On the Recursive Sequence $x_{n+1}=\frac{x_{n-2 k-3}}{L_{+1}}$
 $$
1+\prod_{m=1}^{k+1} x_{n-2 m+1}
$$

Piyanut Puangjumpa

Department of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Surin, 32000, Thailand
e-mail : piyanut.pu@srru.ac.th
Abstract In this paper, a solution of the following difference equation was investigated

$$
x_{n+1}=\frac{x_{n-2 k-3}}{1+\prod_{m=1}^{k+1} x_{n-2 m+1}}, n=0,1,2, \ldots
$$

where $x_{-2 k-3}, x_{-2 k-2}, \ldots, x_{-1}, x_{0}$ are arbitrary positive real numbers and $k=0,1,2, \ldots$.
MSC: 39A10
Keywords: difference equation; period $2 k+4$ solution; recursive sequence

Submission date: 05.04.2022 / Acceptance date: 19.01.2023

1. Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations having applications in physics, ecology, biology, etc.

Recently, a high attention to studying the periodic nature of nonlinear difference equations. For some recent results concerning among other problems, the periodic nature of scalar nonlinear difference equations, see the references [1-15].

Cinar $[2,3]$ studied the following problem with positive initial values,

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n-1}}{-1+a x_{n} x_{n-1}} \\
x_{n+1} & =\frac{x_{n-1}}{1+a x_{n} x_{n-1}}
\end{aligned}
$$

for $n=0,1,2, \ldots$

Simsek et al. [8-10, 12, 13] investigated the following nonlinear difference equation

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n-3}}{1+x_{n-1}} \\
x_{n+1} & =\frac{x_{n-5}}{1+x_{n-2}} \\
x_{n+1} & =\frac{x_{n-5}}{1+x_{n-1} x_{n-3}} \\
x_{n+1} & =\frac{x_{n-17}}{1+x_{n-5} x_{n-11}} \\
x_{n+1} & =\frac{x_{n-7}}{1+x_{n-3}}
\end{aligned}
$$

for $n=0,1,2, \ldots$
Ogul et al. [7] studied the following nonlinear difference equation

$$
x_{n+1}=\frac{x_{n-7}}{x_{n-1} x_{n-3} x_{n-5}}, n=0,1,2, \ldots
$$

where $x_{-7}, x_{-6}, \ldots, x_{-1}, x_{0} \in(0, \infty)$.
In this paper, we investigate the following nonlinear difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-2 k-3}}{1+\prod_{m=1}^{k+1} x_{n-2 m+1}}, n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where $x_{-2 k-3}, x_{-2 k-2}, \ldots, x_{-1}, x_{0}$ are arbitrary positive real numbers and $k=0,1,2, \ldots$

2. Main Results

Theorem 2.1. Consider the difference equation (1.1). Then the following statements are true.
(a) The sequence $x_{(2 k+4) n-(2 k+4)+s}$ are decreasing and there exist $a_{s} \geq 0$ such that $\lim _{n \rightarrow \infty} x_{(2 k+4) n-(2 k+4)+s}=a_{s}$ for $s=1,2, \ldots, 2 k+4$.
(b) $\left(a_{1}, a_{2}, \ldots, a_{2 k+3}, a_{2 k+4}, \ldots\right)$ is a solution of equation (1.1) of period $2 k+4$.
(c) $\prod_{m=1}^{k+2} a_{2 m+u-2}=0$ for $u=1,2$.
(d) There exists $n_{0} \in \mathbb{N}$ such that $x_{n+1} \leq x_{n-2 k-1}$ for all $n \geq n_{0}$, then $\lim _{n \rightarrow \infty} x_{n}=0$.
(e) The following formulas

