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Abstract In this paper, a solution of the following difference equation was investigated

xn+1 =
xn−2k−3

1 +
k+1∏
m=1

xn−2m+1

, n = 0, 1, 2, . . .

where x−2k−3, x−2k−2, . . . , x−1, x0 are arbitrary positive real numbers and k = 0, 1, 2, . . ..
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1. Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions
of differential and delay differential equations having applications in physics, ecology,
biology, etc.

Recently, a high attention to studying the periodic nature of nonlinear difference equa-
tions. For some recent results concerning among other problems, the periodic nature of
scalar nonlinear difference equations, see the references [1–15].

Cinar [2, 3] studied the following problem with positive initial values,

xn+1 =
xn−1

−1 + axnxn−1

xn+1 =
xn−1

1 + axnxn−1

for n = 0, 1, 2, . . .
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Simsek et al. [8–10, 12, 13] investigated the following nonlinear difference equation

xn+1 =
xn−3

1 + xn−1

xn+1 =
xn−5

1 + xn−2

xn+1 =
xn−5

1 + xn−1xn−3

xn+1 =
xn−17

1 + xn−5xn−11

xn+1 =
xn−7

1 + xn−3

for n = 0, 1, 2, . . .
Ogul et al. [7] studied the following nonlinear difference equation

xn+1 =
xn−7

xn−1xn−3xn−5
, n = 0, 1, 2, . . .

where x−7, x−6, . . . , x−1, x0 ∈ (0,∞).
In this paper, we investigate the following nonlinear difference equation

xn+1 =
xn−2k−3

1 +
k+1∏
m=1

xn−2m+1

, n = 0, 1, 2, . . . (1.1)

where x−2k−3, x−2k−2, . . . , x−1, x0 are arbitrary positive real numbers and k = 0, 1, 2, . . .

2. Main Results

Theorem 2.1. Consider the difference equation (1.1). Then the following statements are
true.

(a) The sequence x(2k+4)n−(2k+4)+s are decreasing and there exist as ≥ 0 such that
lim
n→∞

x(2k+4)n−(2k+4)+s = as for s = 1, 2, . . . , 2k + 4.

(b) (a1, a2, . . . , a2k+3, a2k+4, . . .) is a solution of equation (1.1) of period 2k + 4.

(c)
k+2∏
m=1

a2m+u−2 = 0 for u = 1, 2.

(d) There exists n0 ∈ N such that xn+1 ≤ xn−2k−1 for all n ≥ n0, then lim
n→∞

xn = 0.

(e) The following formulas

x(2k+4)n+2t+u−2 = x−(2k+4)+2t+u−2

1−

k+2∏
l=1

x−(2l−u)

x−(2k+4)+2t+u−2

(
1 +

k+1∏
l=1

x−(2l−u)

)
n∑
j=0

(k+2)j+t−1∏
i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)


for t = 1, 2, . . . , k + 2 and u = 1, 2 hold.
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(f) If x(2k+4)n+2t+u−2 → a2t+u−2 6= 0 then x(2k+4)n+2k+u+2 → 0 for t = 1, 2, . . . , k+ 1
and u = 1, 2

Proof. (a) Firstly, we consider the equation (1.1). From this equation, we obtain

xn+1

(
1 +

k+1∏
m=1

xn−2m+1

)
= xn−2k−3.

Since
k+1∏
m=1

xn−2m+1 > 0 then 1 +
k+1∏
m=1

xn−2m+1 > 1. Thus xn+1 < xn−2k−3, n ∈ N, we

obtain that there exist lim
n→∞

x(2k+4)n−(2k+4)+s = as for s = 1, 2, . . . , 2k + 4.

(b) By (a), thus (a1, a2, . . . , a2k+3, a2k+4, . . .) is a solution of equation (1.1) of period
2k + 4.

(c) In view of the equation (1.1), we obtian

x(2k+4)n+u =
x(2k+4)n−(2k+4)+u

1 +
k+1∏
m=1

x(2k+4)n−2m+u

.

The limits as n→∞ are put on both sides of the above equality

lim
n→∞

x(2k+4)n+u = lim
n→∞

x(2k+4)n−(2k+4)+u

1 +
k+1∏
m=1

x(2k+4)n−2m+u

.

