Sk. Also, if TP (Q1, . . . , Qk)
is a quasi-copula for all quasi-copulas Q1, . . . , Qk, then TP is said to be a transformation
of k quasi-copulas.

The following theorems are useful results for proving our main results.

Theorem 2.5. [12] Let P be a quadratic polynomial of n+ k variables of the form

P (x1, . . . , xn, z1, . . . , zk) =

k∑
p=1

k∑
q=1

apqzpzq+

n∑
i=1

k∑
q=1

biqxizq+
k∑

q=1

cqzq+
n∑

i=1

n∑
j=1

dijxixj+
n∑

i=1

eixi+f

where apq = aqp and dij = dji for all p, q and i, j. Then TP is a transformation of k
semi-copulas if and only if the quadratic polynomial P satisfies the following properties:

(1) f = 0 = ei = dij for all i, j,

(2)
k∑
q=1

biq = −
k∑
p=1

k∑
q=1

apq for all i,
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(3) (n− 1)
k∑
p=1

k∑
q=1

apq −
k∑
q=1

cq + 1 = 0,

(4) biq ≥ 0 for all i, q,
(5) cq ≥ 0 for all q,

(6) 2
k∑
p=1

(apq ∧ 0) +
n∑
i=1

biq + cq ≥ 0 for all q.

Theorem 2.6. [10] Let P be a quadratic polynomial of n+ 1 variables.
For any quasi-copula Q, TP is a quasi-copula transformation if and only if it is given in
the form

TP (Q)(x1, . . . , xn) = aQ2(x1, . . . , xn)− aQ(x1, . . . , xn)

n∑
i=1

xi + (an− a+ 1)Q(x1, . . . , xn)

where a ∈
[
− 1
n−1 , 0

]
.

3. Main Results

We construct the bivariate transformation of trivariate quasi-copulas in the form of

T (Q1, Q2)(x1, x2, x3) = P (x1, x2, x3, Q1(x1, x2, x3), Q2(x1, x2, x3))

where

P (x1, x2, x3, z1, z2) =
3

16
z21 −

3

4
z1z2 +

3

16
z22 +

3

8
x1z1 +

3

8
x3z1 +

3

8
x2z2 +

1

4
z2

and Q1, Q2 are any quasi-copulas. Then the transformation T is in the following form

T (Q1, Q2)(x1, x2, x3) =
3

16
Q2

1(x1, x2, x3)− 3

4
Q1(x1, x2, x3)Q2(x1, x2, x3)

+
3

16
Q2

2(x1, x2, x3) +
3

8
x1Q1(x1, x2, x3)

+
3

8
x3Q1(x1, x2, x3) +

3

8
x2Q2(x1, x2, x3)

+
1

4
Q2(x1, x2, x3).

(∗)

Theorem 3.1. The transformation T is a quasi-copula transformation, but it is not a
semi-copula transformation.

Proof. We first show that T is a quasi-copula transformation. Let Q1, Q2 be trivariate
quasi-copulas and let x ∈ I. Without loss of generality, we prove boundary conditions by
only showing that T (Q1, Q2)(x, 1, 1) = x. By (∗), we have that

T (Q1, Q2)(x, 1, 1) =
3

16
Q2

1(x, 1, 1)− 3

4
Q1(x, 1, 1)Q2(x, 1, 1) +

3

16
Q2

2(x, 1, 1)

+
3

8
xQ1(x, 1, 1) +

3

8
Q1(x, 1, 1) +

3

8
Q2(x, 1, 1) +

1

4
Q2(x, 1, 1)

=
3

16
x2 − 3

4
x2 +

3

16
x2 +

3

8
x2 +

3

8
x+

3

8
x+

1

4
x

= x.
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Next, we show that 0 ≤ ∂
∂xi

T (Q1, Q2)(x1, x2, x3) ≤ 1 for all (x1, x2, x3) ∈ I3 such that
∂
∂xi

Q1(x1, x2, x3) and ∂
∂xi

Q2(x1, x2, x3) exist for each i ∈ {1, 2, 3}. For convenience, we

denote (x1, x2, x3) and ∂
∂xi

f(x1, x2, x3) by ~x and ∂if(~x), respectively.