$$
\begin{aligned}
& x_{(2 k+4) n+2 t+u-2}=x_{-(2 k+4)+2 t+u-2}\left(1-\frac{\prod_{l=1}^{k+2} x_{-(2 l-u)}}{x_{-(2 k+4)+2 t+u-2}\left(1+\prod_{l=1}^{k+1} x_{-(2 l-u)}\right)}\right. \\
&\left.\sum_{j=0}^{n} \prod_{i=1}^{(k+2) j+t-1} \frac{1}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}\right)
\end{aligned}
$$

for $t=1,2, \ldots, k+2$ and $u=1,2$ hold.
(f) If $x_{(2 k+4) n+2 t+u-2} \rightarrow a_{2 t+u-2} \neq 0$ then $x_{(2 k+4) n+2 k+u+2} \rightarrow 0$ for $t=1,2, \ldots, k+1$ and $u=1,2$

Proof. (a) Firstly, we consider the equation (1.1). From this equation, we obtain

$$
x_{n+1}\left(1+\prod_{m=1}^{k+1} x_{n-2 m+1}\right)=x_{n-2 k-3}
$$

Since $\prod_{m=1}^{k+1} x_{n-2 m+1}>0$ then $1+\prod_{m=1}^{k+1} x_{n-2 m+1}>1$. Thus $x_{n+1}<x_{n-2 k-3}, n \in \mathbb{N}$, we obtain that there exist $\lim _{n \rightarrow \infty} x_{(2 k+4) n-(2 k+4)+s}=a_{s}$ for $s=1,2, \ldots, 2 k+4$.
(b) By (a), thus ($a_{1}, a_{2}, \ldots, a_{2 k+3}, a_{2 k+4}, \ldots$) is a solution of equation (1.1) of period $2 k+4$.
(c) In view of the equation (1.1), we obtian

$$
x_{(2 k+4) n+u}=\frac{x_{(2 k+4) n-(2 k+4)+u}}{1+\prod_{m=1}^{k+1} x_{(2 k+4) n-2 m+u}} .
$$

The limits as $n \rightarrow \infty$ are put on both sides of the above equality

$$
\lim _{n \rightarrow \infty} x_{(2 k+4) n+u}=\lim _{n \rightarrow \infty} \frac{x_{(2 k+4) n-(2 k+4)+u}}{1+\prod_{m=1}^{k+1} x_{(2 k+4) n-2 m+u}}
$$

Then

$$
\begin{aligned}
a_{u} & =\frac{a_{u}}{1+\prod_{m=1}^{k+1} a_{(2 k+4)-2 m+u}} \\
a_{u}+a_{u} \prod_{m=1}^{k+1} a_{(2 k+4)-2 m+u} & =a_{u} \\
a_{u} \prod_{m=1}^{k+1} a_{(2 k+4)-2 m+u} & =0 \\
\prod_{m=1}^{k+2} a_{2 m+u-2} & =0
\end{aligned}
$$

for $u=1,2$.
(d) Suppose there exist $n_{0} \in \mathbb{N}$ such that $x_{n+1} \leq x_{k-2 k-1}$ for all $n \geq n_{0}$, then $a_{u} \leq a_{u+2} \leq \ldots \leq a_{u+2 k+2} \leq a_{u}$. By (c) we have $\prod_{m=1}^{k+2} a_{2 m+u-2}=0$ for $u=1,2$, the results are obtained above.
(e) Subtracting $x_{n-2 k-3}$ from both sides of equation (1.1), we obtain

$$
x_{n+1}-x_{n-2 k-3}=\left(x_{n-1}-x_{n-2 k-5}\right) \frac{1}{1+\prod_{m=1}^{k+1} x_{n-2 m+1}},
$$

and the following formula is produced below, for $n \geq 2$

$$
x_{2 n-4+u}-x_{2 n-2 k-8+u}=\left(x_{u}-x_{-(2 k+4)+u}\right) \prod_{i=1}^{n-2} \frac{1}{1+\prod_{m=1}^{k+1} x_{2 i-2 m+u}}
$$

for $u=1,2$ hold.
Replacing n by $(k+2) j+t-1$ and summing from $j=0$ to $j=n$, we obtain