Then

au =
au

1 +
k+1∏
m=1

a(2k+4)−2m+u

au + au

k+1∏
m=1

a(2k+4)−2m+u = au

au

k+1∏
m=1

a(2k+4)−2m+u = 0

k+2∏
m=1

a2m+u−2 = 0

for u = 1, 2.
(d) Suppose there exist n0 ∈ N such that xn+1 ≤ xn−2k−1 for all n ≥ n0, then

au ≤ au+2 ≤ . . . ≤ au+2k+2 ≤ au. By (c) we have
k+2∏
m=1

a2m+u−2 = 0 for u = 1, 2, the

results are obtained above.
(e) Subtracting xn−2k−3 from both sides of equation (1.1), we obtain

xn+1 − xn−2k−3 = (xn−1 − xn−2k−5)
1

1 +
k+1∏
m=1

xn−2m+1

,
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and the following formula is produced below, for n ≥ 2

x2n−4+u − x2n−2k−8+u = (xu − x−(2k+4)+u)

n−2∏
i=1

1

1 +
k+1∏
m=1

x2i−2m+u

for u = 1, 2 hold.
Replacing n by (k + 2)j + t− 1 and summing from j = 0 to j = n, we obtain

x(2k+4)n+2t+u−2 − x−(2k+4)+2t+u−2 = (x2t+u−2 − x−(2k+4)+2t+u−2)

n∑
j=0

(k+2)j+t−1∏
i=1

1

1 +
k+1∏
m=1

x2i−2m+u

for t = 1, 2, . . . , k + 2 and u = 1, 2.
Now, we obtained of the above formulas

x(2k+4)n+2t+u−2 = x−(2k+4)+2t+u−2

1−

k+2∏
l=1

x−(2l−u)

x−(2k+4)+2t+u−2

(
1 +

k+1∏
l=1

x−(2l−u)

)
n∑
j=0

(k+2)j+t−1∏
i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)


for t = 1, 2, . . . , k + 2 and u = 1, 2.

(f) Assume that a2t+u−2 = 0 for t = 1, 2, . . . , k + 2 and u = 1, 2. By (e) we have

lim
n→∞

x(2k+4)n+2t+u−2 = lim
n→∞

x−(2k+4)+2t+u−2

1−

k+2∏
l=1

x−(2l−u)

x−(2k+4)+2t+u−2

1 +
k+1∏
l=1

x−(2l−u)

n∑
j=0

(k+2)j+t−1∏
i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)



a2t+u−2 = x−(2k+4)+2t+u−2

1−

k+2∏
l=1

x−(2l−u)

x−(2k+4)+2t+u−2

1 +
k+1∏
l=1

x−(2l−u)

∞∑
j=0

(k+2)j+t−1∏
i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)


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From a2t+u−2 = 0 then

x−(2k+4)+2t+u−2

(
1 +

k+1∏
l=1

x−(2l−u)

)
k+2∏
l=1

x−(2l−u)

=

∞∑
j=0

(k+2)j+t−1∏
i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)

Since
(k+2)j+k+1∏

i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)

< · · · <
(k+2)j∏
i=1

1

1 +
k+1∏
l=1

x2i−(2l−u)

Thus, xu−2 < xu−4 < . . . < xu−(2k+4) for u = 1, 2. This contradicts our assumption.
Which completes the proof of the theorem.

3. Numerical Results

In this section, we demonstrate some results of equation (1.1) with k = 0, 1, 2 and 3.

Example 3.1. [8] Consider the recursive sequence xn+1 =
xn−3

1 + xn−1
, which is a special

case of (1.1) for k = 0. The initial conditions are selected as follows, x−3 = 0.9, x−2 =
0.8, x−1 = 0.7, x0 = 0.6. Then the graph of solution is given below.

Figure 1. xn graph of the solution of equation (1.1) of period 4.

Example 3.2. [10] Consider the recursive sequence xn+1 =
xn−5

1 + xn−1xn−3
, which is a

special case of (1.1) for k = 1. The initial conditions are selected as follows, x−5 =
0.9, x−4 = 0.8, . . . , x0 = 0.4. Then the graph of solution is given below.



534 Thai J. Math. Vol. 21 (2023) /P. Puangjumpa

Figure 2. xn graph of the solution of equation (1.1) of period 6.

Example 3.3. [7] Consider the recursive sequence xn+1 =
xn−7

1 + xn−1xn−3xn−5
, which is

a special case of (1.1) for k = 2. The initial conditions are selected as follows, x−7 =
0.9, x−6 = 0.8, . . . , x0 = 0.2. Then the graph of solution is given below.

Figure 3. xn graph of the solution of equation (1.1) of period 8.
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Example 3.4. Consider the recursive sequence xn+1 =
xn−9

1 + xn−1xn−3xn−5xn−7
, which

is a special case of (1.1) for k = 3. The initial conditions are selected as follows, x−9 =
0.99, x−4 = 0.89, . . . , x0 = 0.09. Then the graph of solution is given below.

Figure 4. xn graph of the solution of equation (1.1) of period 10.
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