Let ~x ∈ I3. Suppose that ∂iQ1(~x), ∂iQ2(~x) exist for each i ∈ {1, 2, 3}.
Case i = 1: Consider

∂1T (Q1, Q2)(~x) =
3

8
Q1(~x)∂1Q1(~x)− 3

4
Q1(~x)∂1Q2(~x)− 3

4
Q2(~x)∂1Q1(~x)

+
3

8
Q2(~x)∂1Q2(~x) +

3

8
x1∂1Q1(~x) +

3

8
Q1(~x)

+
3

8
x3∂1Q1(~x) +

3

8
x2∂1Q2(~x) +

1

4
∂1Q2(~x)

=

[
3

8
Q1(~x)− 3

4
Q2(~x) +

3

8
x1 +

3

8
x3

]
∂1Q1(~x)

+

[
−3

4
Q1(~x) +

3

8
Q2(~x) +

3

8
x2 +

1

4

]
∂1Q2(~x) +

3

8
Q1(~x).

We now consider signs of coefficients of ∂1Q1(~x) and ∂1Q2(~x).
First, by Q2(~x) ≤M(~x) ≤ x1, x3 and

3

8
Q1(~x)− 3

4
Q2(~x) +

3

8
x1 +

3

8
x3 =

3

8
Q1(~x)− 3

8
Q2(~x)− 3

8
Q2(~x) +

3

8
x1 +

3

8
x3,

we have that a coefficient of ∂1Q1(~x) is non-negative.
Moreover, we can compute that M(~x) − W (~x) ≤ 2

3 by programming. This
implies that

−3

4
Q1(~x) +

3

8
Q2(~x) +

3

8
x2 +

1

4
=− 3

8
Q1(~x)− 3

8
Q1(~x) +

3

8
Q2(~x) +

3

8
x2 +

1

4

=
3

8
(Q2(~x)−Q1(~x))− 3

8
Q1(~x) +

3

8
x2 +

1

4

≥ 3

8

(
−2

3

)
− 3

8
Q1(~x) +

3

8
x2 +

1

4

≥ 0,

that is, a coefficient of ∂1Q2(~x) is also non-negative. Thus, it is obvious that
∂1T (Q1, Q2)(~x) ≥ 0.

For proving ∂1T (Q1, Q2)(~x) ≤ 1, consider that

∂1T (Q1, Q2)(~x) ≤ 3

8
Q1(~x)− 3

4
Q2(~x) +

3

8
x1 +

3

8
x3 −

3

4
Q1(~x) +

3

8
Q2(~x) +

3

8
x2

+
1

4
+

3

8
Q1(~x)

=− 3

8
Q2(~x) +

3

8

3∑
i=1

xi +
1

4

≤ 3

4
+

1

4
= 1

by the facts that ∂1Q1(~x), ∂1Q2(~x) ≤ 1 and
∑3
i=1 xi − 2 ≤W (~x) ≤ Q2(~x).
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Case i = 2: Consider

∂2T (Q1, Q2)(~x) =
3

8
Q1(~x)∂2Q1(~x)− 3

4
Q1(~x)∂2Q2(~x)− 3

4
Q2(~x)∂2Q1(~x)

+
3

8
Q2(~x)∂2Q2(~x) +

3

8
x1∂2Q1(~x) +

3

8
x3∂2Q1(~x)

+
3

8
x2∂2Q2(~x) +

3

8
Q2(~x) +

1

4
∂2Q2(~x)

=

[
3

8
Q1(~x)− 3

4
Q2(~x) +

3

8
x1 +

3

8
x3

]
∂2Q1(~x)

+

[
−3

4
Q1(~x) +

3

8
Q2(~x) +

3

8
x2 +

1

4

]
∂2Q2(~x) +

3

8
Q2(~x).

We note that both coefficients of ∂1Q1(~x) and ∂1Q2(~x) are the same as the pre-
vious case. Thus, ∂2T (Q1, Q2)(~x) ≥ 0.