$$
\begin{aligned}
& x_{(2 k+4) n+2 t+u-2}-x_{-(2 k+4)+2 t+u-2}=\left(x_{2 t+u-2}-x_{-(2 k+4)+2 t+u-2}\right) \\
& \sum_{j=0}^{n} \prod_{i=1}^{(k+2) j+t-1} \frac{1}{1+\prod_{m=1}^{k+1} x_{2 i-2 m+u}}
\end{aligned}
$$

for $t=1,2, \ldots, k+2$ and $u=1,2$.
Now, we obtained of the above formulas

$$
x_{(2 k+4) n+2 t+u-2}=x_{-(2 k+4)+2 t+u-2} \sum_{\sum_{j=0}^{n} \prod_{i=1}^{(k+2) j+t-1}}^{\left.x_{-(2 k+4)+2 t+u-2} \frac{\prod_{l=1}^{k+2} x_{-(2 l-u)}}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}\right)}
$$

for $t=1,2, \ldots, k+2$ and $u=1,2$.
(f) Assume that $a_{2 t+u-2}=0$ for $t=1,2, \ldots, k+2$ and $u=1,2$. By (e) we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{(2 k+4) n+2 t+u-2}=\lim _{n \rightarrow \infty} x_{-(2 k+4)+2 t+u-2}\left(1-\frac{\prod_{l=1}^{k+2} \frac{x_{-(2 l-u)}}{x_{-(2 k+4)+2 t+u-2}}}{1+\prod_{l=1}^{k+1} x_{-(2 l-u)}}\right. \\
& \left.\sum_{j=0}^{n} \prod_{i=1}^{(k+2) j+t-1} \frac{1}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}\right) \\
& a_{2 t+u-2}=x_{-(2 k+4)+2 t+u-2}\left(1-\frac{\prod_{l=1}^{k+2} \frac{x_{-(2 l-u)}}{x_{-(2 k+4)+2 t+u-2}}}{1+\prod_{l=1}^{k+1} x_{-(2 l-u)}}\right. \\
& \left.\sum_{j=0}^{\infty} \prod_{i=1}^{(k+2) j+t-1} \frac{1}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}\right)
\end{aligned}
$$

From $a_{2 t+u-2}=0$ then

$$
\frac{x_{-(2 k+4)+2 t+u-2}\left(1+\prod_{l=1}^{k+1} x_{-(2 l-u)}\right)}{\prod_{l=1}^{k+2} x_{-(2 l-u)}}=\sum_{j=0}^{\infty} \prod_{i=1}^{(k+2) j+t-1} \frac{1}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}
$$

Since

$$
\prod_{i=1}^{(k+2) j+k+1} \frac{1}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}<\cdots<\prod_{i=1}^{(k+2) j} \frac{1}{1+\prod_{l=1}^{k+1} x_{2 i-(2 l-u)}}
$$

Thus, $x_{u-2}<x_{u-4}<\ldots<x_{u-(2 k+4)}$ for $u=1,2$. This contradicts our assumption. Which completes the proof of the theorem.

3. Numerical Results

In this section, we demonstrate some results of equation (1.1) with $k=0,1,2$ and 3 .
Example 3.1. [8] Consider the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, which is a special case of (1.1) for $k=0$. The initial conditions are selected as follows, $x_{-3}=0.9, x_{-2}=$ $0.8, x_{-1}=0.7, x_{0}=0.6$. Then the graph of solution is given below.

Figure 1. x_{n} graph of the solution of equation (1.1) of period 4.

Example 3.2. [10] Consider the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}$, which is a special case of (1.1) for $k=1$. The initial conditions are selected as follows, $x_{-5}=$ $0.9, x_{-4}=0.8, \ldots, x_{0}=0.4$. Then the graph of solution is given below.

Figure 2. x_{n} graph of the solution of equation (1.1) of period 6.