Similarly to the previous case,

∂2T (Q1, Q2)(~x) ≤ 3

8
Q1(~x)− 3

4
Q2(~x) +

3

8
x1 +

3

8
x3 −

3

4
Q1(~x) +

3

8
Q2(~x) +

3

8
x2

+
1

4
+

3

8
Q2(~x)

=− 3

8
Q1(~x) +

3

8

3∑
i=1

xi +
1

4

≤ 1.

Case i = 3: Consider

∂3T (Q1, Q2)(~x) =
3

8
Q1(~x)∂3Q1(~x)− 3

4
Q1(~x)∂3Q2(~x)− 3

4
Q2(~x)∂3Q1(~x)

+
3

8
Q2(~x)∂3Q2(~x) +

3

8
x1∂3Q1(~x) +

3

8
x3∂3Q1(~x)

+
3

8
Q1(~x) +

3

8
x2∂3Q2(~x) +

1

4
∂3Q2(~x).

We can prove that 0 ≤ ∂3T (Q1, Q2)(~x) ≤ 1 by the same way as the case i = 1.

Now, we can conclude that T (Q1, Q2) is a non-decreasing Lipschitz function. Com-
bining with the boundary conditions, it follows that T (Q1, Q2) is a quasi-copula. In
particular, T is a quasi-copula transformation.

After that, we can see that this T is not a semi-copula transformation by considering
q = 2 in the condition 6 of Theorem 2.5. It gives that

2

2∑
p=1

(ap2 ∧ 0) +

3∑
i=1

bi2 + c2 = 2 ((a12 ∧ 0) + (a22 ∧ 0)) +

3∑
i=1

bi2 + c2

= 2

((
−3

8
∧ 0

)
+

(
3

16
∧ 0

))
+

3

8
+

1

4

= 2 · −3

8
+

5

8

=− 1

8
� 0.
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Although the class of all quasi-copulas is a subclass of the class of all semi-copulas, the
last theorem show us that the class of all bivariate transformations of quasi-copulas is not
a subclass of the class of all bivariate transformations of semi-copulas, that is, they are
different. Moreover, we note that T does not transform symmetric quasi-copulas because
coefficients of terms x1, x2, x3 are not necessarily equal. Then interchanges of x2 and x1,
x3 give different values of the transformation T . This implies that the equation (∗) is not
a symmetric function. By the same reason, T is also not interchangeable on Q1 and Q2.
Thus, we can construct other bivariate transformations of quasi-copulas by swapping x2
and x1, x3 or swapping Q1 and Q2 in the equation (∗) such as a following example.

Swapping x1 and x2 in (∗) gives a new bivariate transformation of quasi-copulas as
follow

T
′
(Q1, Q2)(x2, x1, x3) =

3

16
Q2

1(x2, x1, x3)− 3

4
Q1(x2, x1, x3)Q2(x2, x1, x3)

+
3

16
Q2

2(x2, x1, x3) +
3

8
x2Q1(x2, x1, x3)

+
3

8
x3Q1(x2, x1, x3) +

3

8
x1Q2(x2, x1, x3)

+
1

4
Q2(x2, x1, x3).

Next, we consider whether univariate transformations and bivariate transformations of
quasi-copulas are related.

Theorem 3.2. The bivariate quasi-copulas transformation given by (∗) cannot be con-
structed using composition between univariate quasi-copula transformations and convex
combinations.

Proof. Assume that the equation (∗) can be constructed using composition between uni-
variate quasi-copula transformations and convex combinations. For any ~x ∈ I3,

T (Q1, Q2)(~x) = αTP1
(βQ1 + (1− β)Q2) (~x) + (1− α)TP2

(γQ1 + (1− γ)Q2) (~x)

for some α, β, γ ∈ I, univariate quasi-copula transformations TP1
, TP2

satisfying Theorem
2.6 and quasi-copulas Q1, Q2. Since a convex combination of quasi-copulas is also a
quasi-copula and Theorem 2.6 holds, we have that

T (Q1, Q2)(~x) = α

[
a1 (βQ1 + (1− β)Q2)

2
(~x)− a1 (βQ1 + (1− β)Q2) (~x)

3∑
i=1

xi

+ (3a1 − a1 + 1) (βQ1 + (1− β)Q2) (~x)

]

+ (1− α)

[
a2 (γQ1 + (1− γ)Q2)

2
(~x)− a2 (γQ1 + (1− γ)Q2) (~x)

3∑
i=1

xi

+ (3a2 − a2 + 1) (γQ1 + (1− γ)Q2) (~x)

]
for some a1, a2 ∈ [− 1

2 , 0]. We observe coefficients of x1, x2, and x3. All coefficients are
equal to

−αa1 (βQ1 + (1− β)Q2) (~x)− (1− α) a2 (γQ1 + (1− γ)Q2) (~x),
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that is, these three coefficients are same while the equation (∗) gives that coefficients of
x1 and x2 are 3

8Q1(~x) and 3
8Q2(~x), respectively. It is a contradiction. Hence, (∗) cannot

be constructed from univariate quasi-copula transformations.

This means that there exists a bivariate transformation which is not in the class of uni-
variate transformations. Thus, the class of bivariate transformations is more complicated
and larger than the class of univariate transformations.

The last part of this section, we give some examples of new quasi-copulas by substi-
tuting two well-known quasi-copulas to Q1 and Q2 in (∗).

Example 3.3. Given Q1, Q2 are product functions. Then

T (Q1, Q2)(x1, x2, x3) = −3

8
x21x

2
2x

2
3 +

3

8
x21x2x3 +

3

8
x1x

2
2x3 +

3

8
x1x2x

2
3 +

1

4
x1x2x3.

Example 3.4. GivenQ1 is a product function andQ2(x1, x2, x3) =

3∏
i=1

xi+

3∏
i=1

xi (1− xi).

Then

T (Q1, Q2)(x1, x2, x3) =
3

16
x41x

4
2x

4
3 −

3

8
x41x

4
2x

3
3 +

3

16
x41x

4
2x

2
3 −

3

8
x41x

3
2x

4
3 +

3

4
x41x

3
2x

3
3

− 3

8
x41x

3
2x

2
3 +

3

16
x41x

2
2x

4
3 −

3

8
x41x

2
2x

3
3 +

3

16
x41x

2
2x

2
3 −

3

8
x31x

4
2x

4
3

+
3

4
x31x

4
2x

3
3 −

3

8
x31x

4
2x

2
3 +

3

4
x31x

3
2x

4
3 −

9

8
x31x

3
2x

3
3 +

3

8
x31x

3
2x

2
3

− 3

8
x31x

2
2x

4
3 +

3

8
x31x

2
2x

3
3 +

3

16
x21x

4
2x

4
3 −

3

8
x21x

4
2x

3
3 +

3

16
x21x

4
2x

2
3

− 3

8
x21x

3
2x

4
3 +

3

8
x21x

3
2x

3
3 −

3

8
x21x

3
2x

2
3 +

3

8
x21x

3
2x3 +

3

16
x21x

2
2x

4
3

− 7

16
x21x

2
2x

2
3 −

1

8
x21x

2
2x3 +

1

4
x21x2x

2
3 +

1

8
x21x2x3 +

3

8
x1x

3
2x

2
3

− 3

8
x1x

3
2x3 −

1

8
x1x

2
2x

2
3 +

1

2
x1x

2
2x3 +

1

8
x1x2x

2
3 +

1

2
x1x2x3.

4. Conclusion and Discussion

This study shows a construction of a new bivariate transformation of trivariate quasi-
copulas based on a given quadratic polynomial function. The class of new quasi-copulas is
obtained by composing this priori given quadratic polynomial and any two quasi-copulas.
The constructed transformation T is not a bivariate transformation of semi-copulas. In
particular, it cannot be constructed from any convex combinations of univariate trans-
formations. Moreover, many quasi-copulas can be constructed by replacing any quasi-
copulas to the transformation T , for instance, we can choose FGM-copulas in many ways
by picking θ ∈ [−1, 1].

However, the characterization of the class of bivariate quadratic transformations of
trivariate quasi-copulas is still an open problem. If we can solve this problem, then we
will have the family of new quasi-copulas which is larger than the family of quasi-copulas
that we obtained in this work. Therefore, it is an interesting topic that we will try to
solve in the future.
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