Example 3.3. [7] Consider the recursive sequence $x_{n+1}=\frac{x_{n-7}}{1+x_{n-1} x_{n-3} x_{n-5}}$, which is a special case of (1.1) for $k=2$. The initial conditions are selected as follows, $x_{-7}=$ $0.9, x_{-6}=0.8, \ldots, x_{0}=0.2$. Then the graph of solution is given below.

Figure 3. x_{n} graph of the solution of equation (1.1) of period 8.

Example 3.4. Consider the recursive sequence $x_{n+1}=\frac{x_{n-9}}{1+x_{n-1} x_{n-3} x_{n-5} x_{n-7}}$, which is a special case of (1.1) for $k=3$. The initial conditions are selected as follows, $x_{-9}=$ $0.99, x_{-4}=0.89 \ldots \ldots x_{n}=0.09$. Then the graph of solution is given below.

Figure 4. x_{n} graph of the solution of equation (1.1) of period 10.

Acknowledgements

The author would like to thank the editors and referees for their comments and suggestions on the manuscript. This work was supported by the Surindra Rajabhat University.

References

[1] A.M. Amleh, E.A. Grove, G. Ladas, D.A. Georgiou, On the recursive sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$, J. Math. Anl. Appl. 233 (2) (1999) 790-798.
[2] C. Cinar, On the solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+a x_{n} x_{n-1}}$, App. Math. Comp. 158 (3) (2004) 793-797.
[3] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{1+a x_{n} x_{n-1}}$, App. Math. Comp. 158 (3) (2004) 809-812.
[4] R. DeVault, G. Ladas, S.W. Schultz, On the recursive sequence $x_{n+1}=\frac{A}{x_{n}}+\frac{1}{x_{n-2}}$, Proc. Amer. Math. Soc. 126 (11) (1998) 3257-3261.
[5] C.H. Gibbons, M.R.S. Kulenovic, G. Ladas, On the recursive sequence $x_{n+1}=$ $\frac{\alpha+\beta x_{n-1}}{\gamma+x_{n}}$, Math. Sci. Res. Hot-line 4 (2000) 1-11.
[6] A.E. Hamza, On the recursive sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$, J. Math. Anl. Appl. 322 (2) (2006) 668-674.
[7] B. Ogul, D. Simsek, F. Abdullayev, A. Farajzadeh, On the recursive sequence $x_{n+1}=$ $\frac{x_{n-7}}{1+x_{n-1} x_{n-3} x_{n-5}}$, Thai J. Math. 20 (1) (2022) 111-119.
[8] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Internat. J. Contemp. 9 (12) (2006) 475-480.
[9] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}$, Internat. J. Pure Appl. Math. 27 (4) (2006) 501-507.
[10] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}$, Internat. J. Pure Appl. Math. 28 (1) (2006) 117-124.
[11] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=$ $\frac{x_{n-(5 k+9)}}{1+x_{n-4} x_{n-9} \ldots x_{n-(5 k+4)}}$, Taiwanese J. Math. 12 (5) (2008) 1087-1099.
[12] D. Simsek, P.E. Kyzy, M.I. Kyzy, On the recursive sequence $x_{n+1}=\frac{x_{n-7}}{1+x_{n-3}}$, Filomat 33 (5) (2019) 1381-1386.
[13] D. Simsek, B. Ogul, C. Cinar, Solution of the Rational Difference Equation $x_{n+1}=$ $\frac{x_{n-17}}{1+x_{n-5} x_{n-11}}$, Filomat 33 (5) (2019) 1353-1359.
[14] S. Stevic, On the recursive sequence $x_{n+1}=\frac{g\left(x_{n}, x_{n-1}\right)}{A+x_{n}}$, Appl. Math. Lett. 15 (3) (2002) 305-308.
[15] S. Stevic, On the recursive sequence $x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)}$, Taiwanese J. Math. 6 (3) (2002) 405-414.

